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The Kadomtsev-Petviashvili equation (or simply the KP equation) is a nonlinear partial differential equation
in two spatial and one temporal coordinate which describes the evolution of nonlinear, long waves of small
amplitude with slow dependence on the transverse coordinate. There are two distinct versions of the KP
equation, which can be written in normalized form as follows:

(ut + 6uux + uxxx)x + 3σ2uyy = 0. (1)

Here u = u(x, y, t) is a scalar function, x and y are respectively the longitudinal and transverse spatial co-
ordinates, subscripts x, y, t denote partial derivatives, and σ2 = ±1. The case σ = 1 is known as the KPII
equation, and models, for instance, water waves with small surface tension. The case σ = i is known as the
KPI equation, and may be used to model waves in thin films with high surface tension. The equation is often
written with different coefficients in front of the various terms, but the particular values are inessential, since
they can be modified by appropriately rescaling the dependent and independent variables.

The KP equation is a universal integrable system in two spatial dimensions in the same way that the
KdV equation can be regarded as a universal integrable system in one spatial dimension, since many other
integrable systems can be obtained as reductions. As such, the KP equation has been extensively studied in
the mathematical community in the last forty years. The KP equation is also one of the most universal models
in nonlinear wave theory, which arises as a reduction of system with quadratic nonlinearity which admit weakly
dispersive waves, in a paraxial wave approximation. The equation naturally emerges as a distinguished limit
in the asymptotic description of such systems in which only the leading order terms are retained and an
asymptotic balance between weak dispersion, quadratic nonlinearity and diffraction is assumed. The different
role played by the two spatial variables accounts for the asymmetric way in which they appear in the equation.

Despite their apparent similarity, the two versions of the KP equation differ significantly with respect to
their underlying mathematical structure and the behavior of their solutions. Figure 1 shows a two-dimensional
localized solution of the KPI equation, known as the lump solution, while Figure 2 shows a contour plot of a
resonant two-soliton solution of the KPII equation. Solutions of these KP equations and their properties are
discussed in more detail in the following sections.

Figure 1: A lump solution of KPI. Figure 2: A resonant 2-soliton solution of KPII.

1



Contents

1. History

2. Mathematical structure

2.1 Lax pair and equivalent formulations

2.2 Bilinear form and Wronskian representations

2.3 Connection with Sato theory

3. Exact solutions and two-dimensional wave phenomena

3.1 Line solitons

3.2 Existence and stability of two-dimensional solitary waves in the KPI equation

3.3 Transverse stability of one-dimensional solitary waves

3.4 Resonant interactions of line solitons in the KPII equation

3.5 Finite-genus and quasi-periodic solutions

4 References

5 Recommended reading

History

The KP equation originates from a 1970 paper by two Soviet physicists, Boris Kadomtsev (1928-1998) and
Vladimir Petviashvili (1936-1993). The two researchers derived the equation that now bears their name as a
model to study the evolution of long ion-acoustic waves of small amplitude propagating in plasmas under the
effect of long transverse perturbations. In the absence of transverse dynamics, this problem is described by
the Korteweg-de Vries (KdV) equation. The KP equation was soon widely accepted as a natural extension of
the classical KdV equation to two spatial dimensions, and was later derived as a model for surface and internal
water waves by Ablowitz and Segur (1979), and in nonlinear optics by Pelinovsky, Stepanyants and Kivshar
(1995), as well as in other physical settings.

The focus of the 1970 paper was on a particular problem, the stability of solitons of the Korteweg-de Vries
equation with respect to transverse perturbations. The authors showed that KdV solitons are stable to such
perturbations in the case of media characterized by negative dispersion (that is, when the phase speed of
infinitesimal perturbations decreases with the wavenumber). This is the case of the KPII equation. In the op-
posite case of a positive dispersion media (where the phase speed increases with the wavenumber), however,
KdV solitons are unstable. This is the case of the KPI equation.

