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Ground states of an L2-subcritical focusing nonlinear Schrödinger (NLS) equation are

known to be orbitally stable in the energy class H1(R) thanks to its variational charac-

terization. In this paper, we will show L2-stability of 1-solitons to a one-dimensional

cubic NLS equation in the sense that for any initial data which are sufficiently close to a

1-soliton in L2(R), the solution remains in an L2-neighborhood of a nearby 1-soliton for

all the time. The proof relies on the Bäcklund transformation between zero and soliton

solutions of this integrable equation.

1 Introduction

In this paper, we study the nonlinear Schrödinger (NLS) equation

iut + uxx + 2|u|2u= 0, (NLS)

where u(t, x) : R × R → C. The NLS equation arises in various areas to describe quasi-

monochromatic waves such as laser beams or capillary gravity waves. It is well known

that the NLS equation is well posed in L2 [21, 28] and in Hk for any k∈ N [10, 18].

Moreover, solutions of the NLS equation satisfy conservation laws for the charge N and

Received November 24, 2010; Accepted April 01, 2011

Communicated by Prof. Percy Deift

c© The Author(s) 2011. Published by Oxford University Press. All rights reserved. For permissions,

please e-mail: journals.permissions@oup.com.

 at M
cM

aster U
niversity L

ibrary on June 7, 2012
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


L2-stability of NLS Solitons 2035

Hamiltonian H ,

N(u(t, ·)) := ‖u(t, ·)‖2
L2 = N(u(0, ·)), (1)

H(u(t, ·)) := ‖∂xu(t, ·)‖2
L2 − ‖u(t, ·)‖4

L4 = H(u(0, ·)), (2)

from which global existence follows in L2 or H1. Note that the NLS equation has actually

an infinite set of conserved quantities that resemble norms in Hk for any k∈ N [30] and

these quantities give global existence in Hk for any k∈ N.

The NLS equation has a family of solitary waves (called 1-solitons) that are

written as

u(t, x)= Qk,v(t − t0, x − x0), Qk,v(t, x) := Qk(x − vt) eivx/2+i(k2−v2/4)t, (3)

where Qk(x)= ksech(kx) and (k, v, x0, t0) ∈ R+ × R × R × R are arbitrary parameters.

These 1-solitons play an important role to describe the long-time behavior of

solutions of the NLS equation. Since Qk is a minimizer of the functional H(u) restricted

on a manifold M = {u∈ H1(R) : ‖u‖L2 = ‖Qk‖L2}, the 1-soliton (3) is stable in H1 up to

translations in space and time variables (see, e.g., [3, 12, 29]). As for orbital stability of 1-

solitons to rougher perturbations, Colliander et al. [6] show that the Hs-norm (0< s< 1)

of a perturbation to a soliton grows at most polynomially in time if the initial data are

close to the soliton in Hs(R) (0< s< 1) but not necessarily in H1(R). The result of [6]

suggests that even for rough initial data for which the Hamiltonian is not well defined,

the 1-soliton (3) could be stable.

In this paper, we aim to show the Lyapunov stability of 1-solitons in the L2 class.

Our idea is to use the Bäcklund transformation to define an isomorphism which maps

solutions in an L2-neighborhood of the zero solution to those in an L2-neighborhood of

a 1-soliton and utilize the L2-stability of the zero solution.

The integrability via the inverse scattering transform method has been exploited

in many details for analysis of spectral stability of solitary and periodic wave solutions

[17, 20]. It was also used to analyze orbital stability of dark solitons in the defocus-

ing version of the NLS equation [9] and to analyze the long-time asymptotics of solu-

tions of the NLS equation [8]. However, L2-stability of 1-solitons of the NLS equation

using the Bäcklund transformation have not been addressed in literature. In particu-

lar, the solvability of the Lax equations to generate the Bäcklund transformation in the

L2-framework is beyond the standard formalism of the inverse scattering of the NLS

equation which requires the initial data to be in L1, see [1, Lemma 2.1].
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2036 T. Mizumachi and D. Pelinovsky

This is not the first time that the integrability is used to prove stability of

solitary waves in the context of other nonlinear evolution equations. Merle and Vega

[23] used the Miura transformation and proved that 1-solitons of the Korteweg–de

Vries (KdV) equation are stable to L2-perturbations. The idea was recently applied by

Mizumachi and Tzvetkov [26] to prove L2-stability of line solitons of the Kadomtsev–

Petviashvili (KP-II) equation. The Miura transformation is one of the Bäcklund trans-

formations which connects solutions of the KdV and the modified KdV equations. The

Bäcklund transformation seems to give a simplified local coordinate frame which facil-

itates to observe stability of solitons. In particular, Mizumachi and Pego [25] proved

asymptotic stability of Toda lattice solitons by using the Bäcklund transformation to

show the equivalence of linear stability of solitons and that of the zero solution. Our

use of the Bäcklund transformation for the L2-stability of NLS solitons is expected to

be applicable to other nonlinear evolution equations associated to the AKNS scheme of

inverse scattering.

Now let us introduce our main result on L2-stability of 1-solitons.

Theorem 1.1. Let k> 0 and let u(t, x) be a solution of the NLS equation in the class

u∈ C (R; L2(R)) ∩ L8
loc(R; L4(R)). (4)

There exist positive constants C and ε depending only on k such that if ‖u(0, ·)− Qk‖L2 ≤
ε, then there exist real constants k0, v0, t0, and x0 such that

sup
t∈R

‖u(t + t0, · + x0)− Qk0,v0‖L2 + |k0 − k| + |v0| + |t0| + |x0| ≤ C‖u(0, ·)− Qk‖L2 . (5)

�

Remark 1.1. Theorem 1.1 tells us that solutions of the NLS equation which are close

initially to a 1-soliton in the L2-norm remain close to a nearby 1-soliton solution for all

the time and the speed, phase, gauge, and amplitude parameters of a nearby 1-soliton

are almost the same as those of the original 1-soliton. This makes a contrast with the

result of Martel and Merle [22] for the KdV equation that shows that perturbations of 1-

solitons in H1(R) can cause a logarithmic growth of the phase shift thanks to collisions

with infinitely many small solitary waves. To the best of our knowledge, this is the first

result for the cubic NLS equation in the L2 (or Hk, k∈ N) framework which shows that a

solution remains close to a neighborhood of a 1-soliton for all the time. �
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L2-stability of NLS Solitons 2037

Remark 1.2. Asymptotic stability of solitary waves to a generalized nonlinear

Schrödinger equation with a bounded potential in one dimension,

iut + uxx = V(x)u− |u|2pu, (6)

has been studied by using dispersive decay estimates for solutions to the linearized

equation around solitary waves (see [2] for p≥ 4 and [7, 24] for p≥ 2). However, the PDE

approach has not yet resolved the asymptotic stability of solitary waves in the NLS

equation (6) with p= 1. The difficulty comes from the slow decay of solutions in the L∞

norm which makes it difficult to show convergence of modulation parameters of solitary

waves in time. �

The article is organized as follows. Section 2 reviews the Bäcklund transforma-

tion for the NLS equation. In Section 3, we pull back initial data around a 1-soliton to

data around the zero solution by solving the Bäcklund transformation at t = 0. When we

solve the Bäcklund transformation around a 1-soliton solution at t = 0, the parameters

which describe the amplitude, the velocity, and the phase shifts of the time and space

variables of the largest soliton in the solution are uniquely determined. This shows one

of the difference between our approach and the method based on the modulation theory

(see, e.g. [2, 7, 24]), where convergence of varying parameters in time is achieved using

the decay estimates of the dispersive part of the solution.

In Section 4, we prove that the Bäcklund transformation defines a contin-

uous mapping from an L2-neighborhood of the origin to an L2-neighborhood of a

1-soliton and that the Bäcklund transformation connects solutions around 1-solitons

and solutions around the zero solution for all the time if initial data are smooth. Thanks

to the L2-conservation law of the NLS equation, the zero solution is stable in L2 and

we conclude that if a perturbation to initial data is small in L2, then a solution stays

in L2-neighborhood of the 1-soliton. Section 5 concludes the article with discussion of

open problems.

2 Bäcklund Transformation for the NLS Equation

We recall the Bäcklund transformation between two different solutions q(t, x) and Q(t, x)

of the NLS equation. This transformation was found in two different but equivalent

forms [5, 19].

The NLS equation is a solvability condition of the Lax operator system

∂x

[
ψ1

ψ2

]
=
[
η q

−q̄ −η

][
ψ1

ψ2

]
(7)
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2038 T. Mizumachi and D. Pelinovsky

and

∂t

[
ψ1

ψ2

]
= i

[
2η2 + |q|2 ∂xq + 2ηq

∂xq̄ − 2ηq̄ −2η2 − |q|2

][
ψ1

ψ2

]
, (8)

where parameter η is (t, x)-independent.

