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h i g h l i g h t s

• We present a study on stationary states in PT-symmetric lattice settings in the weak coupling limit.
• We report the existence and stability properties of PT-symmetric soliton and vortex configurations.
• All examined vortex configurations are unstable with respect to small perturbations.
• One branch of solutions extending soliton configurations is spectrally stable.
• This offers an analytical perspective to this topic and corroborates results by numerical results.
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a b s t r a c t

Solitons and vortices symmetric with respect to simultaneous parity (P ) and time reversing (T )
transformations are considered on the square lattice in the framework of the discrete nonlinear
Schrödinger equation. The existence and stability of such PT -symmetric configurations is analyzed in
the limit of weak coupling between the lattice sites, when predictions on the elementary cell of a square
lattice (i.e., a single square) can be extended to a large (yet finite) array of lattice cells. In particular, we
find all examined vortex configurations are unstable with respect to small perturbations while a branch
extending soliton configurations is spectrally stable. Our analytical predictions are found to be in good
agreement with numerical computations.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Networks of coupled nonlinear oscillators with balanced gains
and losses have been considered recently in the context of
nonlinear PT -symmetric lattices. Among many other questions,
attention has been paid to issues of linear and nonlinear stability
of constant equilibrium states [1] and spatially distributed steady
states [2,3] in such systems. More generally, the study of
solitary waves in such PT -symmetric lattices [4] has garnered
considerable attention over the years, as can be inferred also from
a recent comprehensive review on the subject [5]. A significant
recent boost to the relevant interest has been offered by the
experimental observation of optical solitons in lattice settings [6].
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Many of the relevant theoretical notions have been developed also
in continuum systems with periodic potentials in both scalar [7,8]
and vector [9] settings.

In higher dimensions, the number of studies of PT -symmetric
lattices and the coherent structures that they support is consider-
ably more limited. Nonlinear states bifurcating out of linear (point
spectrum) modes of a potential and their stability have been stud-
ied [10] and so have gap solitons [11]. However, an understanding
of fundamentally topological states such as vortices and their exis-
tence and stability properties is still an active theme of study [12].
The few studies addressing these topological structures have been
chiefly numerical in nature [13–15]. It is, thus, the aim of the
present study to explore a two-dimensional square lattice setting
and to provide an understanding of the existence and stability
properties of the stationary states it can support, placing a partic-
ular emphasis on the vortical structures.

We will be particularly interested in the following PT -
symmetric model of the discrete nonlinear Schrödinger (dNLS)
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Fig. 1. Schematic PT -symmetry for the elementary cell of the square lattice.

type [16],

i
dψj,k

dt
+ (∆ψ)j,k + |ψj,k|

2ψj,k = iγj,kψj,k, (1)

where ψj,k ∈ C depends on the lattice site (j, k) ∈ Z2 and the
time variable t ∈ R (in optics, this corresponds to the spatial
propagation direction), (∆ψ)j,k denotes the discrete Laplacian
operator at the (j, k) site of the square lattice, and the distribution
of the parameter values γj,k ∈ R for gains or losses is supposed to
be PT -symmetric. The dNLS equation is a prototypical model for
the study of opticalwaveguide arrays [17], and the principal setting
in which PT -symmetry was first developed experimentally (in
the context of few waveguides, such as the dimer setting [18]).

The PT -symmetry holds if the distribution of γj,k is odd with
respect to reflections of the lattice sites in Z2 about a selected
center or line of symmetry. In particular, we will consider two
natural symmetric configurations in the elementary cell, as shown
in Fig. 1. The left panel shows the symmetry about a vertical line
located on the equal distance between two vertical arrays of lattice
sites. The right panel shows the symmetry about a center point in
the elementary cell of the square lattice.

Assuming every cell of the lattice preserves the same type of
symmetry, we will study two types of gain–loss structures of the
square lattices as illustrated in the top row of Fig. 2. In addition, we
consider the special situationswhere two types of symmetries hold
simultaneously. In the bottom left panel of Fig. 2, the square lattice
is equipped with symmetries about both vertical and horizontal
lines, which corresponds to γ2 = −γ1 on the left panel of
Fig. 1. The bottom right panel of Fig. 2 describes the situation
where symmetry about the horizontal line and symmetry about
the center of each cell both come into play, which corresponds to
γ2 = −γ1 on the right panel of Fig. 1.

In order to enable the analytical consideration of the existence
and stability of vortices in the PT -symmetric dNLS equation (1),
we will consider steady states in the limit of large energy [2,3,19].
This enables a formalism of the so-called anti-continuum limit in
the analysis of steady states in nonlinear lattices [20]. In particular,
we set ψj,k(t) = ϕj,k(t)eiEt and introduce the scaling

E = ϵ−1, ϕj,k(t) = uj,k(τ )ϵ
−1/2, τ = tϵ−1. (2)

As a result of this transformation, the PT -symmetric dNLS
equation (1) can be rewritten in the equivalent form

i
duj,k

dτ
− uj,k + ϵ(∆u)j,k + |uj,k|

2uj,k = iϵγj,kuj,k, (3)

where the parameter ϵ is small in the limit of large energy E.
Moreover, if ϵ → 0+, then E → +∞, whereas if ϵ → 0−,
then E → −∞. Setting ϵ = 0 yields the system of uncoupled
conservative nonlinear oscillators, therefore, small values of ϵ can
be considered by the perturbation theory from the uncoupled
conservative limit. In light of this transformation, the analysis will
follow our previous work on existence and stability of vortices in
conservative lattices of the dNLS type [21] (see also applications in
[22,23]). In what follows, we apply the continuation technique to
obtain definite conclusions on vortices in thePT -symmetric dNLS
equation (3).

We will focus on the basic vortex configuration, for which
the excited oscillators are only supported on the elementary cell
shown in Fig. 1. In this case, the definite conclusions on existence
of PT -symmetric vortices can already be extracted from studies
of the PT -symmetric dNLS equation (3) on four sites only, see
Section 2. This is the so-called plaquette setting in [15]. With the
PT -symmetry in hand and appropriate (e.g. Dirichlet) boundary
conditions on the square lattice truncated symmetrically in a
suitable square domain, one can easily upgrade these conclusions
for the full dNLS equation (3), see Section 3. The existence results
remain valid in the infinite square lattice, thanks to the choice of
the sequence spaces such as ℓ2(Z2).

Stability of PT -symmetric vortices on the four sites can be
analyzed in the framework of the Lyapunov–Schmidt reduction
method, see Section 4. However, one needs to be more careful to
study stability of the localized steady states on large square lattices
because the zero equilibrium may become spectrally unstable in
the lattices with spatially extended gains and losses [19,24]. Stable
configurations depend sensitively on the way gains and losses
compensate each other, especially if the two-dimensional square
lattice is truncated to a finite size. These aspects are discussed
in Section 5 for both the zero equilibrium and the soliton/vortex
patterns. Finally, Section 6 provides some conclusions, as well as
offers an outlook towards future work.

2. Existence of PT -symmetric vortices in the elementary cell

Let us consider the elementary cell of the square lattice
shown in Fig. 1. We will enumerate the four corner sites in the
counterclockwise order with the first site to lie at the bottom right.
By the construction, the configuration has a cyclic symmetry with
respect to the shift along the elementary cell.

Looking for the steady-state solutions uj(τ ) = φje−2iϵτ , where
the exponential factor removes the diagonal part of the Laplacian
operator ∆ connecting each of the three lattice sites in the
elementary cell, we rewrite the PT -symmetric dNLS equation (3)
in the explicit form
(1 − |φ1|

2)φ1 − ϵ(φ2 + φ4 − iγ1φ1) = 0,
(1 − |φ2|

2)φ2 − ϵ(φ1 + φ3 − iγ2φ2) = 0,
(1 − |φ3|

2)φ3 − ϵ(φ2 + φ4 − iγ3φ3) = 0,
(1 − |φ4|

2)φ4 − ϵ(φ1 + φ3 − iγ4φ4) = 0.

(4)

In the following, we consider two types of PT -symmetric
configurations for the gain and loss parameters. These two
configurations correspond to the two panels of Fig. 1.

(S1) Symmetry about the vertical line: γ1 = −γ4 and γ2 = −γ3;
(S2) Symmetry about the center: γ1 = −γ3 and γ2 = −γ4.

Besides the cyclic symmetry, one can also flip each of the two
configurations (S1) and (S2) about the vertical or horizontal axes of
symmetries. In addition, for the configuration shown on the right
panel of Fig. 1, one can also flip the configuration about the center
of symmetry, either between the first and third sites or between
the second and fourth sites.

The PT -symmetric stationary states that we explore corre-
spond to particular reductions of the system of algebraic equations
(4), namely,

(S1) Symmetry about the vertical line: φ1 = φ̄4 and φ2 = φ̄3;
(S2) Symmetry about the center: φ1 = φ̄3 and φ2 = φ̄4.
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Fig. 2. Top row: gain and loss structures in the square lattice that correspond to the symmetric configurations in Fig. 1. Solid circle: γ1; hollow circle: −γ1; solid square: γ2;
hollow square: −γ2 . Bottom row: highly symmetric situations where two types of symmetries hold at the same time with γ2 = −γ1 .
Due to the symmetry conditions, the system of algebraic equation
(4) reduces to two equations for φ1 and φ2 only. We shall classify
all possible solutions separately for the two different symmetries.
We also note the symmetry of solutions with respect to changes in
the sign of {φj}1≤j≤4, {γj}1≤j≤4, and ϵ.

Remark 2.1. If {φj}1≤j≤4 solves the system (4) with {γj}1≤j≤4 and
ϵ, then {φj}1≤j≤4 solves the same system with {−γj}1≤j≤4 and ϵ.

Remark 2.2. If {φj}1≤j≤4 solves the system (4) with {γj}1≤j≤4 and ϵ,
then {(−1)jφj}1≤j≤4 solves the same systemwith {γj}1≤j≤4 and−ϵ.

Remark 2.3. If {φj}1≤j≤4 solves the system (4) with {γj}1≤j≤4 and
ϵ, then {−φj}1≤j≤4 solves the same system with {γj}1≤j≤4 and ϵ.

As is known from the previous work [21], if gains and losses are
absent, that is, if γj = 0 for all j, then the solutions of the system
(4) are classified into two groups:

• discrete solitons if arg(φj) = θ0 mod(π) for all j;
• discrete vortices, otherwise.