The discovery of the KP equation happened almost simultaneously with the development of the inverse
scattering transform (IST) [e.g., see Ablowitz and Segur (1981) and Novikov, Manakov, Pitaevski and Zakharov
(1984)]. This method for the solution of the initial-value problem for nonlinear partial differential equations was
originally developed for equations in one spatial dimension, such as the KdV equation. In 1974, however,
Valery Dryuma showed how the KP equation could be written in Lax form, providing a strong hint that the
equation was integrable. Then, in the same year, Vladimir Zakharov and Alexey Shabat extended the IST to
equations in two spatial dimensions, including the KP equation, and obtained several exact solutions to the KP
equation, including line-soliton solutions. A few years later, various researchers also obtained two-dimensional
algebraically decaying localized solutions of the KPI equation, which are called lumps. These solutions allowed
physicists to solve a number of theoretical problems involving the KP equation in the following twenty years,
as discussed below.

Throughout the 1980s and 1990s, both versions of the KP equations were used as prototypical examples
for further advances in the IST involving problems of complex analysis. In particular, the nonlocal Riemann-
Hilbert problem and the D-Bar problem were applied to the KPI and KPII equations, respectively, as methods of
solutions of the inverse scattering problem using integration in the complex plane. The relevant works of Mark
Ablowitz, Athanassios Fokas and others are reviewed in the book by Ablowitz and Clarkson (1991), while
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an alternative point of view on the dbar-dressing method is presented in the book by Boris Konopelchenko
(1993). The inverse scattering method relates solutions of the KPI and KPII equations to solutions of the time-
dependent Schroedinger equation and the heat equation with external potential, respectively. Fundamental
properties of Darboux-Backlund transformations for solutions of these equations are described in the book by
Vladimir Matveev and Michael Salle (1991). It should be noted however that the implementation of IST in the
case of non-vanishing boundary conditions at infinity has proved to be significantly more difficult, and it is still
the subject of current research [e.g., see Boiti et al. (2002,2006) and Villarroel and Ablowitz (2002)].

The KP equation has been used extensively as a model for two-dimensional shallow water waves [Segur
and Finkel (1985), Hammack et al. (1989,1995)] and ion-acoustic waves in plasmas [e.g., see Infeld and
Rowlands (2001)]. More recently, it has been obtained as a reduced model in ferromagnetics, Bose-Einstein
condensation and string theory. The KP equation is still used as a classical model for developing and testing of
new mathematical techniques, e.g. in problems of well-posedness in non-classical function spaces [Tzvetkov
(2000)], in applications of the dynamical system methods for water waves [Groves and Sun (2008)], and in the
variational theory of existence and stability of energy minimizers [De Bouard and Saut (1997)].

Mathematical structure

Lax pair and equivalent formulations

A Lax pair for the KP equation is given by the overdetermined linear system

σψy + ψxx + (u + λ)ψ = 0 , (2)

ψt + 4ψxxx + 6uψx + 3uxψ − 3σ
(
∂−1uy

)
ψ + αψ = 0 , (3)

where the solution u(x, y, t) of the KP equation plays the role of a scattering potential, ψ(x, y, t, λ) is the
corresponding eigenfunction, λ is the spectral parameter, α is an arbitrary constant, and

(∂−1 f )(x) =
1
2
( x∫
−∞

f (x′)dx′ −
∞∫
x

f (x′)dx′
)
. (4)

The particular definition of the operator ∂−1 used here is convenient for IST, and allows one to write the KP
equation in evolution form. That is, the compatibility of (2) and (3) requires that u satisfies

ut + 6uux + uxxx + 3σ2∂−1uyy = 0, (5)

which is the KP equation (1) after integration with the operator ∂−1. The same equation (5) is also often written
in compatibility form as the system

ut + 6uux + uxxx = −3σ2vx , vx = uy . (6)

These two formulations are equivalent under suitable conditions of convergence and regularity. Note also that
the validity of equation (5) requires the invariant constraint

∞∫
−∞

uyy(x, y, t) dx = 0. (7)

This condition imposes an infinite number of constraints on the initial datum. In fact, even if this constraint is
not satisfied at t = 0, the time evolution is such that a discontinuity develops at t = 0, and the constraint is
satisfied at all t > 0 [see Ablowitz and Villarroel (1991)].