Using the variable

γ = ψ1

ψ2
,

we obtain the Riccati equations for the NLS equation

∂xγ = 2ηγ + q + q̄γ 2,

∂tγ = i(4η2 + 2|q|2)γ + i(∂xq + 2ηq)− i(∂xq̄ − 2ηq̄)γ 2.

(9)

A new solution Q(t, x) of the same equation NLS is obtained from the old solution q(t, x)

and the solution γ (t, x) of the Riccati equations (9) (or equivalently, from the solution

ψ1(t, x) and ψ2(t, x) of the Lax equations (7) and (8)) by

Q + q = −4
(η)γ
1 + |γ |2 = −4
(η)ψ1ψ̄2

|ψ1|2 + |ψ2|2 . (10)

The new solution Q appears as the potential in the same Riccati equations (9)

for Γ and in the same Lax equations (7) and (8) for Ψ1 and Ψ2 if

Γ = 1

γ̄
, Ψ1 = ψ̄2

|ψ1|2 + |ψ2|2 , Ψ2 = ψ̄1

|ψ1|2 + |ψ2|2 . (11)

As a simple example, we can start from the zero solution q(x, t)≡ 0 and assume

that k= 2η is a real positive number. Equations (7)–(10) give a soliton solution

Q(t, x)= Qk(x) eik2t, Qk(x) := ksech(kx), (12)

if

ψ1 = e(kx+ik2t)/2, ψ2 = −e−(kx+ik2t)/2, γ = −ekx+ik2t (13)

or equivalently,

Ψ1 = −e−(kx−ik2t)/2

2 cosh(kx)
, Ψ2 = e(kx−ik2t)/2

2 cosh(kx)
, Γ = −e−kx+ik2t. (14)
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L2-stability of NLS Solitons 2039

Compared to a general family of 1-solitons (3), solution (12) is centered at x = 0 and has

zero velocity and zero phase.

Remark 2.1. If we eliminate the variable γ from Equation (10) and close the system of

Equations (9) for the new and old solutions Q and q, then γ satisfies a quadratic equation

that has two roots

γ = −k ±
√

k2 − |Q + q|2
Q̄ + q̄

. (15)

This form of the Bäcklund transformation was considered in [5, 19]. Unfortunately, the

explicit solution (12) and (13) show that the upper root in (15) is taken for x> 0 and the

lower root in (15) is taken for x< 0 with a weak singularity at x = 0. �

Remark 2.2. General solutions of the Lax equations (7) and (8) for q = 0 and

η= (k + iv)/2 with (k, v) ∈ R
2 are given by

ψ1(t + t0, x + x0)= e(k(x−2vt)+iωt+ivx)/2, ψ2(t + t0, x + x0)= −e−(k(x−2vt)+iωt+ivx)/2,

where (x0, t0) ∈ R
2 are arbitrary parameters for the soliton position and phase, and

ω= k2 − v2. This solution gives a family of 1-solitons (3). �

3 From a 1-soliton to the Zero Solution at t= 0

In this section, we will pull back solutions around a 1-soliton to those around the zero

solution by using the Bäcklund transformation at time t = 0.

For a given Q(x), let us define q(x) by the Bäcklund transformation

Q + q = −4
(η)Ψ1Ψ2

|Ψ1|2 + |Ψ2|2 , (16)

associated to solutions of the Lax equation

∂x

[
Ψ1

Ψ2

]
=
[
η Q

−Q̄ −η

][
Ψ1

Ψ2

]
. (17)
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When η= 1
2 and Q(x)= Q1(x)≡ sech(x), the spectral problem (17) has a fundamental

system {Ψ 1(x),Ψ 2(x)}, where

Ψ 1(x)=
[
−e−x/2

ex/2

]
sech(x), Ψ 2 =

[
(ex + 2(1 + x) e−x) ex/2

(e−x − 2x ex) e−x/2

]
sech(x). (18)

We obtain q = 0 when the first solution Ψ 1 is used in the Bäcklund transformation (16)

with η= 1
2 and

q(x)= 2x e2x + (4x2 + 4x − 1)− 2x(1 + x) e−2x

cosh(3x)+ 4(1 + x + x2) cosh(x)
− sech(x) (19)

when the second solution Ψ 2 is used in (16) with η= 1
2 . The latter solution corresponds

to the weak (logarithmic in time) scattering of two nearly identical solitons. This inter-

action between two solitons was studied by Zakharov and Shabat [31] shortly after the

integrability of the NLS equation was discovered by themselves [30]. We are interested in

the decaying solution of the spectral problem (17), which corresponds to the eigenvector

for a simple isolated eigenvalue η= 1
2 associated to the potential Q1(x)= sech(x).

Let us recall the Pauli matrices

σ1 =
[

0 1

1 0

]
, σ2 =

[
0 −i

i 0

]
, σ3 =

[
1 0

0 −1

]
.

The spectral problem (17) is equivalent to an eigenvalue problem

(L − M(S))Ψ = λΨ , (20)

where λ= η − 1
2 , S = Q − Q1,

L :=

⎡
⎢⎣∂x − 1

2
−Q1

−Q1 −∂x − 1

2

⎤
⎥⎦= σ3∂x − 1

2
I − Q1σ1 ≡ L0 − Q1σ1,

and

M(S) :=
[

0 S

S̄ 0

]
= σ1
(S)− σ2�(S).

 at M
cM

aster U
niversity L

ibrary on June 7, 2012
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


L2-stability of NLS Solitons 2041

We consider L as a closed operator on L2(R; C
2) whose domain is H1(R; C

2). If

S = 0, then λ= 0 is an eigenvalue of (20) whose eigenspace is spanned by Ψ 1. Since

(
M(Q1)L

−1
0

[
f1

f2

])
(x)= −Q1(x)

⎡
⎢⎢⎣

∫ x

−∞
e−(x−y)/2 f2(y)dy∫∞

x
e(x−y)/2 f1(y)dy

⎤
⎥⎥⎦ ,

we see that M(Q1)L
−1
0 is Hilbert–Schmidt and thus a compact operator on L2(R; C

2).

Thus, by Weyl’s essential spectrum theorem, we have σc(L)= σ(L0)= {− 1
2 + ik, k∈ R} and

the zero eigenvalue is bounded away from the rest of the spectrum of L. Thus, for small

S, we will see that the eigenvalue problem (20) has a simple eigenvalue near 0.

Lemma 3.1. There exist positive constants C and ε and real constants k and v such that

if ‖Q − Q1‖L2 ≤ ε, then there exists a solution Ψ = t(Ψ1, Ψ2) ∈ H1(R; C
2) of the system (17)

with η= (k + iv)/2 such that

|k − 1| + |v| + ‖Ψ − Ψ 1‖L∞ ≤ C‖Q − Q1‖L2 . (21)

�

Proof. We will prove Lemma 3.1 by the Lyapunov–Schmidt method. Let us write

Q = Q1 + S and

Ψ =Ψ 1 +Φ, 〈Ψ 1,Φ〉L2 = 0. (22)

Let P be a spectral projection associated with L on L2(R; C
2), or explicitly,

Pu = u − 1

4
〈u,Θ〉L2Ψ 1, Θ(x)=

[
−ex/2

e−x/2

]
sech(x).

Note that ker(L)= span{Ψ 1} and ker(L∗)= span{Θ}. The system (17) can be rewritten into

the block-diagonal form

LΦ = P [(λI + M(S))(Ψ 1 +Φ)] (23)

and

〈Θ, (λI + M(S))(Ψ +Φ))〉L2 = 0. (24)
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Since L0 is a closed operator on L2(R; C
2) with Range(L0)= L2(R; C

2) and M(Q1)L
−1
0 is a

compact operator on L2(R; C
2), we see that L is Fredholm and

Range(L)= {Φ ∈ L2(R; C
2) : 〈Φ,Θ〉L2 = 0}.

Thus, we can define L−1 as a bounded operator

L−1 : L2(R; C
2) ∩ ⊥ ker(L∗)→ H1(R; C

2) ∩ ⊥ ker(L).