Persistence of discrete solitons is well known for the PT -
symmetric networks [2,3,19], whereas persistence of discrete
vortices has not been theoretically established in the literature.
The term ‘‘persistence’’ refers to the unique continuation of the
limiting configuration at ϵ = 0with respect to the small parameter
ϵ. The gain and loss parameters are considered to be fixed in this
continuation.
2.1. Symmetry about the vertical line (S1)

Under conditions γ1 = −γ4, γ2 = −γ3, φ1 = φ̄4, and φ2 = φ̄3,
the system (4) reduces to two algebraic equations:
f1 := (1 − |φ1|

2)φ1 − ϵ(φ̄1 + φ2 − iγ1φ1) = 0,
f2 := (1 − |φ2|

2)φ2 − ϵ(φ̄2 + φ1 − iγ2φ2) = 0.
(5)

In general, it is not easy to solve the system (5) for any given γ1,
γ2 and ϵ. However, branches of solutions can be classified through
continuation from the limiting case ϵ = 0 to an open set O(0)
of the ϵ values that contains 0. Simplifying the general approach
described in [21] for the PT -symmetric vortex configurations, we
obtain the following result.

Lemma 2.1. Consider the general solution of the system (5) at ϵ = 0
in the form:

φ
(ϵ=0)
j (θj) = eiθj , θj ∈ T := R/(2πZ). (6)

For every γ1 and γ2, there exists a C∞ function h(θ, ϵ) : T2
×R → R2

such that there exists a unique solution φ ∈ C2 to the system (5) near
φ(ϵ=0)(θ) ∈ C2 for every ϵ ∈ O(0) if and only if there exists a unique
solution θ ∈ T2 of the system h(θ, ϵ) = 0 for every ϵ ∈ O(0).

Proof. Representing the unknown solution with φj = rjeiθj , where
rj ∈ R+ and θj ∈ T, we separate the real and imaginary parts in
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the form gj := Re(fje−iθj) and hj := Im(fje−iθj). For convenience,
we write the explicit expressions:
g1 := (1 − r21 )r1 − ϵ (r1 cos(2θ1)+ r2 cos(θ2 − θ1)) ,

g2 := (1 − r22 )r2 − ϵ (r2 cos(2θ2)+ r1 cos(θ1 − θ2))
(7)

and
h1 := ϵ (r1 sin(2θ1)− r2 sin(θ2 − θ1)+ γ1r1) ,
h2 := ϵ (r2 sin(2θ2)− r1 sin(θ1 − θ2)+ γ2r2) .

(8)

It is clear that φ is a root of f if and only if (r, θ) ∈ R2
×T2 is a root

of (g, h) ∈ R2
× R2. Moreover, (g, h) is smooth both in (r, θ) and

ϵ.
For ϵ = 0, we pick the solutionwith r = 1 and θ ∈ T2 arbitrary,

as per the explicit expression (6). Since g is smooth in r , θ, and
ϵ, whereas the Jacobian ∂ug at r = 1 and ϵ = 0 is invertible,
the Implicit Function Theorem for smooth vector functions applies.
From this theorem, we deduce the existence of a unique r ∈ R2

near 1 ∈ R2 for every θ ∈ T2 and ϵ ∈ R sufficiently small, such
that Eq. (7) is satisfied, the mapping (θ, ϵ) → r is smooth and
∥r − 1∥ ≤ C |ϵ| for an ϵ-independent constant C > 0.

Substituting the smoothmapping (θ, ϵ) → r into the definition
of h in Eq. (8), we obtain the smooth function h(θ, ϵ) : T2

× R →

R2, the root of which yields the assertion of the lemma. �

Lemma 2.1 represents the first step of the Lyapunov–Schmidt
reduction algorithm, namely, a reduction of the original system
(5) to the bifurcation equation for the root of a smooth function
h(θ, ϵ) : T2

× R → R2, defined from the system (7) and
(8). The following lemma represents the second step of the
Lyapunov–Schmidt reduction algorithm, namely, a solution of the
bifurcation equation in the same limit of small ϵ.

Lemma 2.2. DenoteH(θ) = limϵ→0 ϵ
−1h(θ, ϵ) and the correspond-

ing Jacobian matrix N (θ) = ∂θH(θ). Assume that θ(ϵ=0)
∈ T2 is a

root of H such that N (θ(ϵ=0)) is invertible. Then, there exists a unique
root θ ∈ T2 of h(θ, ϵ) near θ(ϵ=0) for every ϵ ∈ O(0) such that
the mapping ϵ → θ is smooth and ∥θ − θ(ϵ=0)

∥ ≤ C |ϵ| for an ϵ-
independent positive constant C.

Proof. The particular form in the definition of H relies on the
explicit definition (8). The assertion of the lemma follows from the
Implicit Function Theorem for smooth vector functions. �

Corollary 2.3. Under conditions of Lemmas 2.1 and 2.2, there exists
a unique solution φ ∈ C2 to the system (5) near φ(ϵ=0)(θ(ϵ=0)) ∈ C2

for every ϵ ∈ O(0) such that themapping ϵ → φ is smooth and ∥φ−

φ(ϵ=0)(θ(ϵ=0))∥ ≤ C |ϵ| for an ϵ-independent positive constant C.

Proof. The proof is just an application of the two-step Lya-
punov–Schmidt reduction method. �

In order to classify all possible solutions of the algebraic system
(5) for small ϵ, according to the combined result of Lemmas 2.1 and
2.2, we write H(θ) and N (θ) explicitly as:

H(θ) =


sin(2θ1)− sin(θ2 − θ1)+ γ1
sin(2θ2)− sin(θ1 − θ2)+ γ2


(9)

and

N (θ)

=


2 cos(2θ1)+ cos(θ2 − θ1) − cos(θ2 − θ1)

− cos(θ1 − θ2) cos(θ1 − θ2)+ 2 cos(2θ2)


. (10)

Let us simplify the computations in the particular case γ1 =

−γ2 = γ , which corresponds to the symmetric configuration:

(S1S) Symmetry about the vertical and the horizontal lines: γ1 =

−γ2 = γ3 = −γ4.
In this case, the system H(θ) = 0 is equivalent to the system
sin(2θ1)+ sin(2θ2) = 0,
sin(2θ1)− sin(θ2 − θ1)+ γ = 0. (11)

The following list represents all families of solutions of the system
(11), which are uniquely continued to the solution of the system
(5) for ϵ ≠ 0, according to the result of Corollary 2.3.
(1–1) Solving the first equation of system (11) with 2θ2 = 2θ1 +π

and the second equation with sin(2θ1) = 1 − γ , we obtain
a solution for γ ∈ (0, 2). Two branches exist for θ1 =
1
2 arcsin(1 − γ ) and θ1 =

π
2 −

1
2 arcsin(1 − γ ), which are

denoted by (1-1-a) and (1-1-b), respectively. However, the
branch (1-1-b) is obtained from the branch (1-1-a) by using
symmetries in Remarks 2.1 and 2.3 as well as by flipping the
configuration on the left panel of Fig. 1 about the horizontal
axis. Therefore, it is sufficient to consider the branch (1-1-a)
only. The branch (1-1-a) can be followed in ϵ numerically
until at least ϵ = 0.3, where the Jacobian matrix for Eqs. (7)
(8) gradually starts becoming more singular.
The Jacobian matrix in (10) is given by

2 cos(2θ1)

1 0
0 −1


(12)

and it is invertible if cos(2θ1) ≠ 0, that is, if γ ≠ 0, 2.
In the limit γ → 0, the solution (φ1, φ2, φ3, φ4) along
the branches (1-1-a) and (1-1-b) transforms to the limiting
solution


e

iπ
4 , e

3π i
4 , e

5π i
4 , e

7π i
4


, which is the discrete vortex

of charge one, according to the terminology in [21]. No
vortex of the negative charge one exists for γ ∈ (0, 2).

(1–2) Solving the first equation of system (11) with 2θ2 = 2θ1 −π
and the second equationwith sin(2θ1) = −1−γ , we obtain
a solution for γ ∈ (−2, 0). Two branches exist for θ1 =

−
1
2 arcsin(1 + γ ) and θ1 = −

π
2 +

1
2 arcsin(1 + γ ), which

are denoted by (1-2-a) and (1-2-b), respectively. Since the
branches (1-1-a) and (1-1-b) are connected to the branches
(1-2-a) and (1-2-b) by Remark 2.1, it is again sufficient to
limit our consideration by branch (1-1-a) for γ ∈ (0, 2).
In the limit γ → 0, the solution (φ1, φ2, φ3, φ4) along
the branches (1-2-a) and (1-2-b) transforms to the limiting
solution


e−

iπ
4 , e−

3π i
4 , e−

5π i
4 , e−

7π i
4


which is the discrete

vortex of the negative charge one. No vortex of the positive
charge one exists for γ ∈ (−2, 0).

(1–3) Solving the first equation of system (11) with 2θ2 = −2θ1
and the second equation with sin(2θ1) = −

γ

2 , we obtain
a solution for γ ∈ (−2, 2). Two branches exist for θ1 =

−
1
2 arcsin


γ

2


and θ1 =

π
2 +

1
2 arcsin


γ

2


, which are denoted

by (1-3-a) and (1-3-b), respectively. It is worth mentioning
that the expressions for θ1 as well as

r1 = r2 =


1 − 2ϵ cos(2θ1)

are exact even if ϵ is not near zero. Due to the existence
of the closed-form expressions, both branches in (1-3) will
naturally persist in ϵ as long as the expressions hold.
The Jacobian matrix in (10) is given by

cos(2θ1)


3 −1
−1 3


, (13)

which is invertible if cos(2θ1) ≠ 0, that is, if γ ≠ ±2.
In the limit γ → 0, the solution (φ1, φ2, φ3, φ4) along
the branches (1-3-a) and (1-3-b) transforms to the limiting
solutions (1, 1, 1, 1) and i(1,−1, 1,−1), which correspond
to discrete solitons, according to the terminology in [21].