The IST for the KP equation is based on the spectral analysis of Eq. (2). Even though the Lax pairs of
KPI and KPII are almost identical, however, the the IST is profoundly different. In particular, the IST for KPI
employs a nonlocal Riemann-Hilbert problem, while that for KPII requires the use of the so-called dbar method
[Ablowitz and Clarkson (1991), Konopelchenko (1993), Novikov ”et al” (1984)].
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Bilinear form and Wronskian representations

The KP equation can be written in bilinear form by expressing solutions in terms of a tau-function. If

u(x, y, t) = 2∂2
x log τ(x, y, t) , (8)

then τ(x, y, t) satisfies the Hirota bilinear equation:[
DxDt + D4

x + 3D2
y
]

τ · τ = 0 , (9)

where Dx, Dy, Dt are Hirota derivatives:

Dm
x f · g = (∂x − ∂x′ )

m f (x, y, t)g(x′, y, t)|x=x′ , (10)

etc. This formulation provides the basis for using Hirota’s method to obtain solutions of the KP equation [see
Hirota (2004)].

Solutions to Hirota’s bilinear equation can also be obtained by expressing the tau-function in Wronskian
form [see Freeman and Nimmo (1983)]:

τ(x, y, t) = Wr( f1, . . . , fN) = det


f (0)
1 · · · f (0)

N
...

. . .
...

f (N−1)
1 · · · f (N−1)

N

 , (11)

where f (n) denotes the n¡sup¿th¡/sup¿ partial derivative of f with respect to x, and where the functions
f1, . . . , fN solve the associated linear problem

σ fy + fxx = 0 , ft + 4 fxxx = 0 . (12)

This linear system represents the Lax pair (2)-(3) for λ = α = 0 and u ≡ 0. A large variety of exact solutions
of the KP equation can be obtained in this way. Some of them are briefly discussed below.

Connection with Sato theory

Equations solvable by the inverse scattering transform technique are members of an infinite hierarchy of
commuting time flows. Originating from the works of the Japanese mathematician Mikio Sato in the 1980s,
this point of view considers the KP equation as the first non-trivial example of the KP hierarchy, which is
a hierarchy of nonlinear partial differential equations in an infinite number of independent and dependent
variables [see Miwa ”et al” (2000)]. If L is the pseudodifferential operator

L = ∂x +
∞

∑
m=1

um∂−m
x , (13)

where um, m ≥ 1 are functions of (t1, t2, t3, ...), the equations of the KP hierarchy are equivalent to the gener-
alized Lax equation

∂L
∂tn

= [Bn, L], n ≥ 1, (14)

where Bn is the differential part (including any purely multiplicative terms) of Ln, so that t1 = x follows from
the Lax equation above for n = 1. The KP equation is found from the generalized Lax equation for n = 2 and
n = 3 with the correspondence u = u1, t2 = σy and t3 = −4t. The pseudodifferential operator L was first used
in the work of Gelfand and Dikii (1976).

The KP hierarchy supplemented with a number of classical and non-classical reductions contains many
integrable equations, such as the Boussinesq and nonlinear Schroedinger equations. Moreover, the hier-
archy can be extended even further to a two-component hierarchy of Davey-Stewartson equations, which
themselves contain other integrable equations. This development has deviated far from the original scope of
the Kadomtsev-Petviashvili equation. As a result, many researchers nowadays use the KP equation without
knowing where the equation originated and what ”K” and ”P” stand for.
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Exact solutions and two-dimensional wave phenomena

Line solitons

Figure 3: An ”ordinary” 2-soliton solution of KPII.