If S ∈ L2(R) and λ ∈ C are sufficiently small, then there exists a unique solution

Φ ∈ H1(R2; C
2) of (23) such that

‖Φ‖H1×H1 ≤ C (‖S‖L2 + |λ|), (25)

where C is a constant that does not depend on S and λ. On the other hand, Equation (24)

can be written in the form

λ

(
4 +

∫
R

sech(x)[−ex/2Φ1(x)+ e−x/2Φ2(x)]dx
)

= 2〈Q1,
(S)〉L2 − 2i〈∂xQ1,�(S)〉L2 −
∫

R

sech(x)[ex/2S(x)Φ2(x)+ e−x/2S(x)Φ1(x)]dx

In view of the bound (25), the latter equation gives

∃C > 0 :

∣∣∣∣λ− 1

2
〈Q1,
(S)〉L2 + i

2
〈∂xQ1,�(S)〉L2

∣∣∣∣≤ C‖S‖2
L2 , (26)

which concludes the proof of Lemma 3.1 since λ= η − 1
2 and S = Q − Q1. �

Remark 3.1. If the eigenvalue η is forced to stay at 1
2 , constraints on S(x) need to be

enforced, which are given at the leading order by

〈Q1,
(S)〉L2 = 0, 〈∂xQ1,�(S)〉L2 = 0. (27)

�

Constraints (27) are nothing but the symplectic orthogonality conditions to

the eigenvectors of the linearized time-evolution problem that correspond to the zero

eigenvalue induced by the gauge and translational symmetries of the NLS equation. The
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L2-stability of NLS Solitons 2043

symplectic orthogonality conditions were used in [7, 24] to derive modulation equations

for varying parameters of the solitary wave and to prove its asymptotic stability in the

time evolution of the generalized NLS equation (6).

Let us generalize the symplectic orthogonal conditions (27) and decompose Q

into a sum of all four secular modes and the residual part. This decomposition is stan-

dard and follows from the implicit function theorem arguments (see, e.g. [7, 24]).

Lemma 3.2. There exist positive constants C and ε and real constants α, β, θ , and γ

such that if ‖Q − Q1‖L2 ≤ ε, then Q can be represented by

e−i(vx+θ)Q(· + γ )= Qk + iαxQk + β∂kQk + S, (28)

with

〈Qk,
(S)〉L2 = 〈∂xQk,�(S)〉L2 = 〈xQk,
(S)〉L2 = 〈∂kQk,�(S)〉L2 = 0 (29)

and

|α| + |β| + |θ | + |γ | + ‖S‖L2 ≤ C‖Q − Q1‖L2 , (30)

where k and v are real constants given in Lemma 3.1. �

In order to estimate the L2-norm of q defined by the Bäcklund transformation

(16), we need to investigate solutions to the system (17).

Lemma 3.3. There exist positive constants C and ε such that if ‖Q − Q1‖L2 ≤ ε, then an

H1-solution of the system (17) with η= (k + iv)/2 determined in Lemma 3.1 satisfies

Ψ (x + γ )= sech(kx)e
i
2 (vx+θ)σ3

[
e−kx/2(−1 + r11(x))+ ekx/2r12(x)

e−kx/2r21(x)+ ekx/2(1 + r22(x))

]
, (31)

‖r11‖L∞ + ‖r12‖L2∩L∞ + ‖r21‖L2∩L∞ + ‖r22‖L∞ ≤ C‖Q − Q1‖L2 , (32)

where γ and θ are constants determined in Lemma 3.2. Moreover if Q ∈ Hn(R) (n∈ N) in

addition, then

‖∂m
x r11‖L∞ + ‖∂m

x r12‖L2∩L∞ + ‖∂m
x r21‖L2∩L∞ + ‖∂m

x r22‖L∞ ≤ C ′(‖Q − Q1‖Hm + ‖Q − Q1‖m
Hm)

(33)

for 0 ≤ m ≤ n, where C ′ is a positive constant depending only on n. �
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Lemma 3.3 will be proved at the end of this section. Assuming Lemma 3.3, we

will prove that the Bäcklund transformation maps initial data around a 1-soliton to

those around the zero solution.

Lemma 3.4. There exist positive constants C and ε satisfying the following: Let Q ∈
H3(R) and ‖Q − Q1‖L2 ≤ ε and let Ψ be an H1-solution of the system (17) with η= (k +
iv)/2 determined in Lemma 3.1. Suppose

q := −Q − 2kΨ1Ψ2

|Ψ1|2 + |Ψ2|2 .

Then q ∈ H3(R) and ‖q‖L2 ≤ C‖Q − Q1‖L2 . �

Proof. By (31) and (32), we have

− 2kΨ1Ψ2

|Ψ1|2 + |Ψ2|2 = 2kei(v(x−γ )+θ) 1 + ε1(x)+ ek(x−γ )ε2(x)+ e−k(x−γ )ε3(x)

ek(x−γ )(1 + ε4(x))+ ε5(x)+ e−k(x−γ )(1 + ε6(x))
, (34)

where

ε1 = r̄22 − r11 − r12r̄21 − r11r̄22,

ε2 = −(1 + r̄22)r12,

ε3 = r̄21(1 − r11),

ε4 = 2
(r22)+ |r22|2 + |r12|2,

ε5 = −2
(r̄12(1 − r11))+ 2
(r̄21(1 + r22)),

ε6 = −2
(r11)+ |r11|2 + |r21|2.

Lemmas 3.1–3.3 imply that

|k − 1| + |v| + |θ | + |γ | � ‖Q − Q1‖L2

and

‖ε1‖L∞ + ‖ε2‖L2∩L∞ + ‖ε3‖L2∩L∞ + ‖ε4‖L∞ + ‖ε5‖L2∩L∞ + ‖ε6‖L∞ � ‖Q − Q1‖L2 ,
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L2-stability of NLS Solitons 2045

where notation A� B is used to say that there is a positive constant C such that A≤ C B.

Combining the above bounds with the expansion,

1 + ε1(x)+ ek(x−γ )ε2(x)+ e−k(x−γ )ε3(x)

ek(x−γ )(1 + ε4(x))+ ε5(x)+ e−k(x−γ )(1 + ε6(x))

= 1 + ε1(x)

ek(x−γ )(1 + ε4(x))+ ε5(x)+ e−k(x−γ )(1 + ε6(x))
+ O(|ε2(x)| + |ε3(x)|)

= 1

2
sech(k(x − γ ))(1 + O(|ε1(x)| + |ε4(x)| + |ε5(x)| + |ε6(x)|))+ O(|ε2(x)| + |ε3(x)|),

we get

∃C > 0 :

∥∥∥∥∥ 2kΨ1Ψ2

|Ψ1|2 + |Ψ2|2 + Q1

∥∥∥∥∥
L2

≤ C‖Q − Q1‖L2 . (35)

Thus by (16) and (35),

‖q‖L2 ≤ ‖Q − Q1‖L2 +
∥∥∥∥∥ 2kΨ1Ψ2

|Ψ1|2 + |Ψ2|2 + Q1

∥∥∥∥∥
L2

≤ (C + 1)‖Q − Q1‖L2 .

If Q ∈ H3(R) in addition, then it follows from (16), (33), and (34) that q ∈ H3(R). �

Corollary 3.5. Under conditions of Lemma 3.4, let

ψ1 = Ψ2

|Ψ1|2 + |Ψ2|2 , ψ2 = Ψ1

|Ψ1|2 + |Ψ2|2 .

Then (ψ1, ψ2) are C 2-functions satisfying (7). �

Proof. Lemma 3.3 implies that ψ1 and ψ2 are C 2-functions. By a direct substitution, we

see that (ψ1, ψ2) is a solution of the system (7). �

Remark 3.2. Using the change of variables

Ψ ′
1(y)= e− i

2 (vx+θ)Ψ1(x + γ ),

Ψ ′
2(y)= e

i
2 (vx+θ)Ψ2(x + γ ),

Q′(y)= k−1 e−i(vx+θ)Q(x + γ ),
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where y= kx, we can translate the system (17) with η= (k + iv)/2 into

∂y

[
Ψ ′

1

Ψ ′
2

]
=

⎡
⎢⎣

1

2
Q′

−Q′ −1

2

⎤
⎥⎦
[
Ψ ′

1

Ψ ′
2

]
.

Therefore, we will assume k= 1 and v = γ = θ = 0 in (28) and (29) for the sake of

simplicity. �

Next, we will give an estimate of solutions to the linear inhomogeneous equation

Lu = f. (36)

To prove Lemma 3.3, we introduce Banach spaces X = X1 × X2 and Y = Y1 × Y2 such that

for u = t(u1, u2) ∈ X and f = t( f1, f2) ∈ Y, we have

‖u‖X = ‖u1‖X1 + ‖u2‖X2 , ‖f‖Y = ‖ f1‖Y1 + ‖ f2‖Y2 ,

equipped with the norms

‖u1‖X1 := inf
u1=v1+w1

(‖ex/2 cosh(x)v1‖L∞ + ‖e−x/2 cosh(x)w1‖L2∩L∞),

‖u2‖X2 := inf
u2=v2+w2

(‖e−x/2 cosh(x)v2‖L∞ + ‖ex/2 cosh(x)w2‖L2∩L∞)

and

‖ f1‖Y1 := inf
f1=g1+h1

(‖e−x/2 cosh(x)g1‖L2 + ‖ex/2 cosh(x)h1‖L1∩L2),

‖ f2‖Y2 := inf
f2=g2+h2

(‖ex/2 cosh(x)g2‖L2 + ‖e−x/2 cosh(x)h2‖L1∩L2).

