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Abstract. We consider a nonlinear Schrödinger (NLS) equation on a spa-
tially extended periodic quantum graph. With a multiple scaling expan-
sion, an effective amplitude equation can be derived in order to describe
slow modulations in time and space of an oscillating wave packet. Using
Bloch wave analysis and Gronwall’s inequality, we estimate the distance
between the macroscopic approximation which is obtained via the am-
plitude equation and true solutions of the NLS equation on the periodic
quantum graph. Moreover, we prove an approximation result for the am-
plitude equations which occur at the Dirac points of the system.
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1. Introduction

A quantum graph is a network of bonds (or edges) connected at the vertices.
Such systems appear as models for the description of free electrons in organic
molecules, in the study of waveguides, photonic crystals, or Anderson local-
ization, or as limit on shrinking thin wires [31]. Quantum graphs are used in
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mesoscopic physics to obtain a theoretical understanding of nanotechnologi-
cal objects such as nanotubes or graphen, cf. [13,15,16]. A recent monograph
[6] gives a good introduction to the mathematics and physics of quantum
graphs.

In the linear theory, partial differential equations (PDEs) are defined on
the quantum graph according to the following two ingredients. First, a differen-
tial operator acts on functions defined on the bonds. Second, certain boundary
conditions are applied to the functions at the vertices. In particular, continuity
of functions and conservation of flows through the vertices are expressed by
the so called Kirchhoff boundary conditions.

Here we are interested in nonlinear PDEs posed on an infinitely extended
periodic chain of identical quantum graphs. Nonlinear PDEs on quantum
graphs have been only considered recently [18] mostly in the context of un-
bounded graphs with finitely many vertices. Variational results on existence of
ground states on such unbounded graphs were obtained in a series of papers
[2–5].

It is the purpose of this paper to derive and justify an effective ampli-
tude equation for the description of slow modulations in time and space of an
oscillating wave packet. As a PDE toy model on the periodic quantum graph,
we consider a nonlinear Schrödinger (NLS) equation. The effective amplitude
equation also has the form of a NLS equation but on a homogeneous space.
In what follows, we refer to these two NLS equations as to the original system
and to the amplitude equation.

Hence, we consider the following NLS equation on the periodic quantum
graph as the original system,

i∂tu + ∂2
xu + |u|2u = 0, t ∈ R, x ∈ Γ, (1)

where Γ is the quantum graph and u : R × Γ → C. The Kirchhoff boundary
conditions at the vertices are defined below in (2)–(3).

In order to explain our approach without too many technical details, we
develop our subsequent presentation to one special quantum graph shown in
Fig. 1. However, our approach can be extended to other quantum graphs, as
discussed in Sect. 7.

The spectral problems associated with the linear Schrödinger operator on
the periodic quantum graph of Fig. 1 and its modifications have been recently
studied in the literature [15–17]. Our work is different in the sense that we are
studying the time evolution (Cauchy) problem for the nonlinear version of the
Schrödinger equation associated with localized initial data. In the recent work
[24], we have studied the stationary NLS equation on the periodic quantum

Figure 1. The basic cell Γ0 (left) of the periodic quantum
graph Γ (right)
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graph Γ and constructed two families of localized bound states by reducing
the differential equations to the discrete maps.

The problem of localization in the periodic setting has been a fascinating
topic of research with several effective amplitude equations appearing in this
context [20]. In particular, tight-binding approximation [1,23,25] and coupled-
mode approximation [9,22,29] were derived and justified in the limit of large
and small periodic potentials respectively. We are addressing here the enve-
lope approximation, which is the most universal approximation of modulated
wave packets in nonlinear dispersive PDEs [14]. The envelope approximation
provides a homogenization of the NLS equation (1) on the periodic quantum
graph Γ with an effective homogeneous NLS equation derived for a given wave
packet.