(1–4) Solving the first equation of system (11) with 2θ2 = −2θ1 ±

2π , we obtain the constraint γ = 0 from the second equa-
tion. Therefore, no solutions exist in this choice if γ ≠ 0.
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2.2. Symmetry about the center (S2)

Under conditions γ1 = −γ3, γ2 = −γ4, φ1 = φ̄3, and φ2 = φ̄4,
the system (4) reduces to two algebraic equations:
f1 := (1 − |φ1|

2)φ1 − ϵ(φ̄2 + φ2 − iγ1φ1) = 0,
f2 := (1 − |φ2|

2)φ2 − ϵ(φ̄1 + φ1 − iγ2φ2) = 0.
(14)

The system (14) is only slightly different from the system (5).
Therefore, Lemmas 2.1 and 2.2 hold for the system (14) and the
question of persistence of vortex configurations symmetric about
the center can be solved with the two-step Lyapunov–Schmidt
reduction algorithm. For explicit computations of the persistence
analysis, we obtain the explicit expressions for H(θ) and N (θ) in
Lemma 2.2:

H(θ) =


sin(θ2 + θ1)− sin(θ2 − θ1)+ γ1
sin(θ1 + θ2)− sin(θ1 − θ2)+ γ2


(15)

and

N (θ)

=


cos(θ2 + θ1)+ cos(θ2 − θ1) cos(θ2 + θ1)− cos(θ2 − θ1)

cos(θ1 + θ2)− cos(θ1 − θ2) cos(θ1 + θ2)+ cos(θ1 − θ2)


. (16)

Let us now consider the PT -symmetric network with γ1 =

−γ2 = γ , which corresponds to the symmetric configuration:

(S2S) Symmetry about the horizontal line and the center: γ1 =

−γ2 = −γ3 = γ4.

Therefore, we rewrite the systemH(θ) = 0 in the equivalent form:
sin(θ1 + θ2) = 0,
sin(θ1 − θ2)+ γ = 0. (17)

Note in passing that the system (14) admits the exact solution in
the polar form φj = rjeiθj , j = 1, 2 with

r1 = r2 =


1 − ϵ (cos(θ1 + θ2)+ cos(θ1 − θ2)),

where θ1 and θ2 are given by the roots of the system (17). The Lya-
punov–Schmidt reduction algorithm in Lemmas 2.1 and 2.2 guar-
antees that these exact solutions are unique in the neighborhood
of the limiting solution (6).

The following list represents all families of solutions of the sys-
tem (17), which are uniquely continued to the solution of the sys-
tem (14) for ϵ ≠ 0, according to the result of Corollary 2.3. Thanks
to the explicit expressions for the solutions, the continuation of the
solutions occurs even when ϵ is not near zero.

(2–1) θ2 = −θ1 and sin(2θ1) = −γ with two branches θ1 =

−
1
2 arcsin(γ ) and θ1 =

π
2 +

1
2 arcsin(γ ) labeled as (2-1-a)

and (2-1-b). The two branches exist for γ ∈ (−1, 1). The
Jacobian matrix in (16) is given by

2

cos2(θ1) sin2(θ1)

sin2(θ1) cos2(θ1)


(18)

and it is invertible if cos(2θ1) ≠ 0, that is, if γ ≠ ±1.
In the limit γ → 0, the solution (φ1, φ2, φ3, φ4) along
the branches (2-1-a) and (2-1-b) transforms to the limiting
solutions (1, 1, 1, 1) and i(1,−1,−1, 1), which correspond
to discrete solitons.

(2–2) θ2 = −θ1 ± π and sin(2θ1) = γ with two branches θ1 =
1
2 arcsin(γ ) and θ1 =

π
2 −

1
2 arcsin(γ ) labeled as (2-2-a) and

(2-2-b). These two branches also exist for γ ∈ (−1, 1). The
Jacobian matrix in (16) is given by

− 2

cos2(θ1) sin2(θ1)

sin2(θ1) cos2(θ1)


, (19)
which is invertible if cos(2θ1) ≠ 0, that is, if γ ≠ ±1.
In the limit γ → 0, the solution (φ1, φ2, φ3, φ4) along
the branches (2-2-a) and (2-2-b) transforms to the limiting
solutions (1,−1, 1,−1) and i(1, 1,−1,−1), which again
correspond to discrete solitons. The family (2-2) is related
to the family (2-1) by Remark 2.2.

2.3. Summary on existence results in the elementary cell

We explored two types of gain–loss PT -symmetric configura-
tions in the elementary cell and identified different branches of so-
lutions uniquely continued from ϵ = 0 at a fixed γ ≠ 0.

We conclude that

• the PT -symmetry (S1S) supports vortex configurations (1-1)
and (1-2) as well as soliton configurations (1-3).

• the PT -symmetry (S2S) supports only soliton configurations
(2-1) and (2-2). Although there exist vortex configurations
when γ = 0, they do not persist with respect to ϵ if γ ≠ 0.

The branch (1-1-a) can be traced numerically with respect to
parameter ϵ > 0. The other branches (1-1-b), (1-2-a) and (1-2-b)
can be obtained by symmetries given by Remarks 2.1 and 2.3. Also
the branches can be extended to ϵ < 0 by using Remark 2.2.
The branches (1-3), (2-1) and (2-2) are represented by the exact
solutions for ϵ ≠ 0.

3. Existence of PT -symmetric vortices in truncated lattice

Weshall nowconsider thePT -symmetric dNLS equation (3) on
the square lattice truncated symmetrically with suitable boundary
conditions.

For the steady-state solutions uj,k(τ ) = φj,ke−4iϵτ , we obtain the
stationary PT -symmetric dNLS equation in the form

(1 − |φj,k|
2)φj,k − ϵ(φj+1,k + φj−1,k + φj,k+1 + φj,k−1

− iγj,kφj,k) = 0, (j, k) ∈ Z2. (20)

In the limit of ϵ → 0, we are still looking for the limiting
configurations supported on four sites of the elementary cell:

φ
(ϵ=0)
j,k (θj,k) = eiθj,k ,

(j, k) ∈ S := {(1, 0); (1, 1); (0, 1); (0, 0)} , (21)

where θj,k ∈ T for (j, k) ∈ S, whereas φ(ϵ=0)
j,k = 0 for (j, k) ∈ S∗

:=

Z2
\S.
Computations in Section 2 remain valid on the unbounded

square lattice, because the results of Lemmas 2.1 and 2.2 are
obtained on the set S in the first order in ϵ, where no contributions
come from the empty sites in the set S∗.

If the square lattice is truncated, then the truncated square
lattice must satisfy the following requirements for persistence of
the PT -symmetric configurations:

• the elementary cell S must be central in the symmetric
extension of the lattice;

• the distribution of gains and losses in {γj,k} must be anti-
symmetric with respect to the selected symmetry in Fig. 1, the
extended lattice is shown in Fig. 2;

• the boundary conditions must be consistent with the PT -
symmetry constraints on {φj,k}.

The periodic boundary conditions may not be consistent with the
PT -symmetry constraints because of the jump in the complex
phases. On the other hand, Dirichlet conditions at the fixed ends
are consistent with the PT -symmetry constraints.

In the following we show continuations of the PT -symmetric
solutions from the branches obtained on the elementary cell S in
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Fig. 3. The top (bottom) row shows the result of continuation of the branch (1-1-a) on the 20-by-20 square lattice to γ1 = −γ2 = 0.7 and ϵ = 0.1 (ϵ = 0.22). The left
panels show the logarithm of the solution’s modulus, and the right panels show the corresponding phase.
Section 2. The relevant configurations are now computed on the
20-by-20 square lattice truncated symmetrically with zero bound-
ary conditions and gain–loss distribution γj,k = γ (−1)j+k or γj,k =

γ (−1)k that correspond to the bottompanels of Fig. 2. The require-
ments listed above are satisfied for the truncated square lattice.

(1-1-a) The continuation of the solutions in branch (1-1-a) at γ =

0.7 is presented in Fig. 3 where the lattice configuration
satisfies γj,k = γ (−1)j+k. The left panels of Fig. 3 illustrate
the logarithm of the modulus, while the right panels show
the corresponding phase.
At ϵ = 0, the phases of the solution on S in (1-1-a) are
{θ1, θ1 +

π
2 ,−θ1 −

π
2 ,−θ1}, where θ1 =

1
2 arcsin(1 − γ ).

Therefore, the configuration represents the continuation
over γ of the discrete vortex of charge one, which
corresponds to θ1 = π/4 at γ = 0.When ϵ = 0.1 is small,
we can observe in the top row of Fig. 3 that the solutions
are still close to the limiting solutions of ϵ = 0 and the
amplitudes are large chiefly at the four central sites of the
set S. However, amplitudes of the sites in the set S∗ are
nonzero for ϵ = 0.1 but still small (at most O(ϵ) on the
sites of S∗ adjacent to the sites of S). At the same time, the
phases of the amplitudes on the sites of S do not change
much in parameter ϵ and still feature a 2π-change over a
discrete contour surrounding the vortex location.
In the bottom panels of Fig. 3, ϵ is set to be 0.22 and the
amplitudes are more evenly spread on the lattice although
they are still much greater on the sites closer to the center
cell. Interestingly, the inequality between the top two sites
and the bottom two sites in the center cell at a small
ϵ gradually leads to a ‘‘heart-shaped’’ distribution of the
amplitudes on the whole lattice.
We notice that the continuations of the solutions in
branch (1-1-a) as well as other branches mentioned in
Section 2 in finite truncated square lattices can be followed
numerically only until some ϵ > 0 (depending on γ and
lattice size n), beyond which we can only find a different
type of solutions.

(1-3) We present the continuations of the solutions in branches
(1-3-a) and (1-3-b) in Figs. 4 and 5, respectively. Again
these examples are producedwith gain–loss configuration
γj,k = γ (−1)j+k where γ = 0.7.
At ϵ = 0, the phases of the solutions on S in (1-3-a) and
(1-3-b) are {θ1,−θ1, θ1,−θ1}, where θ1 = −

1
2 arcsin( γ2 )

or θ1 =
π
2 +

1
2 arcsin( γ2 ), which represent the

continuations over γ of the discrete solitons with θ1 = 0
or π/2 at γ = 0. This interpretation is confirmed by the
surface plot for the argument of complex amplitudes in the
top panels of Figs. 4 and 5 where ϵ = 0.1 is still close to 0.
As ϵ increases, we are able to track the branches (1-3-a)
and (1-3-b) numerically until ϵ ≈ 0.25, the examples of
which are shown in the bottom panels of Figs. 4 and 5.
Unlike the branch (1-1-a), the amplitudes of the solutions
in (1-3) spread evenly in both vertical and horizontal
directions as ϵ grows.