The one-soliton solution of KP is

u(x, y, t) = 1
2 a2

2
sech

[ 1
2 a ( x − by − ωt/a − x0 )

]
,

(15)

where (a, b, x0) are arbitrary parameters, whereas ω
depends on (a, b). Equation (15) is a traveling wave
solution: u(x, y, t) = U(k · x − ωt), where x = (x, y)
and k = (kx, ky) = (a,−ab), with its peak localized
along the moving line k · x = ωt. Thus, the solu-
tion is referred to as a ”line soliton” (or plane soliton),
which is tantamount to a tilted version of the KdV
soliton. Apart from the arbitrary translation constant
x0, the solution (15) depends on two parameters: the
”soliton amplitude” a and the ”soliton direction” b (that
is, the soliton inclination in the xy-plane: b = tan α,
where α is the angle from the positive y-axis, measured counterclockwise). The ”soliton frequency” ω is given
by the soliton dispersion relation D(k, ω) = 0, where

D(k, ω) = 4ω kx + k4
x − 3σ2k2

y . (16)

Generalizations of the above to N-soliton solutions exist, and they describe the interactions of N line solitons.
In the simplest cases, these solutions produce a pattern of N intersecting lines in the xy-plane, together with
small interaction phase shifts. For example, Figure 3 shows such a 2-soliton solution. [See also the famous
photo of interacting water waves off the Oregon coast by Terry Toedtemeier.] For the KPI equations, however
these solutions are all unstable. For the KPII equation they are believed to be stable, although no formal proof
exists. Moreover, more general multi-soliton solutions also exist for the KPII equation and describe phenomena
of soliton resonance and web structure, as discussed below.

Existence and stability of two-dimensional solitary waves in the KPI equation

The KPI equation has a two-dimensional solitary wave called a lump. It is given by a simple rational expression
in the independent variables:

u(x, y, t) = 4
−(x + ay + 3(a2 − b2)t)2 + b2(y + 6at)2 + 1/b2[
(x + ay + 3(a2 − b2)t)2 + b2(y + 6at)2 + 1/b2

]2 , (17)

where (a, b) are real parameters. Such a solution is shown in Figure 1 above.

The exact analytical form of the lump solution given above was found in 1977 by Manakov et al., who
also studied the interaction of lumps and found that these interactions do not result in a phase shift as in the
case of line solitons. Subsequently, various researchers obtained more general rational solutions of the KPI
equation [e.g. see Krichever (1978), Satsuma and Ablowitz (1979), Pelinovsky and Stepanyants (1993) and
Pelinovsky (1994)]. These solutions were then reconciled with the framework of the IST by Villarroel et al.
(1999). They found that, in general, the spectral characterization of the potential must include, in addition to
the usual information about discrete and continuous spectrum, an integer-valued topological quantity that they
called the ”index” or winding number, defined by an appropriate two-dimensional integral involving both the
solution of the KP equation and the corresponding scattering eigenfunction.

No real non-singular rational solutions are known for KPII.
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Transverse stability of one-dimensional solitary waves

It was known since the original work by Kadomtsev and Petviashvili that, with respect to long transverse
perturbations one-dimensional solitons are stable in the KPII equation and unstable in the KPI. Evolution of
transverse perturbations of arbitrary scale for KP1 was first investigated by [Zakharov (1975)], where stabi-
lization for large wave numbers was found. This finding helped to demonstrate that the instability results in the
break-up of a one-dimensional soliton into a periodic chain of two-dimensional solitons [see Pelinovsky and
Stepanyants (1993)]. The corresponding solution is given by the tau-function (8) with

τ = 1 + e2pη + c2e2qζ +
4√pq
p + q

c cos((p2 − q2)y)e(p+q)ξ , (18)

where
η = x − p2t, ζ = x − q2t, ξ = x − (p2 + q2 − pq)t (19)

and (p, q, c) are arbitrary parameters. Figure 4 shows the characteristic dynamics described by the exact
solution with c = 0.1, p = 2 and q = 1 for three subsequent time instances.

Figure 4: Transverse instability of a line soliton of the KPI equation.

Resonant interactions of line solitons in the KPII equation

Figure 5: A resonant interaction between three
line solitons of the KPII equation.