Lemma 3.6. Let f = t( f1, f2) ∈ Y ∩ ⊥ ker(L∗) and let u be a solution of the system (36)

such that u ⊥ ker(L). Then, there is an f-independent constant C > 0 such that ‖u‖X ≤
C‖f‖Y. �

Remark 3.3. For an arbitrary f ∈ L2(R; C
2) ∩ ⊥ ker(L∗), an H1-solution u of the system

(36) does not necessarily decay as fast as its fundamental solution. However, since the

potential matrix M(S) in (20) is off-diagonal, solutions have a better decay property,

according to the norm in X. �
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L2-stability of NLS Solitons 2047

To prove Lemma 3.6, we will use an explicit formula of L−1f.

Lemma 3.7. For any f = t( f1, f2) ∈ L2(R; C
2) ∩ ⊥ ker(L∗), there exists a unique solution

u ∈ H1(R; C
2) ∩ ⊥ ker(L) of the system (36) that can be written as

u(x)= ζ(f)Ψ 1(x)+ 1

4
Ψ 1(x)

∫∞

x
ey/2(e−2y − 2y) sech(y) f1(y)dy

− 1

4
Ψ 1(x)

∫ x

−∞
e−y/2(e2y + 2 + 2y) sech(y) f2(y)dy + 1

4
Ψ 2(x)

∫±∞

x
f(y) ·Θ(y)dy, (37)

where ζ(f) is a continuous linear functional on L2. �

Remark 3.4. If 〈f,Θ〉L2 = 0, then

∫∞

x
f(y) ·Θ(y)dy= −

∫ x

−∞
f(y) ·Θ(y)dy. (38)

�

Proof of Lemma 3.7. Since L : H1(R; C
2)→ L2(R; C

2) is a Fredholm operator, Equation

(36) has a solution in L2(R; C
2) if f is orthogonal to ker(L∗)= span{Θ}.

Using a fundamental matrix U (x)= [Ψ 1(x),Ψ 2(x)] of

∂xΨ =

⎡
⎢⎣

1

2
Q1

−Q1 −1

2

⎤
⎥⎦Ψ ,

we rewrite Lu = f as

d

dx
(U (x)−1u)= U (x)−1σ3f = −1

4
sech(x)

[
ex/2(e−2x − 2x) e−x/2(e2x + 2x + 2)

−ex/2 e−x/2

][
f1(x)

f2(x)

]
.

Thus, we have

u(x)= U (x)c − 1
4U (x)g(x),
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where c is a constant vector, g(x)= t(g1(x), g2(x)) and

g1(x)=
∫ x

x1

ey/2(e−2y − 2y) sech(y) f1(y)dy +
∫ x

x2

e−y/2(e2y + 2y + 2) sech(y) f2(y)dy,

g2(x)= −
∫ x

x3

ey/2 sech(y) f1(y)dy +
∫ x

x4

e−y/2 sech(y) f2(y)dy.

Note that x1, x2, x3, and x4 can be chosen freely. To let u ∈ L2(R; C
2), we put x1 = ∞,

x2 = −∞, x3 = x4 = ±∞, and c = t(ζ,0) and obtain (37).

Next, we will show that ζ(f) is continuous on L2. Since |Ψ 1(x)| � e−|x|/2 for all

x ∈ R,

∥∥∥∥Ψ 1(x)
∫∞

x
ey/2(e−2y − 2y) sech(y) f1(y)dy

∥∥∥∥
L2

�
∥∥∥∥Ψ 1(x)

∫∞

x
e−3y/2 sech(y) f1(y)dy

∥∥∥∥
L2

+
∥∥∥∥Ψ 1(x)

∫∞

x
yey/2 sech(y) f1(y)dy

∥∥∥∥
L2

�
∥∥∥∥
∫∞

x
e(x−y)/2| f1(y)| dy

∥∥∥∥
L2

+
∥∥∥∥e−|x|/2

∫∞

x
e−|y|/2|yf1(y)| dy

∥∥∥∥
L2

� ‖f‖L2 .

Similarly, we have

∥∥∥∥Ψ 1(x)
∫ x

−∞
e−y/2(e2y + 2 + 2y) sech(y) f2(y)dy

∥∥∥∥
L2

� ‖f‖L2 .

Using Remark 3.4 and the fact that |Ψ 2(x)| � e|x|/2 and |Θ(x)| � e−|x|/2 for all x ∈ R, we

have

∥∥∥∥Ψ 2(x)
∫±∞

x
f(y) ·Θ(y)dy

∥∥∥∥
L2

�
∥∥∥∥
∫∞

x
e(x−y)/2|f(y)| dy

∥∥∥∥
L2(0,∞)

+
∥∥∥∥
∫ x

−∞
e−(x−y)/2|f(y)| dy

∥∥∥∥
L2(−∞,0)

� ‖f‖L2 .

The constant ζ(f) in (37) is uniquely determined by the orthogonality condition u ⊥Ψ 1.

It follows from the bounds above that ζ(f) is continuous linear functional on L2. �

Now we give a proof of Lemma 3.6.

Proof of Lemma 3.6. Since Y is continuously embedded into L2, the solution u = L−1f

can be written as (37) and
‖ζ(f)Ψ 1‖X � ‖f‖L2 � ‖f‖Y.
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L2-stability of NLS Solitons 2049

Next we estimate the second term of (37). Noting that ‖aΨ 1‖X ≤ 2‖a‖L∞ for any

a∈ L∞(R), we have

∥∥∥∥Ψ 1(x)
∫∞

x
ey/2(e−2y − 2y) sech(y) f1(y)dy

∥∥∥∥
X

�
∥∥∥∥
∫∞

x
ey/2(e−2y − 2y) sech(y) f1(y)dy

∥∥∥∥
L∞

≤ inf
f1=g1+h1

(‖g1 e−y/2 cosh(y)‖L2‖ sech2
(y)(e−y − 2yey)‖L2

+ ‖h1 ey/2 cosh(y)‖L1‖ sech2
(y)(e−2y − 2y)‖L∞)

� inf
f1=g1+h1

(‖g1 e−y/2 cosh(y)‖L2 + ‖h1 ey/2 cosh(y)‖L1)� ‖ f1‖Y1 .

Similarly, we have

∥∥∥∥Ψ 1(x)
∫ x

−∞
e−y/2(e2y + 2 + 2y) sech(y) f2(y)dy

∥∥∥∥
X

� ‖ f2‖Y2 .

Finally, we will estimate the fourth term of (37). Clearly,

∥∥∥∥Ψ 2(x)
∫±∞

x
f(y) ·Θ(y)dy

∥∥∥∥
X

≤ II1 + II2 + II3 + II4,

where

II1 =
∥∥∥∥ex

∫∞

x
f(y) ·Θ(y)dy

∥∥∥∥
L2∩L∞

,

II2 = 2

∥∥∥∥(1 + x)
∫ x

±∞
f(y) ·Θ(y)dy

∥∥∥∥
L∞
,

II3 =
∥∥∥∥e−x

∫ x

−∞
f(y) ·Θ(y)dy

∥∥∥∥
L2∩L∞

,

II4 = 2

∥∥∥∥x
∫ x

±∞
f(y) ·Θ(y)dy

∥∥∥∥
L∞
.

Since ‖e|y|/2f‖L2 � ‖f‖Y and |Θ(y)| � e−|y|/2 for all y∈ R, we have

II1 ≤
∥∥∥∥
∫∞

x
ex−y e|y|/2(| f1(y)| + | f2(y)|)dy

∥∥∥∥
L2∩L∞

≤ (‖e|y|/2 f1‖L2 + ‖e|y|/2 f2‖L2)‖e−x‖L1(R+)∩L2(R+) � ‖f‖Y.

 at M
cM

aster U
niversity L

ibrary on June 7, 2012
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


2050 T. Mizumachi and D. Pelinovsky

Similarly, we have II2 + II3 + II4 � ‖f‖Y. Therefore,

∥∥∥∥Ψ 2(x)
∫±∞

x
f(y) ·Θ(y)dy

∥∥∥∥
X

� ‖f‖Y.

Thus, the proof of Lemma 3.6 is complete. �

Now we are in a position to prove Lemma 3.3.

Proof of Lemma 3.3. Let Ψ be a solution of the system (17) in Lemma 3.1 such that

Ψ =Ψ 1 +Φ, 〈Φ,Ψ 1〉L2 = 0.