Justification of the homogeneous NLS equation in the context of nonlinear
Klein–Gordon equations with smooth spatially periodic coefficients has been
carried out in the work [7]. A modified analytical approach with a similar result
was developed in Section 2.3.1 in [20] in the context of the Gross–Pitaevskii
equation with a smooth periodic potential. Since the periodic quantum graph
introduces singularities in the effective potential (by means of the Kirchhoff
boundary conditions), it is an open question to be inspected here if the ana-
lytical techniques from [7,20] can be made applicable to the NLS equation (1)
on the periodic quantum graph Γ. The answer to this question turns out to be
positive. With the same technique involving Bloch wave analysis and Gron-
wall’s inequality, we prove estimates on the distance between the macroscopic
approximation via the amplitude equation and the true solutions of the origi-
nal system. Moreover, we explain that the same technique can also be used to
prove an approximation result for the amplitude equations which occur at the
Dirac points associated with the periodic graph Γ. The amplitude equations
at the Dirac points take the form of the coupled-mode (Dirac) system.

The paper is organized as follows. The main results are described in
Sect. 2, after introducing the spectral problem associated with the periodic
quantum graph on Fig. 1. Local existence and uniqueness of solutions of the
Cauchy problem for the NLS equation (1) is discussed in Sect. 3. The Bloch
transform is introduced and studied in Sect. 4. In Sect. 5, we derive the effec-
tive amplitude equation, construct an improved approximation, and estimate
the residual for this improved approximation. The justification of the ampli-
tude equation is developed in Sect. 6. Discussion of other periodic quantum
graphs is given in the concluding Sect. 7.

Notation We denote with Hs(R) the Sobolev space of s-times weakly
differentiable functions on the real line whose derivatives up to order s are in
L2(R). The norm ‖u‖Hs for u in the Sobolev space Hs(R) is equivalent to the
norm ‖(I − ∂2

x)s/2u‖L2 in the Lebesgue space L2(R). Throughout this paper,
many different constants are denoted by C if they can be chosen independently
of the small parameter 0 < ε � 1.
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2. Main result

2.1. The periodic quantum graph

The periodic quantum graph Γ shown on Fig. 1 can be expressed as

Γ = ⊕n∈ZΓn, with Γn = Γn,0 ⊕ Γn,+ ⊕ Γn,−,

where Γn,0 represents the horizontal link of length π between the circles and
Γn,± represent the upper and lower semicircles of the same length π, for n ∈
Z. In what follows, Γn,0 is identified isometrically with the interval In,0 =
[2πn, 2πn+π] and Γn,± are identified with the intervals In,± = [2πn+π, 2π(n+
1)]. For a function u : Γ → C, we denote the part on the interval In,0 associated
to Γn,0 with un,0 and the parts on the intervals In,± associated to Γn,± with
un,±.

The second-order differential operator ∂2
x appearing on the right-hand

side of the NLS equation (1) is defined under certain boundary conditions at
the vertex points {x = nπ : n ∈ Z}. We use so called Kirchhoff boundary
conditions, which are given by the continuity of the functions at the vertices{

un,0(t, 2πn + π) = un,+(t, 2πn + π) = un,−(t, 2πn + π),
un+1,0(t, 2π(n + 1)) = un,+(t, 2π(n + 1)) = un,−(t, 2π(n + 1)), (2)

and the continuity of the fluxes at the vertices{
∂xun,0(t, 2πn + π) = ∂xun,+(t, 2πn + π) + ∂xun,−(t, 2πn + π),
∂xun+1,0(t, 2π(n + 1)) = ∂xun,+(t, 2π(n + 1)) + ∂xun,−(t, 2π(n + 1)). (3)

Remark 2.1. The symmetry constraint un,+(t, x) = un,−(t, x) is an invariant
reduction of the NLS equation (1) provided the initial data of the correspond-
ing Cauchy problem satisfies the same reduction. In the case of symmetry
reduction, the boundary conditions (2) and (3) can be simplified as follows:{

un,0(t, 2πn + π) = un,+(t, 2πn + π),
un+1,0(t, 2π(n + 1)) = un,+(t, 2π(n + 1)) (4)

and {
∂xun,0(t, 2πn + π) = 2∂xun,+(t, 2πn + π),
∂xun+1,0(t, 2π(n + 1)) = 2∂xun,+(t, 2π(n + 1)). (5)

In this way, the NLS equation (1) on the periodic graph Γ becomes equivalent
to the NLS equation with a singular periodic potential.