(2-1) In Figs. 6 and 7, we show the solutions on the square lattice
that are continued from the branches (2-1-a) and (2-1-b)
in Section 2. In these examples we set γj,k = γ (−1)k and
γ = 0.8.
At ϵ = 0, the solutions on S in (2-1-a) and (2-1-b) have
phases {θ1,−θ1,−θ1, θ1}, where θ1 =

1
2 arcsin( γ2 ) or

θ1 =
π
2 −

1
2 arcsin( γ2 ). These configurations represent the

continuations over γ of the discrete solitons with θ1 = 0
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Fig. 4. The top (bottom) row shows the result of continuation of the branch (1-3-a) on the 20-by-20 square lattice to γ1 = −γ2 = 0.7 and ϵ = 0.1 (ϵ = 0.25). The left
panels show the logarithm of the solution’s modulus, and the right panels show the corresponding phase.
or π/2 at γ = 0. In the top panels of Figs. 6 and 7, it can
be seen that the phases of the amplitudes on the sites of S
still feature a clearly discernible discrete soliton.
In the bottom panels of Figs. 6 and 7, we follow the
continuations of branches (2-1-a) and (2-1-b) in the lattice
until ϵ = 0.25 and ϵ = 0.22, respectively. Here we notice
the transferring of the amplitudes from the center sites
to the whole lattice favors the vertical direction in both
configurations, although it is much easier to be observed
in the bottom left panel of Fig. 7.

(2-2) Again γj,k = γ (−1)k and γ = 0.8, we show the
continuations of the solutions from branches (2-2-a) and
(2-2-b) in the square lattice in Figs. 8 and 9.
At ϵ = 0, the phases of the solutions on S in (2-2-a) and
(2-2-b) are {θ1, π − θ1,−θ1, θ1 − π}, where θ1 =
1
2 arcsin(γ ) or θ1 =

π
2 −

1
2 arcsin(γ ). At γ = 0 these

configurations correspond to the discrete solitons with
θ1 = 0 or π/2. The case when ϵ = 0.1 is shown by the
surface plot for the argument of complex amplitudes in the
top panels of Figs. 8 and 9.
In the bottom panels of Figs. 8 and 9, we show the
continuations of branches (2-2-a) and (2-2-b) in the lattice
at ϵ = 0.25 and ϵ = 0.22, respectively. From both figures,
we clearly see that the whole lattice features a ‘‘dumbbell’’
shape.

To summarize,we have set the elementary cell in Section 2 to be
the central cell of a square lattice and examined the continuations
of the single-cell solutions in the truncated lattice. We have
generically found that the main results in Section 2 represent
branches of solutions in the truncated lattice.
We mainly studied two types of gain–loss structures of the
lattice, namely γj,k = γ (−1)j+k and γj,k = γ (−1)k. We also
monitored the continuation of the solutions from each branch in
ϵ numerically and found that these solutions can be followed up to
some ϵ that may depend on γ and the lattice size.

4. Stability of PT -symmetric configurations in the cell

We address the PT -symmetric configurations in the elemen-
tary cell consisting of four sites. Persistence of these configura-
tions in the small parameter ϵ is obtained in Section 2. In what
follows, we consider spectral stability of the PT -symmetric con-
figurations.

Let φ := {φj}1≤j≤4 be a stationary solution of the system (4). If it
isPT -symmetric, there exists a 4-by-4matrix P such that φ̄ = Pφ.
For the two PT -symmetries considered in Section 2, we list the
matrix P:

(S1) P =

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,

(S2) P =

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .

(22)

Adding a perturbation to the steady-state solution, we write

uj(τ ) =


φj + δ


eλτvj + eλ̄τwj


e−2iϵτ ,

where δ is the perturbation amplitude, λ ∈ C is the spectral
parameter, and (v,w) := {(vj, wj)}1≤j≤4 represents an eigenvector
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Fig. 5. The top (bottom) row shows the result of continuation of the branch (1-3-b) on the 20-by-20 square lattice to γ1 = −γ2 = 0.7 and ϵ = 0.1 (ϵ = 0.24). The left
panels show the logarithm of the solution’s modulus, and the right panels show the corresponding phase.
of the spectral stability problem. After the linearization of thePT -
symmetric dNLS equation (3) at the four-site cell, we obtain the
spectral stability problem in the form
iλvj = (1 + iϵγj − 2|φj|

2)vj − (φj)
2wj − ϵ(vj−1 + vj+1),

−iλwj = −φ
2
j vj + (1 − iϵγj − 2|φj|

2)wj − ϵ(wj−1 + wj+1),

1 ≤ j ≤ 4, (23)

where cyclic boundary conditions on {(vj, wj)}1≤j≤4 are assumed.
The eigenvalue problem (23) can be written in the matrix form

iλσ ξ = (H + iϵG) ξ, (24)

where ξ consists of blocks of (vj, wj)
T , σ consists of blocks of Pauli

matrices σ3 = diag(1,−1), G consists of blocks of γjσ3, and H is
the Hermitian matrix consisting of the blocks of

Hj =


1 − 2|φj|

2
−(φj)

2

−(φj)
2 1 − 2|φj|

2


− ϵ(s+1 + s−1)


1 0
0 1


, (25)

where sj stands for the shift operator such that (sjφ)k = φk+j.

Remark 4.1. If λ is an eigenvalue of the spectral problem (23)with
the eigenvector (v,w), then λ̄ is another eigenvalue of the same
problem (23) with the eigenvector (w̄, v̄). Therefore, eigenvalues
λ are symmetric about the real axis.

Remark 4.2. Assume that φ is PT -symmetric, so that φ̄ = Pφ
for P given by (22). If λ is an eigenvalue of the spectral problem
(23) with the eigenvector (v,w), then −λ̄ is another eigenvalue of
the same problem (23) with the eigenvector (P v̄, Pw̄). Therefore,
eigenvalues λ are symmetric about the imaginary axis.
In order to study stability of the stationary solutions in the limit
of small ϵ, we adopt the stability results obtained in [21]. Along
this way, it is easier to work with a stationary solution φ without
using the property of PT -symmetry. Nevertheless, it is true that
φ3 andφ4 are expressed fromφ1 andφ2 by using thematrix P given
by (22). With the account of the relevant symmetry, Corollary 2.3
implies that the stationary solution can be expressed in the form

φj = eiθ
(0)
j


1 + ϵr (1)j + iϵ


θ
(1)
j − θ

(0)
j


+ O(ϵ2)


,

1 ≤ j ≤ 4, (26)

where {θ
(0)
j }1≤j≤4 are determined from simple roots of the vector

function H , {θ
(1)
j }1≤j≤4 are found from persistence analysis in

Lemma 2.2, and {r (1)j }1≤j≤4 are found from persistence analysis in
Lemma 2.1. After elementary computations, we obtain the explicit
expression

r (1)j = −
1
2


cos(θ (0)j − θ

(0)
j−1)+ cos(θ (0)j − θ

(0)
j+1)


, (27)

where the cyclic boundary conditions for {θ
(0)
j }1≤j≤4 are assumed.

For convenience of our presentation, we drop the superscripts in
writing θ (0)j .

Let M be a 4-by-4 matrix satisfying

Mj,k =


cos(θj − θj−1)+ cos(θj − θj+1), k = j
− cos(θj − θj−1), k = j − 1
− cos(θj − θj+1), k = j + 1
0, otherwise.

(28)

Due to the gauge invariance of the original dNLS equation (3), M
always has a zero eigenvalue with eigenvector (1, 1, 1, 1)T . The
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Fig. 6. The top (bottom) row shows the result of continuation of the branch (2-1-a) on the 20-by-20 square lattice to γ1 = −γ2 = 0.8 and ϵ = 0.1 (ϵ = 0.25). The left
panels show the logarithm of the solution’s modulus, and the right panels show the corresponding phase.
other three eigenvalues of M may be nonzero. As is established
in [21], the nonzero eigenvalues of the matrix M are related to
small eigenvalues of the matrix operator H of the order of O(ϵ).
In order to render the stability analysis herein self-contained, we
review the statement and the proof of this result.

Lemma 4.1. Let µj be a nonzero eigenvalue of the matrix M. Then,
for sufficiently small ϵ ∈ O(0), the matrix operator H has a small
nonzero eigenvalue νj such that

νj = µjϵ + O(ϵ2). (29)

Proof. We consider the expansion H = H (0)
+ ϵH (1)

+ O(ϵ2),
where H (0) consists of the blocks

H
(0)
j =


−1 −e2iθj

−e−2iθj −1


. (30)

Each block has a one-dimensional kernel spanned by the vector
(eiθj ,−e−iθj). Let ej be the corresponding eigenvector of H (0) for
the zero eigenvalue. Therefore, we have

ker(H (0)) = span{ej}1≤j≤4.

By regular perturbation theory, we are looking for the small
eigenvalue νj and eigenvector η of the Hermitian matrix operator
H for small ϵ ∈ O(0) in the form

νj = ϵν
(1)
j + O(ϵ2), η = η(0) + ϵη(1) + O(ϵ2),

where η(0) =
4

j=1 cjej and {cj}1≤j≤4 are to be determined. At the
first order of O(ϵ), we obtain the linear inhomogeneous system

H (0)η(1) + H (1)η(0) = ν
(1)
j η(0), (31)
where H (1) consists of the blocks

H
(1)
j = −2r (1)j


2 e2iθj

e−2iθj 2


− (s+1 + s−1)


1 0
0 1


(32)

where the expansion (26) has been used. Projection of the linear
inhomogeneous equation (31) to ker(H (0)) gives the 4-by-4matrix
eigenvalue problem

Mc = ν
(1)
j c, (33)

whereMj,k =
1
2 ⟨ej,H

(1)ek⟩ is found to coincidewith the one given
by (28) thanks to the explicit expressions (27). �

Wewill now prove that the small nonzero eigenvalues of H for
small nonzero ϵ determine the small eigenvalues in the spectral
stability problem (24). The following lemma follows the approach
of [21] but incorporates the additional term i ϵ G due to the PT -
symmetric gain and loss terms.