Substituting (28) (with k= 1 and v = γ = θ = 0) into the system (17), we obtain

LΦ = R1 + R2 + R3Φ, (39)

where

R1 = M(S)Ψ 1 =
[

SQ1 ex/2

−S̄Q1 e−x/2

]
,

R2 = [−αxQ1σ2 + β(x∂xQ1 + Q1)σ1]Ψ 1 = iαxQ2
1

[
ex/2

e−x/2

]
+ β(x∂xQ1 + Q1)Q1

[
ex/2

−e−x/2

]
,

R3 = M(S)− αxQ1σ2 + β(x∂xQ1 + Q1)σ1.

Because Ψ 1 /∈ Y and ‖(I − P )f‖Y = ∞ whatever f is, we shall modify the projection

operator compared to the proof of Lemma 3.1. Let P̃ : L2(R; C
2)→ L2(R; C

2) ∩ ⊥ ker(L∗) be

a new projection defined by

P̃u = u − 3
4 〈u,Θ〉L2 sech2

(x)Ψ 1.

Since 
〈S, Q1〉L2 = �〈S, ∂xQ1〉L2 = 0 by (29), we have

〈M(S)Ψ 1,Θ〉L2 = −2
〈S, Q1〉L2 + 2i�〈S, ∂xQ1〉L2 = 0. (40)
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L2-stability of NLS Solitons 2051

By (40) and the fact that Θ ⊥ Range(L), we obtain

LΦ = P̃ LΦ = R1 + P̃ (R2 + R3Φ).

Thus, the system (39) is transformed into

(I − L−1 P̃ R3)Φ = L−1R1 + L−1 P̃R2. (41)

Lemma 3.6 and the bound (30) imply

‖L−1R1‖X � ‖R1‖Y � ‖SQ1 cosh(x)‖L2 � ‖S‖L2 ,

‖L−1 P̃R2‖X � ‖ P̃R2‖Y � ‖R2‖Y + |〈R2,Θ〉L2 |

� |α|‖xQ2
1 cosh(x)‖L2 + |β|‖(x∂xQ1 + Q1)Q1 cosh(x)‖L2 + ‖R2‖L2

� ‖Q − Q1‖L2 ,

and for u ∈ X,

‖L−1 P̃ R3u‖X � ‖ P̃ R3u‖Y

� ‖(
S)σ1u‖Y + ‖(�S)σ2u‖Y + |α|‖xQ1σ2u‖Y

+ |β|‖(x∂xQ1 + Q1)σ1u‖Y + ‖R3u‖L1

� (‖S‖L2 + |α|‖xQ1‖L2 + |β|‖x∂xQ1 + Q1‖L2)‖u‖X

� ‖Q − Q1‖L2‖u‖X.

If ‖Q − Q1‖L2 is sufficiently small, then I − L−1 P̃ R3 is invertible on X and

‖Φ‖X ≤ ‖(I − L−1 P̃ R3)
−1(L−1R1 + L−1 P̃R2)‖X � ‖Q − Q1‖L2 .

Thus, we prove (32).

Next, we will prove (33). Differentiating (39) m times (0 ≤ m ≤ n), we have

L∂m
x Φ = ∂m

x (R1 + R2 + R3Φ)+ [L , ∂m
x ]Φ. (42)
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Let P̂ : L2(R; C
2)→ L2(R; C

2) ∩ ⊥ ker(L) be another projection defined by

P̂u = u − 1√
2π

〈u,Ψ 1〉L2Ψ 1,

where we used ‖Ψ 1‖2
L2 = 4

∫∞
0 sech(x)dx = 2π . Since L = L P̂ = P̃ L P̂ , Equation (42) can be

rewritten as

(L − P̃ R3) P̂ ∂
m
x Φ = P̃R4,m,

where R4,m = ∂m
x (R1 + R2)+ {[∂m

x , Q1σ1] + [∂m
x , R3] + R3[∂m

x , P̂ ]}Φ. Note that P̂Φ =Φ.

Suppose that ‖∂ l
xΦ‖X � ‖Q − Q1‖Hl + ‖Q − Q1‖l

Hl for 0 ≤ l <m ≤ n. Then by the induction

hypothesis, we have

‖R4,m‖Y � ‖Q − Q1‖Hm + ‖Q − Q1‖m
Hm .

Therefore, if ‖Q − Q1‖L2 is sufficiently small, then I − L−1 P̃ R3 is invertible on X and

‖ P̂ ∂m
x Φ‖X ≤ ‖(I − L−1 P̃ R3)

−1L−1R4,m‖X � ‖R4,m‖Y � ‖Q − Q1‖Hm + ‖Q − Q1‖m
Hm

and

‖∂m
x Φ‖X ≤ ‖ P̂ ∂m

x Φ‖X + ‖[∂m
x , P̂ ]Φ‖X � ‖ P̂ ∂m

x Φ‖X + ‖Φ‖L2 � ‖Q − Q1‖Hm + ‖Q − Q1‖m
Hm .

This completes the proof of Lemma 3.3. �

4 From the Zero Solution to a 1-soliton

In this section, we will prove Theorem 1.1 by showing that a Bäcklund transformation

(10) maps smooth solutions of the NLS equation in an L2-neighborhood of the zero solu-

tion to those in an L2-neighborhood of a 1-soliton.

First of all, we construct a fundamental system of solutions of the spectral prob-

lem (7) with η= 1
2 , which will be assumed throughout this section. If q = 0, then the

fundamental system of solutions of (7) with η= 1
2 is given by the two solutions

ψ1(x)=
[

ex/2

0

]
, ψ2(x)=

[
0

−e−x/2

]
. (43)

When q is small in L2, a fundamental system of (7) with η= 1
2 can be found as a

perturbation of the two linearly independent solutions (43).
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L2-stability of NLS Solitons 2053

Let us consider the following boundary value problems

ϕ′
1 = qϕ2,

ϕ′
2 = −q̄ϕ1 − ϕ2,

lim
x→∞ϕ1(x)= 1,

lim
x→−∞ exϕ2(x)= 0,

(44)

and
χ ′

1 = χ1 + qχ2,

χ ′
2 = −q̄χ1,

lim
x→∞ e−xχ1(x)= 0,

lim
x→−∞χ2(x)= −1.

(45)

If the boundary value problems (44) and (45) have a unique solution, then

ψ1(x)= ex/2

[
ϕ1(x)

ϕ2(x)

]
, ψ2(x)= e−x/2

[
χ1(x)

χ2(x)

]
(46)

become linearly independent solutions of the system (7) with η= 1
2 . It follows from a

standard ODE theory that every solution of the system (7) with q ∈ C (R) can be written

as a linear superposition of the two solutions (46).

Uniqueness of solutions of the boundary value problems (44) and (45) follows

from the following lemma.

Lemma 4.1. There exists a δ > 0 such that if ‖q‖L2 ≤ δ, then the boundary value

problems (44) and (45) have a solution in the class

(ϕ1, ϕ2) ∈ L∞ × (L2 ∩ L∞), (χ1, χ2) ∈ (L2 ∩ L∞)× L∞.

Moreover, there exists a C > 0 such that

‖ϕ1 − 1‖L∞ + ‖ϕ2‖L2∩L∞ ≤ C‖q‖L2 ,

‖χ1‖L2∩L∞ + ‖χ2 + 1‖L∞ ≤ C‖q‖L2 .
�
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Proof. Let us translate the boundary value problem (44) into a system of integral equa-

tions
ϕ1(x)= 1 −

∫∞

x
q(y)ϕ2(y)dy=: T1(ϕ1, ϕ2)(x),

ϕ2(x)= −
∫ x

−∞
e−(x−y)q(y)ϕ1(y)dy=: T2(ϕ1, ϕ2)(x).

(47)

Let us introduce a Banach space Z := L∞ × (L∞ ∩ L2) equipped with the norm

‖(u1,u2)‖Z = ‖u1‖L∞ + ‖u2‖L∞∩L2 .

In order to find a solution of the system (47), we will show that T = (T1, T2) : Z → Z is a

contraction mapping.

Using the Schwarz inequality and Young’s inequality, we have for (ϕ1, ϕ2) and

(ϕ̃1, ϕ̃2) ∈ Z ,

‖T1(ϕ1, ϕ2)− T1(ϕ̃1, ϕ̃2)‖L∞ = sup
x∈R

∣∣∣∣
∫∞

x
q(y)(ϕ2(y)− ϕ̃2(y))dy

∣∣∣∣≤ ‖q‖L2‖ϕ2 − ϕ̃2‖L2 ,

and

‖T2(ϕ1, ϕ2)− T2(ϕ̃1, ϕ̃2)‖L2∩L∞ =
∥∥∥∥
∫ x

−∞
e−(x−y)q(y)(ϕ1(y)− ϕ̃1(y))dy

∥∥∥∥
L2∩L∞

≤ ‖e−x‖L1(R+)∩L2(R+)‖q‖L2‖ϕ1 − ϕ̃1‖L∞

≤ ‖q‖L2‖ϕ1 − ϕ̃1‖L∞ .