The scalar PDE problem on the periodic quantum graph Γ is transferred
to a vector-valued PDE problem on the real axis by introducing the functions

u0(x) =
{

un,0(x), x ∈ In,0,
0, x ∈ In,±,

n ∈ Z, (6)

and

u±(x) =
{

un,±(x), x ∈ In,±,
0, x ∈ In,0,

n ∈ Z. (7)

We introduce sets I0 and I± by

I0 =
⋃
n∈Z

In,0 = supp(u0) and I± =
⋃
n∈Z

In,± = supp(u±). (8)
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We collect the functions u0 and u± in the vector U = (u0, u+, u−) and rewrite
the evolutionary problem (1) as

i∂tU + ∂2
xU + |U |2U = 0, t ∈ R, x ∈ R\{kπ : k ∈ Z}, (9)

subject to the conditions (2)–(3) at the vertex points x ∈ {kπ : k ∈ Z}, where
the cubic nonlinear term stands for the vector |U |2U = (|u0|2u0, |u+|2u+,
|u−|2u−).

2.2. The Floquet–Bloch spectrum

The spectral problem

ωW = −∂2
xW, x ∈ R\{kπ : k ∈ Z}, (10)

is obtained by inserting U(t, x) = W (x)eiωt into the linearization associated
to the NLS equation (9). The components of W = (w0, w+, w−) satisfy the
conditions (2)–(3) and have their supports in (I0, I+, I−). The eigenfunctions
W can be represented in the form of the so-called Bloch waves

W (x) = ei�xf(�, x), �, x ∈ R, (11)

where f(�, ·) = (f0, f+, f−)(�, ·) is a 2π-periodic function for every � ∈ R. Since
these functions satisfy the continuation conditions

f(�, x) = f(�, x + 2π), f(�, x) = f(� + 1, x)eix, �, x ∈ R, (12)

we can restrict the definition of f(�, x) to x ∈ T2π = R/(2πZ) and � ∈ T1 =
R/Z. The torus T2π is isometrically parameterized with x ∈ [0, 2π] and the
torus T1 with � ∈ [−1/2, 1/2], where the endpoints of the intervals are identified
to be the same for both tori.

Hence, f can be found as solution of the eigenvalue problem

− (∂x + i�)2f = ω(�)f, x ∈ T2π, (13)

subject to the boundary conditions{
f0(�, π) = f+(�, π) = f−(�, π),
f0(�, 0) = f+(�, 2π) = f−(�, 2π) (14)

and {
(∂x + i�)f0(�, π) = (∂x + i�)f+(�, π) + (∂x + i�)f−(�, π),
(∂x + i�)f0(�, 0) = (∂x + i�)f+(�, 2π) + (∂x + i�)f−(�, 2π). (15)

The functions f0(�, ·) and f±(�, ·) have supports in I0,0 = [0, π] ⊂ T2π and
I0,± = [π, 2π] ⊂ T2π. The boundary conditions (14)–(15) are derived from
(2)–(3) by using the 2π-periodicity of the eigenfunction f(�, ·). Note that
ei·xf(·, x) and ω(·) are 1-periodic functions on T1. The extended variable
U = (u0, u+, u−) is needed to give a meaning to ei�x which is defined for
x ∈ R, but not for x ∈ Γ.

The spectrum of the spectral problem (10) consists of two parts [15,16,
24]. One part is represented by the sequence of eigenvalues at {m2}m∈N of
infinite multiplicity. For a fixed m ∈ N, a bi-infinite sequence of eigenfunctions
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Figure 2. The spectral bands ω of the spectral problem (13)
plotted versus the Bloch wave number � for the periodic quan-
tum graph Γ

(Wm,k)k∈Z of the spectral problem (10) exists and is supported compactly in
each circle with the explicit representation:

wm,k
n,0 (x) = 0, wm,k

n,+ (x) = −wm,k
n,−(x) = δnk sin(m(x − 2πk)), n ∈ Z. (16)

The second part in the spectrum of the spectral problem (10) is represented
by the union of a countable set of spectral bands, which correspond to the real
roots ρ1,2 of the transcendental equation ρ2 − tr(M)(ω) + 1 = 0. Here

tr(M)(ω) :=
1
4

[
9 cos(2π

√
ω) − 1

]
(17)

is the trace of the monodromy matrix M associated with the linear differ-
ence equation obtained after solving the differential equation (10) subject to
the conditions (2)–(3), cf. [10,24]. Real roots are obtained when tr(M)(ω) ∈
[−2, 2].