Lemma 4.2. Let µj be a nonzero eigenvalue of the matrix M. Then,
for sufficiently small ϵ ∈ O(0), the spectral problem (24) has a pair of
small nonzero eigenvalues ±λj such that

λ2j = 2µjϵ + O(ϵ2). (34)

Proof. We recall that ker(H (0)) = span{ej}1≤j≤4. Let êj = σ ej .
Then, H (0)êj = −2êj . Since the operator σH (0) is not self-
adjoint, the zero eigenvalue of H (0) of geometric multiplicity 4
may become a defective zero eigenvalue ofH (0) of higher algebraic
multiplicity. As is well-known [21], the zero eigenvalue ofH (0) has
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Fig. 7. The top (bottom) row shows the result of continuation of the branch (2-1-b) on the 20-by-20 square lattice to γ1 = −γ2 = 0.8 and ϵ = 0.1 (ϵ = 0.22). The left
panels show the logarithm of the solution’s modulus, and the right panels show the corresponding phase.
algebraic multiplicity 8 with

ker(σH (0)) = span{ej}1≤j≤4 and

ker((σH (0))2) = span{ej, êj}1≤j≤4.

By the regular perturbation theory for two-dimensional Jordan
blocks, we are looking for the small eigenvalue λj and eigenvector
ξ of the spectral problem (24) for small ϵ ∈ O(0) in the form

λj = ϵ1/2λ
(1)
j + ϵλ

(2)
j + O(ϵ3/2),

ξ = ξ(0) + ϵ1/2ξ(1) + ϵξ(2) + O(ϵ3/2),

where ξ(0) =
4

j=1 cjej and {cj}1≤j≤4 are to be determined. At the
first order of O(ϵ1/2), we obtain the linear inhomogeneous system

H (0)ξ(1) = iλ(1)j σ ξ
(0). (35)

Since σH (0)êj = −2ej , we obtain the explicit solution of the linear
inhomogeneous equation (35) in the form

ξ(1) = −
iλ(1)j

2

4
j=1

cjêj .

At the second order of O(ϵ), we obtain the linear inhomogeneous
system

H (0)ξ(2) + H (1)ξ(0) + iGξ(0) = iλ(1)j σ ξ
(1)

+ iλ(2)j σ ξ
(0). (36)

Projection of the linear inhomogeneous equation (36) to ker(H (0))
gives the 4-by-4 matrix eigenvalue problem

Mc =
1
2
(λ
(1)
j )

2c, (37)
since ⟨ej,Gek⟩ = 0 for every j, k. Thus, the additional term i ϵ G
due to the PT -symmetric gain and loss terms does not contribute
to the leading order of the nonzero eigenvalues λj, which split
according to the asymptotic expansion (34). Note that the relevant
eigenvalues still depend on the gain–loss parameter γ , due to the
dependence of the parameters {θj}1≤j≤4 on γ . �

If the stationary solution {φj}1≤j≤4 satisfies the PT -symmetry,
that is, φ̄ = Pφ with P given by (22), then the 4-by-4 matrix M
given by (28) has additional symmetry and can be folded into two
2-by-2 matrices. One of these two matrices must have nonzero
eigenvalues because the PT -symmetric configuration φ persists
with respect to the small parameter ϵ by Corollary 2.3. The other
matrix must have a zero eigenvalue due to the gauge invariance
of the system of stationary equations (4). Since the persistence
analysis depends on the PT -symmetry and different solution
branches have been identified in each case, we continue separately
for the two kinds of the PT -symmetry on the elementary cell
studied in Section 2.

4.1. Symmetry about the vertical line (S1)

Under conditions γ1 = −γ4 and γ2 = −γ3, we consider the
PT -symmetric configuration in the form φ1 = φ̄4 and φ2 = φ̄3.
Thus, we have θ1 = −θ4 and θ2 = −θ3, after which the 4-by-4
matrix M given by (28) can be written in the explicit form:

M =

a + b −b 0 −a
−b b + c −c 0
0 −c b + c −b

−a 0 −b a + b

 ,
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Fig. 8. The top (bottom) row shows the result of continuation of the branch (2-2-a) on the 20-by-20 square lattice to γ1 = −γ2 = 0.8 and ϵ = 0.1 (ϵ = 0.25). The left
panels show the logarithm of the solution’s modulus, and the right panels show the corresponding phase.
where a = cos(2θ1), b = cos(θ1 −θ2), and c = cos(2θ2). Using the
transformation matrix

T =

1 0 0 1
0 1 1 0
0 1 −1 0
1 0 0 −1

 ,

which generalizes the matrix P given by (22) for (S1), we obtain
the block-diagonalized form of the matrix M after a similarity
transformation:

T−1MT =

 b −b 0 0
−b b 0 0
0 0 b + 2c −b
0 0 −b 2a + b

 .

Note that the first block is given by a singular matrix, whereas
the second block coincides with the Jacobian matrix N (θ) given
by (10).

The following list summarizes the stability features of the
irreducible branches (1-1-a), (1-3-a), and (1-3-b) among solutions
of the system (11), which corresponds to the particular symmetry
(S1S) with γ1 = −γ2 = γ .

(1-1-a) For the solution with 2θ2 = 2θ1 + π and sin(2θ1) =

1 − γ , we obtain a = −c = cos(2θ1) and b = 0.
Therefore, thematrixM has a double zero eigenvaluewith
eigenvectors (1, 0, 0, 1)T , (0, 1, 1, 0)T and a pair of simple
nonzero eigenvaluesµ± = ±2 cos(2θ1)with eigenvectors
(−1, 0, 0, 1)T and (0,−1, 1, 0)T .
By Lemma 4.2, the spectral stability problem (24) has two
pairs of small nonzero eigenvaluesλ: one pair ofλ is purely
real near ±

√
|4ϵ cos(2θ1)| and another pair of λ is purely
imaginary near±i
√

|4ϵ cos(2θ1)| as ϵ → 0. Therefore, the
branch (1-1-a) corresponding to the vortex configurations
is spectrally unstable. This instability disappears in the
limit of γ → 0, as θ1 → π/4 in this limit, and the
dependence of the relevant eigenvalue emerges at a higher
order in ϵ, with the eigenvalue being imaginary [21].
Fig. 10 shows comparisons between the eigenvalues ap-
proximated using the first-order reductions in Lemma 4.2
and those computed numerically for the branch (1-1-a)
with ϵ > 0. Note that one of the pairs of real eigenvalues
(second thickest solid blue line) appears beyond the first-
order reduction of Lemma 4.2 (see [21] for further details).

(1-3) For the solution with 2θ2 = −2θ1 and sin(2θ1) = −
γ

2 ,
we obtain a = b = c = cos(2θ1). Therefore, the
matrix M has a simple zero eigenvalue µ1 = 0 with
eigenvector (1, 1, 1, 1)T , a double nonzero eigenvalue
µ2 = µ3 = 2 cos(2θ1) with eigenvectors (i,−1,−i, 1)T
and (−i,−1, i, 1)T , and a simple nonzero eigenvalueµ4 =

4 cos(2θ1)with eigenvector (−1, 1,−1, 1)T .
Nowwe can distinguish between the branches (1-3-a) and
(1-3-b) which correspond to θ1 = −

1
2 arcsin


γ

2


and θ1 =

π
2 +

1
2 arcsin


γ

2


respectively.

By Lemma 4.2, the spectral stability problem (24) for
the branch (1-3-a) has only pairs of real eigenvalues λ,
moreover, the pair of double real eigenvalues in the first-
order reductionmay split to a complex quartet beyond the
first-order reduction. Independently of the outcome of this
splitting, the branch (1-3-a) is spectrally unstable.
On the other hand, the spectral stability problem (24) for
the branch (1-3-b) has only pairs of imaginary eigenvalues
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Fig. 9. The top (bottom) row shows the result of continuation of the branch (2-2-b) on the 20-by-20 square lattice to γ1 = −γ2 = 0.8 and ϵ = 0.1 (ϵ = 0.22). The left
panels show the logarithm of the solution’s modulus, and the right panels show the corresponding phase.
Fig. 10. The real (left) and imaginary (right) parts of eigenvalues λ as functions of ϵ at γ = 1+

√
3
2 for the branch (1-1-a) in comparison with the analytically approximated

eigenvalues (dashed lines). In the left panel, two thinner (green and black) lines are zero, the thickest (red) line is predicted by the asymptotic theory, and the thicker (blue)
line appears beyond the leading-order asymptotic theory. In the right panel, the thinner (green) line is predicted by the asymptotic theory whereas all other (red, blue and
black) lines are identically zero. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
λ in the first-order reduction in ϵ. However, one pair
of imaginary eigenvalues λ is double and may split to a
complex quartet beyond the first-order reduction. If this
splitting actually occurs, the branch (1-3-b) is spectrally
unstable as well.

Figs. 11 and 12 illustrate the comparisons between numerical
eigenvalues and approximated eigenvalues for the branches
(1-3-a) and (1-3-b) respectively. We can see that the pair of
double real eigenvalues λ of the spectral stability problem (24)
for the branch (1-3-a) splits into two pairs of simple real
eigenvalues, hence the complex quartets do not appear as a result
of this splitting. On the other hand, the pair of double imaginary
eigenvalues λ of the spectral stability problem (24) for the branch
(1-3-b) does split into a quartet of complex eigenvalues, which
results in the (weak) spectral instability of the branch (1-3-b).

4.2. Symmetry about the center (S2)

Under conditions γ1 = −γ3 and γ2 = −γ4, we consider the
PT -symmetric configuration in the form φ1 = φ̄3 and φ2 = φ̄4.
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Fig. 11. The real parts of eigenvalues λ as functions of ϵ at γ = −0.7 for the branch
(1-3-a) in comparison with the analytically approximated eigenvalues (dashed
lines). The imaginary parts are identically zero. The double real eigenvalue splits
beyond the leading-order asymptotic theory. As in Fig. 10, in this figure and the
following figures of this section, we use lines of different thicknesses (and different
colors if online) to represent different eigenvalues as functions of ϵ.

Thus, we have θ1 = −θ3 and θ2 = −θ4, after which the 4-by-4
matrix M given by (28) can be written in the explicit form:

M =

a + b −b 0 −a
−b a + b −a 0
0 −a a + b −b

−a 0 −b a + b

 ,

where a = cos(θ1 + θ2) and b = cos(θ1 − θ2). Using the
transformation matrix

T =

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 ,

which generalizes the matrix P given by (22) for (S2) we diagonal-
ize the matrixM into two blocks after a similarity transformation:

T−1MT =

 a + b −a − b 0 0
−a − b a + b 0 0

0 0 a + b a − b
0 0 a − b a + b

 .