If ‖q‖L2 is sufficiently small, then T = (T1, T2) is a contraction mapping on Z . Therefore,

T = (T1, T2) has a unique fixed point (ϕ1, ϕ2) ∈ Z and

‖ϕ1 − 1‖L∞ + ‖ϕ2‖L∞∩L2 = ‖T(ϕ1, ϕ2)− T(0,0)‖Z ≤ ‖q‖L2‖(ϕ1, ϕ2)‖Z

≤ ‖q‖L2(1 + ‖ϕ1 − 1‖L∞ + ‖ϕ2‖L∞∩L2).

Thus there exists C > 0 such that

‖ϕ1 − 1‖L∞ + ‖ϕ2‖L∞ + ‖ϕ2‖L2 ≤ C‖q‖L2 .

Finally, we confirm the boundary conditions in the system (44). By (47) and the fact that

q ∈ L2 and ϕ2 ∈ L2, we have limx→∞ ϕ1(x)= 1. Since ϕ2 is bounded and continuous, it is

clear that limx→−∞ exϕ2(x)= 0.
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L2-stability of NLS Solitons 2055

In the same way, we can prove that the boundary value problem (45) has a unique

solution (χ1, χ2) ∈ Z̃ := (L∞ ∩ L2)× L∞ satisfying

‖χ1‖L2∩L∞ + ‖χ2 + 1‖L∞ ≤ C‖q‖L2

and the boundary conditions limx→∞ e−xχ1(x)= 0 and limx→−∞ χ2(x)= −1. �

Next we will consider the time evolution of (ψ1, ψ2). We will evolve (ψ1, ψ2) by

the linear time evolution (8) for initial data (ψ1(0, x), ψ2(0, x)) satisfying the spectral

problem (7) at t = 0 assuming that q(t, x) is a solution of the NLS equation.

Suppose that ϕ(t, x)= t(ϕ1(t, x), ϕ2(t, x)) satisfies the boundary value problem (44)

at t = 0 with q = q(0, x) and that ex/2ϕ(t, x) satisfies (8) for every t ≥ 0 and x ∈ R. Then the

linear time evolution of ϕ(t, x) can be written in the matrix form

∂tϕ(t, x)= A(t, x)ϕ(t, x), A(t, x)=
[

a(t, x) b(t, x)

c(t, x) −a(t, x)

]
, (48)

where

a= i
(

1

2
+ |q|2

)
, b = i(∂xq + q), c = i(∂xq̄ − q̄).

Similarly, let χ(t, x)= t(χ1(t, x), χ2(t, x)) be a solution of the boundary value problem (45)

at t = 0 with q = q(0, x) whose time evolution is written in the same matrix form (48) for

χ(t, x). Solutions ϕ(t, x) and χ(t, x) are characterized by the following lemma.

Lemma 4.2. Suppose that q ∈ C (R; H3(R)) is a solution of the NLS equation and that

‖q(0, ·)‖L2 is sufficiently small. Let ϕ = t(ϕ1, ϕ2) and χ = t(χ1, χ2) be solutions of the linear

equation (48) starting with the initial data given by solutions of the boundary value

problems (44) and (45), respectively, with q = q(0, x). Then ∂ i
xϕ ∈ C (R; Z) and ∂ i

xχ ∈ C (R; Z̃)

for 0 ≤ i ≤ 3 and for every t ∈ R,

∂xϕ1(t, x)= q(t, x)ϕ2(t, x),

∂xϕ2(t, x)= −q(t, x)ϕ1(t, x)− ϕ2(t, x),

lim
x→∞ϕ1(t, x)= eit/2,

lim
x→−∞ exϕ2(t, x)= 0,

(49)

 at M
cM

aster U
niversity L

ibrary on June 7, 2012
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


2056 T. Mizumachi and D. Pelinovsky

and
∂xχ1(t, x)= χ1(t, x)+ q(t, x)χ2(t, x),

∂xχ2(t, x)= −q(t, x)χ1(t, x),

lim
x→∞ e−xχ1(t, x)= 0,

lim
x→−∞χ2(t, x)= −e−it/2.

(50)

�

Proof. First, we will prove that the boundary value problem (49) holds for every t ∈ R.

The coefficient matrix A(t, x) of the system (48) is continuous in (t, x) and C 1 in x

since q(t, x) ∈ C (R; H3(R)). By a bootstrapping argument for the system (44), Lemma 4.1

implies that ϕ1(0, x) and ϕ2(0, x) are C 1 in x. Solving the Cauchy problem for the linear

evolution equation (48), we find that ϕ1(t, x) and ϕ2(t, x) are in C 1(R × R). By a bootstrap-

ping argument for the systems (44) and (48), we conclude that ∂x∂tϕ(t, x) and ∂t∂xϕ(t, x)

are in C (R × R; R
2) and thus ∂x∂tϕ(t, x)= ∂t∂xϕ(t, x).

Let

B(t, x)=
[

0 q(t, x)

−q(t, x) −1

]
, F(t, x)= ∂xϕ(t, x)− B(t, x)ϕ(t, x).

Since q is a solution of the NLS equation, the matrices A and B satisfy the Zakharov–

Shabat compatibility condition

∂x A− ∂tB + [A, B] = 0. (51)

As a result, we obtain

∂tF = ∂t∂xϕ − (∂tB)ϕ − B∂tϕ = ∂x(Aϕ)− (∂tB)ϕ − B Aϕ

= (∂x A+ [A, B] − ∂tB)ϕ + AF = AF.

Applying Gronwall’s equality, we see that for any T > 0, there exists a constant C (T)

such that

|F(t)| ≤ C (T)|F(0)|, t ∈ [−T, T ].

Since F(0)= 0 by the assumption, it follows that F(t)= 0 for every t ∈ R. Thus, we prove

the differential part of the system (49).
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L2-stability of NLS Solitons 2057

Next we will prove ϕ1(t, ·) ∈ L∞(R) and ϕ2(t, ·) ∈ L2(R) ∩ L∞(R) for every t ∈ R. By

the linear evolution (48), we have

|∂t(|ϕ1(t, x)|2 + |ϕ2(t, x)|2)| = 4|�q(t, x)ϕ1(t, x)ϕ2(t, x)|

≤ 2‖q(t, ·)‖L∞(|ϕ1(t, x)|2 + |ϕ2(t, x)|2).

Applying Gronwall’s inequality again, we have

|ϕ1(t, x)|2 + |ϕ2(t, x)|2 ≤ eα|t|(|ϕ1(0, x)|2 + |ϕ2(0, x)|2), t ∈ R, (52)

where α = 2 sup(t,x)∈R×R
|q(t, x)|. Since ϕ(0, ·) ∈ L∞(R; C

2), bound (52) shows that ϕ(t, ·) ∈
L∞(R; C

2) for any t ∈ R.

Using the linear system (48) again, we have

∂t|ϕ2(t, x)|2 ≤ 2|∂xq(t, x)− q(t, x)|ϕ1(t, x)||ϕ2(t, x)|

≤ |ϕ2(t, x)|2 + |ϕ1(t, x)|2|∂xq(t, x)− q(t, x)|2.

By Gronwall’s inequality, for any T > 0 there exists a C (T) > 0 such that

|ϕ2(t, x)|2 ≤ |ϕ2(s, x)|2 + C (T)
∫ t

s
|∂xq(τ, x)− q(τ, x)|2 dτ, 0 ≤ s ≤ t ≤ T, x ∈ R.

Therefore, we have

‖ϕ2(t, ·)‖2
L2 ≤ ‖ϕ2(s, ·)‖2

L2 + C (T)
∫ t

s
‖∂xq(τ, ·)− q(τ, ·)‖2

L2 dτ. (53)

Since ϕ2(0, ·) ∈ L2(R), bound (53) shows that ϕ2(t, ·) ∈ L2(R) for every t ∈ R and ‖ϕ2(t)‖L2

is continuous in t. Since A(t, ·) ∈ C (R; H2(R)) and ‖ϕ1(t)‖L∞ and ‖ϕ2(t)‖L2∩L∞ are bounded

locally in time, the linear system (48) implies that ϕ1(t, ·) and ϕ2(t, ·) are continuous in

L∞(R) and thus ϕ2(t, ·) is continuous in L2(R). Using the fact that ϕ ∈ C (R; Z) and a boot-

strapping argument for the system (44), we have ∂ i
xϕ ∈ C (R; Z) for 1 ≤ i ≤ 3.