The corresponding eigenfunctions of the spectral problem (10) are dis-
tributed over the entire periodic graph Γ and satisfy the symmetry constraints
wn,+(x) = wn,−(x), n ∈ Z and the constrained boundary conditions (4)–(5).

The spectral bands of the periodic eigenvalue problem (13) are shown on
Fig. 2. The flat bands at ω = m2, m ∈ N correspond to the eigenvalues of
the spectral problem (10) of infinite algebraic multiplicity. It is clear from the
explicit representation (16) that the corresponding eigenfunctions can also be
written in the Bloch wave form (11) associated with the Bloch wave number
� ∈ T1.

Let us confirm the spectral properties suggested by Fig. 2. First, eigen-
values of infinite multiplicity at ω = m2, m ∈ N, are at the end points of the
spectral bands, because tr(M)(m2) = 2. Second, since

d

dω
tr(M)(ω)|ω=m2 = − 9π

4
√

ω
sin(2π

√
ω)|ω=m2 = 0,
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the two adjacent spectral bands of σ(−∂2
x) overlap at ω = m2 without a spec-

tral gap. Coincidentally, these so-called Dirac points of the dispersion relation
happen to occur at the eigenvalues of infinite multiplicities. Finally, the two
adjacent spectral bands at tr(M)(ω) = −2 do not overlap and the spectral
band has a nonzero length because tr(M)(ω) has a minimum at ω = m2

4 with
m ∈ Nodd and tr(M)(m2

4 ) = − 5
2 < −2.

Let us now define the L2-based spaces, where the eigenfunctions of the
periodic eigenvalue problem (13) are properly defined. For fixed � ∈ T1, we
define

L2
Γ := {Ũ = (ũ0, ũ+, ũ−) ∈ (L2(T2π))3 : supp(ũj) = I0,j , j ∈ {0,+,−}}

and

H2
Γ(�) :={Ũ ∈ L2

Γ : ũj ∈ H2(I0,j), j ∈ {0,+,−}, (14)−(15) are satisfied},

equipped with the norm

‖Ũ‖H2
Γ(�) =

(
‖ũ0‖2

H2(I0,0)
+ ‖ũ+‖2

H2(I0,+) + ‖ũ−‖2
H2(I0,−)

)1/2

.

The parameter � is defined in H2
Γ(�) by means of the boundary conditions

(14)–(15). We obtain the following elementary result.

Lemma 2.2. For fixed � ∈ T1, the operator L̃(�) := −(∂x+i�)2 is a self-adjoint,
positive semi-definite operator in L2

Γ.

Proof. Using the conditions (14)–(15), we find for every f(�, ·), g(�, ·) ∈ H2
Γ(�)

and every � ∈ T1:

〈L̃(�)f, g〉L2
Γ

=
∫ 2π

0

(∂x + i�)f(�, x) · (∂x + i�)g(�, x)dx

−
[
∂xf0(�, π) + i�f0(�, π)

]
g0(�, π)

+
[
∂xf0(�, 0) + i�f0(�, 0)

]
g0(�, 0)

−
[
∂xf+(�, 2π) + i�f+(�, 2π)

]
g+(�, 2π)

+
[
∂xf+(�, π) + i�f+(�, π)

]
g+(�, π)

−
[
∂xf−(�, 2π) + i�f−(�, 2π)

]
g−(�, 2π)

+
[
∂xf−(�, π) + i�f−(�, π)

]
g−(�, π)

=
∫ 2π

0

(∂x + i�)f(�, x) · (∂x + i�)g(�, x)dx.