Note that the first block is given by a singular matrix, whereas
the second block coincides with the Jacobian matrix N (θ) given
by (16).
Fig. 13. The real parts of eigenvalues λ as functions of ϵ at γ = 0.8 for the branch
(2-1-a) in comparison with the analytically approximated eigenvalues (dashed
lines). The imaginary parts are identically zero, i.e., all three nonzero eigenvalue
pairs are real.

The following list summarizes stability of the branches (2-1)
and (2-2) among the solutions of the system (17), which corre-
sponds to the particular symmetry (S2S) with γ1 = −γ2 = γ .

(2-1) For the solution with θ2 = −θ1 and sin(2θ1) = −γ ,
we obtain a = 1 and b = cos(2θ1). Therefore, the
matrix M has zero eigenvalue µ1 = 0 with eigenvector
(1, 1, 1, 1)T and three simple nonzero eigenvalues µ2 = 2
with eigenvector (−1,−1, 1, 1)T , µ3 = 2 cos(2θ1) with
eigenvector (1,−1,−1, 1)T , and µ4 = 2 + 2 cos(2θ1) with
eigenvector (−1, 1,−1, 1)T .
For ϵ > 0, the spectral problem (24) has at least one
pair of real eigenvalues λ near ±

√
4ϵ so that the stationary

solutions are spectrally unstable for both branches (2-1-a)
and (2-1-b). The numerical results shown in Figs. 13 and 14
illustrate the validity of the first-order approximations for
the eigenvalues of the spectral stability problem (24).

(2-2) For the solution with θ2 = −θ1 ± π and sin(2θ1) = γ , we
obtain a = −1 and b = − cos(2θ1). Therefore, the matrix M
has zero eigenvalue µ1 = 0 with eigenvector (1, 1, 1, 1)T
and three simple nonzero eigenvalues µ2 = −2, µ3 =

−2 cos(2θ1), andµ4 = 2+2 cos(2θ1). These eigenvalues are
opposite to those in the case (2-1), because the family (2-2) is
related to the family (2-1) by Remark 2.2. Consequently, the
stability analysis of the family (2-2) for ϵ > 0 corresponds
to the stability analysis of the family (2-1) for ϵ < 0.
Fig. 12. The real (left) and imaginary (right) parts of eigenvalues λ as functions of ϵ at γ = −0.7 for the branch (1-3-b) in comparison with the analytically approximated
eigenvalues (dashed lines). In the left panel, two thicker (red and blue) solid lines for nonzero eigenvalues as well as two thinner (black and green) solid lines for zero real
parts are identical. Similarly, the two thicker (red and blue) solid lines for nonzero eigenvalues are identical in the right panel. These two sets of coincident lines correspond to
the complex eigenvalue quartet which emerges in this case, destabilizing the soliton configuration. Splitting of the double imaginary eigenvalues is beyond the leading-order
asymptotic theory. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 14. The real and imaginary parts of eigenvalues λ as functions of ϵ at γ = −0.3 for the branch (2-1-b) in comparison with the analytically approximated eigenvalues
(dashed lines). In the left panel two thinner (green and black) solid lines are zero while in the right panel three (red, blue and black) lines are zero. Here, two of the relevant
eigenvalue pairs are found to be real, while the other is imaginary. In both panels, the solid lines and dashed lines look almost identical. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 15. The imaginary parts of eigenvalues λ as functions of ϵ at γ = 0.8
for the stable branch (2-2-a) in comparison with the analytically approximated
eigenvalues (dashed lines). The real parts of the eigenvalues are identically zero.

For the branch (2-2-a), the spectral stability problem
(24) with ϵ > 0 has three pairs of simple purely
imaginary eigenvalues λ near ±2i

√
ϵ, ±2i

√
ϵ cos(2θ1), and

±2i
√
ϵ(1 + cos(2θ1)). Therefore, the stationary solution is

spectrally stable at least for small values of ϵ > 0. For the
branch (2-2-b), the spectral stability problem (24) with ϵ >
0 includes a pair of real eigenvalues near ±2

√
|ϵ cos(2θ1)|,

which implies instability of the stationary solutions. The
numerical results shown in Figs. 15 and 16 illustrate the
validity of these predictions.

4.3. Summary on the stability in the elementary cell

Among all the irreducible branches of solutions examined in the
elementary cell, we conclude

• all the vortex configurations (1-1) are spectrally unstable;
• most of the soliton configurations (1-3), (2-1) and (2-2-b) are

spectrally unstable;
• the only stable soliton configuration is branch (2-2-a).

5. Stability of PT -symmetric configurations in truncated
lattice

Here we extend the spectral stability analysis of the PT -
symmetric configurations to the setting of the truncated square
lattice. Persistence of these configurations in small parameter ϵ is
obtained in Section 3.

Let n be an even number and consider the n-by-n square lattice,
denoted by Ln. The domain is truncated symmetrically with zero
boundary conditions. The PT -symmetric solution {φj,k}(j,k)∈Ln to
the system (20) is supposed to satisfy the limiting configuration
(21), where the central cell S is now placed at

S =

n
2
,
n
2


,
n
2
,
n
2

+ 1

,
n
2

+ 1,
n
2


,
n
2

+ 1,
n
2

+ 1

,

whereas the zero sites are located at S∗
:= Ln\S. In addition to

spectral stability of the PT -symmetric solution, we also consider
spectral stability of the zero equilibrium.

No matter whether the sites at S are excited or not, the spectral
stability problem can be written in the form (24), where ξ now
consists of blocks of (vj,k, wj,k)

T , G consists of blocks of γj,kσ3, and
H consists of the blocks of

Hj,k =


1 − 2|φj,k|

2
−(φj,k)

2

−(φj,k)
2 1 − 2|φj,k|

2


− ϵ(s0,+1 + s0,−1 + s−1,0 + s+1,0)


1 0
0 1


, (38)

where sl,m stands for the shift operator such that (sl,mφ)j,k =

φj+l,k+m.

5.1. Spectral stability of the zero equilibrium

Here we construct explicit solutions of the spectral stability
problem (24) associated with the zero solution φj,k = 0 for every
(j, k) ∈ Ln. In this case, the spectral stability problem (24) is
given by two uncoupled linear difference equations for {vj,k}(j,k)∈Ln
and {wj,k}(j,k)∈Ln . The linear difference equations for {vj,k}(j,k)∈Ln are
given by

(1 + iϵγj,k)vj,k − ϵ(vj+1,k + vj−1,k + vj,k+1 + vj,k−1)

= iλvj,k, (j, k) ∈ Ln, (39)

whereas the linear difference equations for {wj,k}(j,k)∈Ln are given
by

(1 − iϵγj,k)wj,k − ϵ(wj+1,k + wj−1,k + wj,k+1 + wj,k−1)

= −iλwj,k, (j, k) ∈ Ln. (40)

Since the values of γj,k are anti-symmetric about the line or
center of the PT -symmetry, eigenvalues of (40) correspond to
the negative of the eigenvalues of (39). Therefore, it is sufficient
to consider eigenvalues of the spectral problem (39).
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Fig. 16. The real parts of eigenvalues λ as functions of ϵ at γ = 0.3 for the branch (2-2-b) in comparison with the approximated eigenvalues (dashed lines). In the left
panel three thinner (blue, green and black) solid lines are zero while in the right panel the thickest and thinnest (red and black) solid lines are zero. Here, one of the three
eigenvalue pairs is found to be real, while the other two are imaginary. In both panels, the solid and dashed lines look almost identical. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
The PT -symmetric configurations for the symmetries (S1S)
and (S2S) correspond to the cases γj,k = (−1)j+kγ and γj,k =

(−1)kγ for all (j, k) ∈ Ln, where γ ∈ R. In the first case, we shall
prove that the linear eigenvalue problem (39) includes complex
eigenvalues λ with positive real parts for every γ ≠ 0 such that
the zero equilibrium is spectrally unstable for every γ ≠ 0. In the
second case, we shall prove that the linear eigenvalue problem (39)
admits only purely imaginary eigenvalues λ if |γ | is small such that
the zero equilibrium is spectrally stable for small |γ |.

Lemma 5.1. Let γj,k = (−1)j+kγ for all (j, k) ∈ Ln with even n. Then,
the linear eigenvalue problem (39) admits n2 eigenvalues in the closed
analytical form

iλ = 1 ± 2ϵ


cos


π l

n + 1


± cos


πm
n + 1

2

−
γ 2

4
,

1 ≤ l,m ≤
n
2
, (41)

where the two plus/minus signs are independent from each other.
Consequently, there are n/2 eigenvalues with l = m, for which
Re(λ) = ϵ|γ | > 0 for every γ ≠ 0.