One-dimensional solitary waves interacting under certain an-
gles display non-trivial web patterns which resemble those
observed in the ocean. The simplest such solution is the
so-called ”Miles resonance”, or Y-shape soliton, which is ob-
tained when the parameters of the three interacting soliton
legs satisfy the resonance conditions k1 + k2 = k3 and
ω1 + ω2 = ω3 [Miles (1977); see also Newell and Redekopp
(1977)]. A contour plot of such a solution is shown in Fig-
ure 5. Such a solution is the limiting case of an ordinary
2-soliton solution in which the asymptotic solitons satisfy the
resonance condition.

More general resonant solutions exhibiting web structure
in the xy-plane were recently discovered by Biondini and Ko-
dama (2003). A resonant 2-soliton solution, which is the sim-
plest of such solutions, is shown in Figure 2 above.

For sufficiently small amplitudes and/or a sufficiently large
angle between the two line solitons, their interaction is de-
scribed by the regular Hirota 2-soliton solution. When the
amplitudes and/or angle approaches the boundaries of the
existence interval, however, the 2-soliton solution degenerates into the Miles solution shown in Figure 5, and,
until recently, no solutions were known beyond this limit [e.g., see Infeld and Rowlands (2001)]. It is now
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known that, for amplitudes/angles beyond the Miles limit, the corresponding solution describes the resonant
interaction of the two line solitons, such as the one shown in Figure 2 above (Biondini, 2007).

In general, all the multi-soliton solutions of KPII obtained from the tau-function (8) can be classified in terms
of the number and characteristic parameters of the so-called ”asymptotic solitons”, namely, the soliton legs
entering and exiting from a compact interaction domain and extending out to infinity either in the positive or in
the negative y direction [see Kodama (2004), Biondini and Chakravarty (2006)]. All of these resonant multi-leg
solutions of the KPII equation are believed to be stable with respect to perturbations [see Biondini (2007)], but
no formal proof is available at present. A correspondence was also found to exist between these solutions and
a special class of permutations (Chakravarty and Kodama, 2008).

Finite-genus and quasi-periodic solutions

Figure 6: A genus-2 solution of the KPII equa-
tion (from the KP page).

Both variants of the KP equation admit a large family of exact
periodic and quasi-periodic solutions. A finite-genus solution
of KP with g phases is expressed in terms of a Riemann theta
function θ(z|B) as

u(x, y, t) = c + 2∂2
x ln θ(z1x + z2y + z3t + z0|B), (20)

where the constant c, the real g-dimensional vectors z0, . . . , z3
and the g× g Riemann matrix B are determined by a compact
connected Riemann surface of genus g and a set of g points
(a divisor) on it [e.g., see Dubrovin (1981), Krichever (1989)
and Belokolos et al. (1994)]. Explicitly, the theta function iden-
tified by a matrix B is defined in terms of its multi-dimensional
Fourier series as

θ(z) = ∑
m∈Zg

exp
(
mtBm + imt · z

)
. (21)

Solutions obtained from (20) with g = 1 generalize to two
spatial dimensions the cnoidal traveling-wave solutions of the
Korteweg-de Vries equation. Solutions with g = 2 are also
space-periodic, with a hexagonal period cell. For g > 2, however, they describe more complicated quasi-
periodic wave patterns.

Finite-genus solutions of the KPII equation were found to accurately reproduce the wave patterns mea-
sured in laboratory experiments of 2-dimensional shallow water (Hammack et al., 1989, 1995), and they
describe certain wave patterns that are observed in the ocean. Figure 6 shows a genus-2 solution of the
KPII equation. Various pictures of water wave patterns thought to be described well by the KPII equation and
various pictures of actual KPII solutions are available online on the KP page maintained by Bernard Deconinck.

The formalism that describes finite-genus solutions of KP provided a solution of the century-old Schottky
problem, which consisted in identifying all matrices B that are normalized period matrices of a genus-g Rie-
mann surface. It was conjectured by Sergey Novikov that a matrix B is a period matrix if and only if Eq. (20)
does generate a solution of KP. This conjecture was later proved by Shiota in 1986 (see also Debarre, 1995).
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