It remains to prove the boundary conditions of the system (49). Since ϕ2(t, x) is

bounded and continuous in x for every fixed t ∈ R, we have limx→−∞ exϕ2(t, x)= 0. By a

variation of constants formula, we have

ϕ(t, x)= eiσ3t/2ϕ(0, x)+
∫ t

0
eiσ3(t−s)/2 A1(s, x)ϕ(s, x)ds, (54)
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where A1(t, x)= A(t, x)− iσ3/2. By the assumption that q ∈ C (R; H3(R)), we have

sup
x∈R

sup
0≤s≤t

|A1(s, x)|<∞ and lim
x→±∞ A1(s, x)= 0.

Applying Lebesgue’s dominated convergence theorem to the integral equation (54), we

get

lim
x→∞ |ϕ(t, x)− eiσ3t/2ϕ(0, x)| = 0.

Combining the above with the boundary condition limx→∞ ϕ1(0, x)= 1, we obtain

lim
x→∞ϕ1(t, x)= eit/2.

Properties of χ and the boundary value problem (50) can be proved in the same

way as properties of ϕ and the boundary value problem (49). �

Now, we have time global estimates of solutions to the linear evolution

equation (48).

Lemma 4.3. Let q ∈ C (R; H3(R)) be a solution of the NLS equation. Suppose that ϕ(t, x)

and χ(t, x) are solutions of the linear evolution equation (48) such that ϕ(0, x) ∈ Z and

χ(0, x) ∈ Z̃ , respectively. There exist positive constants ε and C such that if ‖q(0, ·)‖L2 ≤ ε,
then for every t ∈ R,

‖ϕ1(t, ·)− eit/2‖L∞ + ‖ϕ2(t, ·)‖L2∩L∞ ≤ C‖q(0, ·)‖L2 , (55)

‖χ1(t, ·)‖L2∩L∞ + ‖χ2(t, ·)+ e−it/2‖L∞ ≤ C‖q(0, ·)‖L2 . (56)

�

Proof. Since ϕ(t, ·) ∈ Z and χ(t, ·) ∈ Z̃ for each t ∈ R and satisfy the boundary value

problem (49) and (50), Lemma 4.3 can be proved in exactly the same way as

Lemma 4.1. �

Our next result shows that the Bäcklund transformation (10) with η= 1
2 generates

a new solution Q in a L2-neighborhood of the 1-soliton ei(t+θ)Q1(x − γ ), where Q1(x)=
sech(x).
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Lemma 4.4. Let ε be a sufficiently small positive number. Let q(t, x) ∈ C (R; H3(R)) be a

solution of the NLS equation such that ‖q(0, ·)‖L2 ≤ ε and let

ψ1(t, x)= c1 ex/2ϕ1(t, x)+ c2 e−x/2χ1(t, x),

ψ2(t, x)= c1 ex/2ϕ2(t, x)+ c2 e−x/2χ2(t, x),
(57)

where c1 = ae(γ+iθ)/2, c2 = ae−(γ+iθ)/2 and a �= 0, γ ∈ R, θ ∈ R are constants. Let

Q(t, x)= −q(t, x)− 2ψ1(t, x)ψ2(t, x)

|ψ1(t, x)|2 + |ψ2(t, x)|2 , (58)

Then Q ∈ C (R; H3(R)) and Q(t, x) is a solution of the NLS equation. Moreover, there is an

ε-dependent constant C > 0 such that

sup
t∈R

‖Q(t, ·)− ei(t+θ)Q1(· − γ )‖L2 ≤ C‖q(0, ·)‖L2 . (59)

�

Proof. Since ψ in (57) solve the Lax system (7) and (8), the Bäcklund transformation (58)

implies that if q(t, x) is a solution of the NLS equation, so is Q(t, x). Let us still give a

rigorous proof of this fact for the sake of self-containedness. Let

Ψ1(t, x) := ψ2(t, x)

|ψ1(t, x)|2 + |ψ2(t, x)|2 , Ψ2(t, x) := ψ1(t, x)

|ψ1(t, x)|2 + |ψ2(t, x)|2 .

Thanks to (55) and (56), ψ �= 0 for any (t, x) ∈ R
2, hence Q and Ψ are well defined for every

t ∈ R. Since ∂ i
xϕ ∈ C (R; Z) and ∂ i

xχ ∈ C (R; Z̃) for any 0 ≤ i ≤ 3 and

q ∈ C (R; H3(R)) ∩ C 1(R; H1(R)),

it follows from the linear evolution equation (48) that Ψ is of the class C 1 and ∂x∂tΨ and

∂t∂xΨ are continuous. Moreover, Q(t, ·) ∈ C (R; H3(R)).
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By a straightforward but lengthy computation, we show that

∂x

[
Ψ1

Ψ2

]
=

⎡
⎢⎣

1

2
Q

−Q̄ −1

2

⎤
⎥⎦
[
Ψ1

Ψ2

]
, (60)

∂t

[
Ψ1

Ψ2

]
= i

⎡
⎢⎣

1

2
+ |Q|2 ∂xQ + Q

∂xQ̄ − Q̄ −1

2
− |Q|2

⎤
⎥⎦
[
Ψ1

Ψ2

]
. (61)

It is clear that Ψ (x, t) �= 0 for every (t, x) ∈ R × R. Combining (60) and (61) and the

compatibility condition ∂t∂xΨ = ∂x∂tΨ , we obtain iQt + Qxx + 2|Q|2 Q = 0.

Now we will show the bound (59). Let

R(t, x) := −Q(t, x)− q(t, x)

= 2(c1ϕ1(t, x)+ c2 e−xχ1(t, x))(c1 exϕ2(t, x)+ c2χ2(t, x))

|c1ϕ1(t, x)+ c2 e−xχ1(t, x)|2 ex + |c1 exϕ2(t, x)+ c2χ2(t, x)|2 e−x
= 2R1

R2
, (62)

where

R1 := ex+γ ϕ1(t, x)ϕ2(t, x)+ e−x−γ χ1(t, x)χ2(t, x)+ eiθϕ1(t, x)χ2(t, x)+ e−iθχ1(t, x)ϕ2(t, x),

R2 := ex+γ (|ϕ1(t, x)|2 + |ϕ2(t, x)|2)+ e−x−γ (|χ2(t, x)|2 + |χ1(t, x)|2)

+ 2
[eiθ (ϕ1(t, x)χ1(t, x)+ ϕ2(t, x)χ2(t, x))].

For x ≥ −γ ,

R= 2 e−x−γ+iθϕ1(t, x)χ2(t, x)

|ϕ1(t, x)|2 + e−2(x+γ )|χ2(t, x)|2 + O(|ϕ2(t, x)| + e−x−γ |χ1(t, x)|) (63)

since |ϕ1|, |χ2| ∼ 1 and ϕ2, χ1 ∼ 0 by Lemma 4.3. Similarly, for x ≤ −γ ,

R= 2 ex+γ+iθϕ1(t, x)χ2(t, x)

|χ2(t, x)|2 + e2(x+γ )|ϕ1(t, x)|2 + O(|χ1(t, x)| + ex+γ |ϕ2(t, x)|). (64)

Combining (63) and (64), we get

|R(t, x)+ ei(t+θ)sech(x + γ )|≤C e−|x+γ |(‖ϕ1 − eit/2‖L∞+‖χ2+e−it/2‖L∞)+C (|ϕ2(t, x)|+|χ1(t, x)|),
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where C is a constant depending only on ‖q(0, ·)‖L2 . Thus, by Lemma 4.3, there is C > 0

such that

sup
t∈R

‖R(t, ·)+ ei(t+θ) sech(· + γ )‖L2 ≤ C‖q(0, ·)‖L2 .

Combining the above with the L2-conservation law ‖q(t, ·)‖L2 = ‖q(0, ·)‖L2 of NLS, we

conclude that

‖Q(t, ·)− ei(t+θ) sech(· + γ )‖L2 ≤ ‖R(t, ·)+ ei(t+θ) sech(· + γ )‖L2 + ‖q(t, ·)‖L2 � ‖q(0, ·)‖L2 .

This completes the proof of the bound (59). �

Remark 4.1. To prove Lemmas 4.2 and 4.3, we require H3-regularity of a solution q to

the NLS equation. The high regularity assumption on q(t, x) is only used to prove qualita-

tive properties on a solution (ψ1, ψ2) of the Lax system (7) and (8) and has not been used

quantitatively to prove the bounds (55) and (56). This is the reason why we can prove

Theorem 1.1 for any initial data satisfying ‖u(0, ·)− Q1‖L2 ≤ ε by using an approximation

argument. �

Now we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Thanks to the scaling invariance of NLS, we may choose k= 1,

that is, Qk = Q1.

Step 1: First, we will show (5) assuming that u(0, ·) ∈ H3(R). Lemmas 3.1 and

3.4 imply that if Q = u(0, ·) ∈ H3(R) and ‖u(0, ·)− Q1‖L2 are sufficiently small, then there

exists a solution Ψ of the system (17) with η= (k + iv)/2 satisfying

∃C > 0 : |k − 1| + |v| ≤ C‖u(0, ·)− Q1‖L2 .