Proof. In the case γj,k = (−1)j+kγ , (j, k) ∈ Ln, we can use the
linear difference equations (39) twice in order to close the system
for the components vj,k with (j, k) ∈ Ln such that j + k = even.
These components correspond to the values γj,k = γ . As a result,
we obtain the extended linear difference equation
(1 − iλ)2 + ϵ2γ 2 vj,k = ϵ2


vj+2,k + vj−2,k + vj,k+2 + vj,k−2

+ 4vj,k + 2vj+1,k+1 + 2vj−1,k+1 + 2vj+1,k−1 + 2vj−1,k−1

,

(j, k) ∈ Ln, j + k = even. (42)

The linear difference equations (42) have (j, k)-independent
coefficients. Therefore, we can use the discrete Fourier transform
to solve it explicitly. However, due to the constraints j+ k = even,
we have two arrays of the corresponding variables:

VJ,K := v2J−1,2K−1, UJ,K := v2J,2K , 1 ≤ J, K ≤ N,

where N = n/2. Therefore, we rewrite the linear difference
equations (42) in the coupled form:
(1 − iλ)2 + ϵ2γ 2 VJ,K

= ϵ2

VJ+1,K + VJ−1,K + VJ,K+1 + VJ,K−1

+ 2UJ−1,K−1 + 2UJ−1,K + 2UJ,K−1 + 2UJ,K + 4VJ,K


(43)
and
(1 − iλ)2 + ϵ2γ 2UJ,K

= ϵ2

UJ+1,K + UJ−1,K + UJ,K+1 + UJ,K−1

+ 2VJ+1,K+1 + 2VJ+1,K + 2VJ,K+1 + 2VJ,K + 4UJ,K

, (44)

where 1 ≤ J, K ≤ N . The linear system (43)–(44) is equipped with
the boundary conditions

U0,K = UJ,0 = VN+1,K = VJ,N+1 = 0, 1 ≤ J, K ≤ N. (45)

Each of the Fourier harmonics VJ,K ,UJ,K ∼ eiθ J+iϕK solves the linear
system (43)–(44) with the characteristic equation in the form
(1 − iλ)2 + ϵ2γ 2

− 2ϵ2 (cos θ + cosϕ)− 4ϵ2
2

= 4ϵ4(1 + cos θ)(1 + cosϕ). (46)

Since the characteristic equation (46) is even in θ and ϕ, all four
Fourier harmonics VJ,K ,UJ,K ∼ e±iθ J±iϕK correspond to the same
value of λ. Therefore, we construct a linear combination of the four
Fourier harmonics to satisfy the first set of the boundary conditions
(45):

UJ,K = sin(θ J) sin(ϕK), 1 ≤ J, K ≤ N. (47)

If follows from the original system (39) that the second set of the
boundary conditions (45) for VN+1,K and VJ,N+1 is equivalent to the
boundary conditions

UN+1,K = −UN,K , UJ,N+1 = −UJ,N , 1 ≤ J, K ≤ N. (48)

These boundary conditions are satisfied independently by

sin

(2N + 1)θ

2


cos


θ

2


= 0,

sin

(2N + 1)ϕ

2


cos

ϕ
2


= 0.

(49)

Therefore, the values of parameters θ and ϕ are discretized as
follows:

θ =
2π l

2N + 1
, ϕ =

2πm
2N + 1

, 1 ≤ l,m ≤ N. (50)
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Extracting the first square root, we reduce the characteristic
equation (46) to the form

(1 − iλ)2 + ϵ2γ 2
− 4ϵ2 cos2

θ

2
− 4ϵ2 cos2

ϕ

2

= ±4ϵ2 cos
θ

2
cos

ϕ

2
. (51)

Regrouping the terms and extracting the second square root, the
characteristic equation (51) can now be written in the form (41).
Note thatwe count alln2 eigenvalueswith two independent square
roots. �

Lemma 5.2. Let γj,k = (−1)kγ for all (j, k) ∈ Ln with even n. Then,
the linear eigenvalue problem (39) admits n2 eigenvalues in the closed
analytical form

iλ = 1 − 2ϵ cos


π l
n + 1


± 2ϵ


cos2


πm
n + 1


−
γ 2

4
,

1 ≤ l ≤ n, 1 ≤ m ≤
n
2
. (52)

Consequently, Re(λ) = 0 for every γ ∈ (−γn, γn), where

γn := 2 cos


πn
2n + 2


.

Proof. In the case γj,k = (−1)kγ , (j, k) ∈ Ln, we can separate the
variables of the linear difference equations (39) in the form

iλ = 1 + ϵ

Λx +Λy


, vj,k = xjyk, (j, k) ∈ Ln, (53)

whereΛx is the eigenvalue of the spectral problem

Λxxj = −(xj+1 + xj−1), 1 ≤ j ≤ n, (54)

andΛy is the eigenvalue of the spectral problem

Λyyk = −(yk+1 + yk−1)+ i(−1)kγ yk, 1 ≤ k ≤ n, (55)

subject to the homogeneous Dirichlet end-point conditions. The
first problem (54) is solvedwith the discrete sine Fourier transform

Λx = −2 cos


π l
n + 1


, xj = sin


π lj

n + 1


, 1 ≤ l ≤ n. (56)

The second problem (55) has been solved in [2] using the method
similar to the proof of Lemma 5.1. For reader’s convenience, we
give a quick reconstruction of the solution here. Eliminating yk for
odd k and denoting zk = y2k for 1 ≤ k ≤ N , where N = n/2,
we obtain from (55) the linear difference equations with constant
coefficients:

(Λ2
y + γ 2)zk = zk+1 + 2zk + zk−1, 1 ≤ k ≤ N, (57)

subject to the boundary conditions z0 = 0 and zN+1 = −zN . The
spectral problem (57) is now solved with the discrete sine Fourier
transform

Λ2
y + γ 2

= 4 cos2


πm
2N + 1


,

zk = sin


2πmk
2N + 1


, 1 ≤ m ≤ N,

(58)

which satisfies both the boundary conditions z0 = 0 and zN+1 =

−zN . Extracting square roots and substituting (56) and (58) into
(53), we obtain n2 eigenvalues of the linear eigenvalue problem
(39) in the explicit form (52). �

5.2. Spectral stability of the PT -symmetric solutions

At ϵ = 0, we have |φ
(0)
j,k | = 1 for (j, k) ∈ S and φ(0)j,k = 0 for

(j, k) ∈ S∗. The limiting operator H (0) given by (38) for ϵ = 0 has
two semi-simple eigenvalues µ = 0 and µ = −2 of multiplicity
four and a semi-simple eigenvalue µ = 1 of multiplicity 2n2

− 8.
On the other hand, the spectral stability problem (24) for ϵ = 0
has the zero eigenvalue λ = 0 of geometric multiplicity four and
algebraic multiplicity eight and a pair of semi-simple eigenvalues
λ = ±i of multiplicity n2

− 4.
When ϵ is nonzero but small, the splitting of the zero eigenvalue

λ = 0 is the same as that on the elementary cell S if the
splitting occurs in the first-order perturbation theory. However,
unless γj,k = 0 for all (j, k) ∈ S∗, the splitting of the semi-
simple eigenvalues λ = ±i is non-trivial and can possibly lead to
instability, as is shown in the analysis of [3].

In order to study the splitting of the semi-simple eigenvalues
λ = ±i for small but nonzero ϵ, we expand ξ = ξ(0)+ϵξ(1)+O(ϵ2)
and λ = λ(0) + ϵλ(1) + O(ϵ2) where λ(0) = ±i, and obtain the
perturbation equations

H (0)ξ(0) = iλ(0)σ ξ(0), (59)

and

(H (1)
+ iG)ξ(0) + H (0)ξ(1) = iλ(0)σ ξ(1) + iλ(1)σ ξ(0). (60)

Since iλ(0) ∈ R, the operator (H (0)
− iλ(0)σ) is self-adjoint, and

we denote the spanning set for ker(H (0)
− iλ(0)σ) by {ψj,k}(j,k)∈S∗ .

Then, ξ(0) =


(j,k)∈S∗ cj,kψj,k satisfies (59). Projection of (60) to
ker(H (0)

− iλ(0)σ) yields the matrix eigenvalue problem

iλ(1)Dc = Kc, (61)

where

DP (j1,k1),P (j2,k2) = ⟨ψj1,k1 , σψj2,k2⟩,

KP (j1,k1),P (j2,k2) = ⟨ψj1,k1 , (H
(1)

+ iG)ψj2,k2⟩,

for (j1, k1), (j2, k2) ∈ S∗. The bijective mapping P : S∗
→

{1, 2, . . . , n2
− 4} is defined by

P (j, k) =



(j − 1)n + k,

(j − 1)n + k <
n
2

− 1

n +

n
2

(j − 1)n + k − 2,n
2

− 1

n +

n
2

+ 1 < (j − 1)n + k <
n2

2
+

n
2

(j − 1)n + k − 4,

(j − 1)n + k >
n2

2
+

n
2

+ 1

(62)

assuming that the lattice Ln is traversed in the order

(1, 1), (1, 2), . . . , (1, n), (2, 1), (2, 2), . . . , (2, n), . . . ,
(n, 1), (n, 2), . . . , (n, n).

For iλ(0) = 1, the eigenvector ψj,k has the only nonzero block
(1, 0)T atP (j, k)th positionwhich corresponds to position (j, k) on
the lattice. Therefore, we have D = In2−4 and

KP (j1,k1),P (j2,k2) =

iγj1,k1 , (j1, k1) = (j2, k2)
−1, |j1 − j2| + |k1 − k2| = 1
0, otherwise.

(63)
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For iλ(0) = −1, the eigenvector ψj,k has the only nonzero block
(0, 1)T atP (j, k)th position, thenD = −In2−4 and K is the complex
conjugate of K given by (63). Since the values of γj,k are anti-
symmetric about the line or center of the PT -symmetry, the
eigenvalues of the reduced eigenvalue problem (61) for iλ(0) = −1
are negative of those for iλ(0) = 1.

The PT -symmetric configurations for the symmetries (S1S)
and (S2S) correspond to the cases γj,k = (−1)j+kγ and γj,k =

(−1)kγ for all (j, k) ∈ Ln, where γ ∈ R. In the first case, we
shall prove that the eigenvalues λ(1) of the reduced eigenvalue
problem (61) include at least one pair of real eigenvalues for every
γ ≠ 0. In the second case, we shall show numerically that the
eigenvalues λ(1) of the reduced eigenvalue problem (61) remain
purely imaginary for sufficiently small γ ≠ 0.

Lemma 5.3. Let γj,k = (−1)j+kγ for all (j, k) ∈ Ln and let K be
given by (63). If we define A = Re(K) and B = Im(K |γ=1) then A and
B anti-commute, i.e. AB = −BA.

Proof. By inspecting the definition of matrices in (63) with γj,k =

(−1)j+kγ for all (j, k) ∈ Ln, we observe that A is symmetric, B is
diagonal, and B2

= In2−4. In calculating AB and BA, the ith row
of A is multiplied by ith entry in the diagonal of B, while the ith
column of A is multiplied by ith entry in the diagonal of B. In the
lattice S∗

⊂ Ln, each site at (j1, k1) with γj1,k1 = γ is surrounded
by sites (j2, k2) with γj2,k2 = −γ and vice versa, so that each
nonzero entry in A must sit in a position (P (j1, k1),P (j2, k2)),
where γj1,k1 = −γj2,k2 . Hence, we verify that AB = −BA. �

Lemma 5.4. Under the assumptions of Lemma 5.3, A has a zero
eigenvalue of multiplicity at least n − 2.

Proof. At first, we assume the lattice is Ln and consider the spectral
problem Ãu = λu, where

Ã(j1−1)n+k1,(j2−1)n+k2 =


−1, |j1 − j2| + |k1 − k2| = 1
0, otherwise (65)

for (j1,2, k1,2) ∈ Ln. The spectral problem represents the linear
difference equations with constant coefficients:

− uj,k+1 − uj,k−1 − uj+1,k − uj−1,k = λuj,k, (j, k) ∈ Ln, (66)

which are closed with the Dirichlet end-point conditions. Similar
to Lemmas 5.1 and 5.2, this spectral problem can be solved with
the double discrete Fourier transform, from which we obtain the
eigenvalues

λ(l,m) = −2 cos


lπ
n + 1


− 2 cos


mπ
n + 1


, 1 ≤ l,m ≤ n

and the eigenvectors

uj,k(l,m) = sin


jlπ
n + 1


sin


kmπ
n + 1


, 1 ≤ l,m ≤ n.

Thus, the spectral problem (66) has n2 eigenvalues, among which
n eigenvalues are zero and they correspond to l + m = n + 1.

Now, the spectral problem Av = λv is actually posed in S∗
:=

Ln\S, which is different from the spectral problem (66) by adding
four constraints uj,k = 0 for (j, k) ∈ S. A linear span of n linearly
independent eigenvectors for the zero eigenvalue of multiplicity n
satisfies the four constraints at the subspace, whose dimension is
at least n − 4. In fact, it can be directly checked that

uj,k(l, n + 1 − l) = (−1)k+1 sin


jlπ
n + 1


sin


klπ
n + 1


= −un+1−j,n+1−k(l, n + 1 − l)
Fig. 17. The threshold γc versus even n for existence of stable eigenvalues in the
reduced eigenvalue problem (61) with γj,k = (−1)kγ for all (j, k) ∈ Ln . Accounting
also for numerical errors, here we call a numerically computed eigenvalue stable if
the absolute value of its real part is less than 10−7 .

for any 1 ≤ j, k, l ≤ n. In particular, we notice that the n×4matrix
consisting of uj,k(l, n + 1 − l), where 1 ≤ l ≤ n and (j, k) ∈ S, is of
rank 2. Therefore, linear combinations of {u(l, n + 1 − l)}nl=1 that
satisfy the constraints u(j, k) = 0 for (j, k) ∈ S form a subspace of
dimension n − 2 for v and the lemma is proved. �

Lemma 5.5. Let γj,k = (−1)j+kγ for all (j, k) ∈ Ln, D = In2−4, and
K be given by (63). Then, there is at least one pair of real eigenvalues
λ(1) of the reduced eigenvalue problem (61) for every γ ≠ 0.

Proof. By Lemma 5.3, we can write K = A+ iγ Bwhere B2
= In2−4

and AB = −BA. Squaring the reduced eigenvalue problem (61), we
obtain

K 2c =

A2

− γ 2In2−4

c = −(λ(1))2c.

Since A is symmetric, eigenvalues λ(1) are all purely imaginary
for γ = 0. Nonzero eigenvalues λ(1) remain nonzero and purely
imaginary for sufficiently small γ ≠ 0, since K 2 is symmetric
and real. On the other hand, by Lemma 5.4, A always has a zero
eigenvalue (n ≥ 4), hence K 2 has a negative eigenvalue −γ 2,
which corresponds to a pair of real eigenvalues λ(1) = ±γ . �

Coming back to the branches (1-1), (1-2), and (1-3) of the
PT -symmetric configurations (S1S) studied in Section 2.1, they
correspond to the case γj,k = (−1)j+kγ for all (j, k) ∈ Ln.
By Lemma 5.5, the reduced eigenvalue problem (61) has at least
one pair of real eigenvalues λ(1). Therefore, all PT -symmetric
configurations are unstable on the truncated square lattice Ln
because of the sites in the set S∗. In addition, all the configurations
are also unstable because of the sites in the central cell S, as
explained in Section 4.1. Note that the instability on the set S∗

is originated from the instability of the zero equilibrium on Ln
prescribed by Lemma 5.1.

For the branches (2-1) and (2-2) of the PT -symmetric
configurations (S2S) studied in Section 2.2, they correspond to
γj,k = (−1)kγ for all (j, k) ∈ Ln. We have checked numerically for
all values of n up to n = 20 that the reduced eigenvalue problem
(61) has all eigenvalues λ(1) on the imaginary axis, at least for
small values of γ . Therefore, the stability of the zero equilibrium
prescribed by Lemma 5.2 on Ln persists on the set S∗, although we
are not able to show this analytically.

Let γc(n) be the largest value of |γ |, for which the eigenvalues
of K are purely real. Fig. 17 shows how γn changes with respect
to even n from numerical computations. It is seen from the figure
that γc(n) decreases towards 0 as n grows. The latter property
agrees with the analytical predictions in [24] for unbounded PT -
symmetric lattices with spatially extended gains and losses.
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Fig. 18. An example of the branch (2-2-a) on the 20-by-20 square lattice with γ1 = −γ2 = 0.0001 < γc(20) ≈ 0.0003 and ϵ = 0.02. In the bottom right panel, we see
eigenvalues λ of the spectral problem (24) are all on the imaginary axis, implying spectral stability of the stationary solution.
Besides the eigenvalue computations on the sites of S∗, one
needs to add eigenvalue computations on the sites of S performed
in Section 4.2. It follows from the results reported there that only
the branch (2-2-a) is thus potentially stable, see Fig. 15. The branch
of PT -symmetric configurations remains stable on the extended
square lattice Ln, provided |γ | < γc(n).

In Fig. 18, we give an example of the stable PT -symmetric
solution on the 20-by-20 square lattice that continues from the
branch (2-2-a) on the elementary cell S. When ϵ = 0, the phases
of the solution on S in (2-2-a) are {θ1, π − θ1,−θ1, θ1 −π}, where
θ1 =

1
2 arcsin(γ ), representing a discrete soliton in the form of an

anti-symmetric (sometimes, called twisted) localized mode [16] if
γ = 0. When ϵ = 0.02 is small, we can observe on Fig. 18 that
the solution is still close to the limiting solution at ϵ = 0 in terms
of amplitude and phase. Besides, the spectrum in the bottom right
panel of Fig. 18 verifies our expectation about its spectral stability,
bearing eigenvalues solely on the imaginary axis.

Finally, Fig. 19 provides some prototypical examples of the
numerical evolution of the branches (1-1-a) and (2-1-a), which
correspond to the PT -symmetric configurations of Figs. 3 and 6.
Both configurations are unstable, therefore, the figure illustrates
the development of these instabilities. In the (1-1-a) example (top
panels), the amplitudes of sites on (11, 11) and (10, 10) increase
rapidly but those on (10, 11) and (11, 10) decrease. In the (2-1-a)
example (bottom panels), the situation is reversed and sites on
(11, 11) and (10, 11) grow rapidly while sites on (10, 10) and
(11, 10) gradually decay. Both of these time evolutions are also
intuitive, as the growth reflects the dynamics of the central sites
bearing gain, while the decay reflects that of the ones bearing loss.
5.3. Summary on the stability results in truncated lattice

We examined the spectral stability of the solutions obtained
in Section 3 in the truncated lattice. We notice that the splitting
of the zero eigenvalues (corresponding to the sites in the center
cell S) is the same as that in the single cell (shown in Section 4),
up to O(ϵ). On the other hand, the splitting of the eigenvalues
λ = ±i (corresponding to the sites in S∗) is found to be related
to the stability of the zero equilibrium on Ln. To be more specific,

• For the symmetry (S1S) with γj,k = γ (−1)j+k, the splitting
of the eigenvalues λ = ±i brings an eigenvalue pair with
nonzero real parts and thus leads to spectral instability of all
PT -symmetric configurations with γ ≠ 0.

• For the symmetry (S2S) with γj,k = γ (−1)k, the eigenvalues
remain on the imaginary axis if |γ | is sufficiently small. As a
result, the branch (2-2-a) of the PT -symmetric configurations,
which is spectrally stable on the four sites in S, remains
spectrally stable on Ln for small γ ≠ 0.

6. Conclusion

In the present work, we have provided a systematic per-
spective on discrete soliton and vortex configurations in the
two-dimensional square lattices bearing PT -symmetry. Both the
existence and the stability features of the PT -symmetric
stationary states were elucidated in the vicinity of a suitable anti-
continuum limit, which corresponds to the large propagation con-
stant in optics. Interestingly, while discrete vortex solutions were
identified, it was never possible to stabilize the PT -symmetric
vortex configurations in the square lattices considered herein. On
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Fig. 19. The top panels show an example of the dynamics of the branch (1-1-a) on the 20-by-20 square lattice with γ1 = −γ2 = 0.7 and ϵ = 0.1. The bottom panels show
similar dynamics for the branch (2-1-a) with γ1 = −γ2 = 0.8 and ϵ = 0.1. In the right column, we plot the total density on the 20×20 lattice which grows rapidly in both
examples, as a result of instability.
the other hand, although stationary states extending discrete soli-
ton configurations were found generally to be also unstable, we
found one branch of potentially stable PT -symmetric stationary
states, at least for sufficiently small values of γ .

This work paves the way for numerous additional explorations.
For instance, it may be relevant to extend the considerations of
the square lattice to those of hexagonal or honeycomb lattices.
Prototypical configurations in the PT -symmetric settings have
been explored in [14]. Such a study of non-square lattices may
be of particular interest given that vortex states may manifest
unexpected stability features in such lattices in the absence of
gain and loss. One such example is that for focusing nonlinearities
higher charge vortices are more robust than the lower charge
ones [25]. In these lattices (as well as in the square lattice), it may
also be relevant to explore systematic numerical continuations
over the gain–loss parameter γ for fixed values of ϵ, since γ = 0
refers to the Hamiltonian case, where stable vortex solutions are
quite common, see, e.g. [16,26].

Another relevant possibility is to extend the present consider-
ation to a dimer lattice model, similarly to what was considered
e.g. in [13]. The numerical considerations of [13] suggest that vor-
tices may be stable in suitable parametric intervals in such a set-
ting.

Lastly, itmay be of interest to extend the present considerations
also to three-dimensional settings, generalizing analysis of the
corresponding Hamiltonian model of [23] (including cubes and
diamonds) and exploring their stability properties.
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