Letting

q0(x)= −u(0, x)− 2kΨ1(x)Ψ2(x)

|Ψ1(x)|2 + |Ψ2(x)|2

and

ψ1,0(x)= Ψ2(x)

|Ψ1(x)|2 + |Ψ2(x)|2 , ψ2,0(x)= Ψ1(x)

|Ψ1(x)|2 + |Ψ2(x)|2 ,

we see that (ψ1,0, ψ2,0) is a solution of the system (7) with q = q0. We may assume k= 1

and v= 0 without loss of generality thanks to the change of variables in Remark 3.2 and
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the invariance of the NLS equation under the transformation

λq̃(λ2(t + t0), λ(x + x0))= ei(vx/2−v2t/4)q(t, x − vt),

where λ> 0 and t0, x0, v ∈ R are constants.

By the linear superposition principle, we can find complex constants c1 and c2

satisfying

ψ0 = t(ψ1,0, ψ2,0)= c1 ex/2ϕ(0, x)+ c2 e−x/2χ(0, x).

Let q(t, x) be a solution of the NLS equation with q(0, x)= q0(x) and let

ψ(t, x)= t(ψ1(t, x), ψ2(t, x))= c1 ex/2ϕ(t, x)+ c2 e−x/2χ(t, x).

Lemma 4.4 implies that ψ(t, x) is a solution of the Lax system (7) and (8) and that Q(t, x)

defined by (58) satisfies the stability result (59). Since Q(t, x) is a solution of the NLS

equation in the class C (R; H3(R)) and

Q(0, x)= −q(0, x)− 2ψ1(0, x)ψ2(0, x)

|ψ1(0, x)|2 + |ψ2(0, x)|2

= −q0(x)− 2Ψ1(x)Ψ2(x)

|Ψ1(x)|2 + |Ψ2(x)|2 = u(0, x)

by the definition, we have Q(t, x)= u(t, x).

Step 2: Next, we prove (5) for any u(0, ·) which is sufficiently close to Q1 in L2(R).

Let δ1 = ‖u(0, ·)− Q1‖L2 . Let un,0 ∈ H3(R) (n∈ N) be a sequence such that

lim
n→∞ ‖un,0 − u(0, ·)‖L2 = 0,

and let un(t, x) be a solution of the NLS equation with un(0, x)= u0,n(x). In view of the

first step, we see that there exist a positive constant C and real numbers kn, vn, tn, xn

(n∈ N) such that

sup
t∈R

‖un(t + tn, · + xn)− Qkn,vn‖L2 + |kn − 1| + |vn| + |tn| + |xn| ≤ C‖u0,n − Q1‖L2 . (65)

By (65), there exist k0, v0, t0, and x0 and subsequences of {kn}, {vn}, {tn}, and {xn} such that

lim
j→∞

knj = k0, lim
j→∞

vnj = v0, lim
j→∞

tnj = t0, lim
j→∞

xnj = x0. (66)
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It follows from the main theorem in Tsutsumi [28] (see also [21, Theorem 5.2]) that the

NLS equation is L2-well-posed in the class of solutions (4). Therefore, combining (65)

and (66), we obtain (5). Thus, we complete the proof. �

5 Discussions

We finish this article with three observations which give way for further work.

1. The Cauchy problem associated with the generalized nonlinear Schrödinger

equation (6) is well studied in the context of dispersive decay of small-norm solutions.

Since the decay rate of the L∞ − L1 norm for the semi-group

S(t) := e−it(−∂2
x +V(x)), t> 0

is O(t−1/2), the nonlinear term ‖u(t, ·)‖2p
L∞ is absolute integrable if p> 1. The case p= 1 of

the cubic NLS equation is critical with respect to this dispersive decay in the L∞ − L1

norm. The scattering theory for small solutions in the supercritical case p> 1 was stud-

ied long ago [4, 11, 16, 27]. The scattering theory was extended to the critical (p= 1)

and subcritical (p= 1
2 ) cases by Hayashi and Naumkin [14, 15] using more specialized

properties of the fundamental solutions generated by the semi-group S(t).

In particular, Hayashi and Naumkin proved that if q0 ∈ H1(R) ∩ L2
1(R) and

‖q0‖H1 + ‖q0‖L2
1
≤ ε for sufficiently small ε > 0, then there exists a unique global solution

q(t, ·) ∈ C (R; H1(R) ∩ L2
1(R)) of the NLS equation with q(0)= q0 such that

∃C > 0 : ‖q(t, ·)‖H1 ≤ C ε, ‖q(t, ·)‖L∞ ≤ C ε(1 + |t|)−1/2, t ∈ R+. (67)

Space L2
1(R) is needed to control an initially small norm ‖q0‖L1 . Recall from

inverse scattering (see, e.g. [1]) that if ‖q0‖L1 is small, then the spectral problem (7) admits

no isolated eigenvalue and produces no soliton in q(t, ·) as t → ∞. In other words, q(t, ·)
contains only the dispersive radiation part. Unfortunately, the norm ‖q(t, ·)‖L2

1
(and the

norm ‖q(t, ·)‖L1 ) may grow as t → ∞. Indeed, it is shown in [14] that there exists a small

ε > 0 such that

‖(x + 2it∂x)q(t, ·)‖L2 � (1 + |t|)ε,

which implies that ‖q(t, ·)‖L2
1
≥ C (1 + |t|) as t → ∞ for some C > 0.

The possible growth of ‖q(t, ·)‖L1 is an obstruction on the use of the Bäcklund

transformation in our approach. If we can prove that the Bäcklund transformation

provides an isomorphism between a ball Bδ(0) � q of small radius δ > 0 centered at
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0 in the energy space H1(R) and a ball Bε(Q1) � Q of small radius ε > 0 centered at

Q1(x)= sech(x) in the same energy space H1(R) such that

∃C > 0 : ‖Q − Q1‖L∞ ≤ C‖q‖L∞ ,

then the asymptotic stability of 1-solitons holds in the following sense: There exist posi-

tive constants C and ε such that if u(t, ·) ∈ C (R+, H1(R)) is a solution of the NLS equation

with u(0)= u0 and ‖u0 − Q1‖H1∩L2
1
≤ ε, then there exist constants k∈ R and v ∈ R such that

|k − 1| ≤ C ε, |v| ≤ C ε, inf
(t0,x0)∈R2

‖u(t, ·)− Qk,v(t − t0, · − x0)‖H1 ≤ C‖u0 − Q1‖H1∩L2
1

(68)

and

lim
t→∞ ‖u(t, ·)− Qk,v(t − t′

0, · − x′
0)‖L∞ = 0, (69)

where (t′
0, x′

0) are optimal values from the infimum in (68).

Unfortunately, unless ‖q‖L1 is assumed to be small, we cannot prove the analog

of Lemma 4.1 under the assumption of small ‖q‖L∞ . The best bound we can derive is

‖ϕ1 − 1‖L∞ + ‖ϕ2‖L2 ≤ C‖q‖L2 , ‖ϕ2‖L∞ ≤ C‖q‖L∞ ,

‖χ1‖L2 + ‖χ2 + 1‖L∞ ≤ C‖q‖L2 , ‖χ1‖L∞ ≤ C‖q‖L∞ .

This is good to control ‖Q − Q1‖L∞((−∞,−x0)∪(x0,∞)) in terms of ‖q‖L∞ for sufficiently large

x0 > 0 but it is not sufficient to control the L∞-norm over (−x0, x0). More detailed analysis

near the soliton core is needed and the asymptotic stability of 1-solitons in the cubic

NLS equation is left as an open problem.

2. Another interesting development is a connection between the NLS equation

and the integrable Landau–Lifshitz (LL) model

ut = u × uxx, (LL)

where u(t, x) : R × R → S
2 such that u · u = 1. A Bäcklund transformation which connects

NLS and LL equations is called the Hasimoto transformation [13, 32]. The Hasimoto

transformation can potentially be useful to deduce L2-orbital stability of 1-solitons

of the NLS equation from H1-orbital stability of the domain wall solutions of the

LL equation and H1-asymptotic stability of 1-solitons of the NLS equation from H2-

asymptotic stability of domain wall solutions of the LL equation. More studies are
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needed to see if our results can be deduced from the corresponding results on the LL

equation using the Hasimoto transformation.

3. Our approach to employ the Bäcklund transformation for the proof of

L2-orbital stability of solitary waves can be used to other nonlinear evolution equa-

tions integrable by the inverse scattering transform method. In particular, we expect

it to work for systems where orbital stability of solitary waves in energy space cannot

be deduced by standard methods [12]. Nonlinear Dirac equations in one dimension and

Davey–Stewartson equations in two dimensions are possible examples for applications

of our technique. These examples are left for further studies.
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