Using another integration by parts with the conditions (14)–(15), we confirm
that

〈L̃(�)f, g〉L2
Γ

= 〈f, L̃(�)g〉L2
Γ
,

Hence, L̃(�) is self-adjoint for every � ∈ T1. Since

〈L̃(�)f, f〉L2
Γ

=
∫ 2π

0

(∂x + i�)f · (∂x + i�)fdx ≥ 0,

the operator L̃(�) is positive semi-definite. �
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O(1/ε)

O(ε)

cp

cg

Figure 3. A schematic representation of the asymptotic so-
lution (19)–(20) to the NLS equation (1) on the periodic quan-
tum graph Γ. The envelope advances with the group velocity
cg and the underlying carrier wave advances with the phase
velocity cp

By Lemma 2.2 and the spectral theorem for self-adjoint operators, cf. [26],
for each � ∈ T1 there exists a Schauder base {f (m)(�, ·)}m∈N of L2

Γ consisting
of eigenfunctions of L̃(�) with positive eigenvalues {ω(m)(�)}m∈N ordered as
ω(m)(�) ≤ ω(m+1)(�). By construction, the Bloch wave functions satisfy the
continuation properties (12). They also satisfy the orthogonality and normal-
ization relations:

〈f (m)(�, ·), f (m′)(�, ·)〉L2
Γ

= δm,m′ , � ∈ T1. (18)

Note that we use superscripts for the count of the spectral bands, because the
subscripts in f

(m)
j (�, x), j ∈ {0,+,−} are reserved to indicate the component

of f (m)(�, x) for x ∈ I0,j .

2.3. The effective amplitude equation

Slow modulations in time and space of a small-amplitude modulated Bloch
mode are described by the formal asymptotic expansion

U(t, x) = εΨnls(t, x) + higher-order terms, (19)

with
εΨnls(t, x) = εA(T,X)f (m0)(�0, x)ei�0xe−iω(m0)(�0)t, (20)

where 0 < ε � 1 is a small perturbation parameter, T = ε2t, X = ε(x − cgt),
and A(T,X) ∈ C is the wave amplitude. The parameter cg := ∂�ω

(m0)(�0)
is referred to as the group velocity associated with the Bloch wave and it
corresponds to the velocity of the wave packet propagation. The group velocity
is different from the phase velocity cp := ω(m0)(�0)/�0, which characterizes
movement of the carrier wave inside the wave packet. Figure 3 shows the
characteristic scales of the wave packet given by the asymptotic expansion
(19) with (20).
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Formal asymptotic expansions show that at the lowest order in ε, the wave
amplitude A satisfies the following cubic NLS equation on the homogeneous
space:

i∂T A +
1
2
∂2

� ω(m0)(�0)∂2
XA + ν|A|2A = 0, (21)

where the cubic coefficient is given by

ν =
‖f (m0)(�0, ·)‖4

L4
Γ

‖f (m0)(�0, ·)‖2
L2

Γ

. (22)

Mathematical justification of the effective amplitude equation (21) by means
of the error estimates for the original system (9) is the main purpose of this
work. The approximation result is given by the following theorem.

Theorem 2.3. Pick m0 ∈ N and �0 ∈ T1 such that the following non-resonance
condition is satisfied:

ω(m)(�0) 
= ω(m0)(�0), for every m 
= m0. (23)

Then, for every C0 > 0 and T0 > 0, there exist ε0 > 0 and C > 0 such that for
all solutions A ∈ C(R,H3(R)) of the effective amplitude equation (21) with

sup
T∈[0,T0]

‖A(T, ·)‖H3 ≤ C0

and for all ε ∈ (0, ε0), there are solutions U ∈ C([0, T0/ε2], L∞(R)) of the
original system (9) satisfying the bound

sup
t∈[0,T0/ε2]

sup
x∈R

|U(t, x) − εΨnls(t, x)| ≤ Cε3/2, (24)

where εΨnls is given by (20).

Remark 2.4. Thanks to the global well-posedness and integrability of the cu-
bic NLS equation (21) in one space dimension [8,30], a global solution A ∈
C(R,Hs(R)) for every integer s ≥ 0 exists and satisfies the bound

sup
T∈[0,T0]

‖A(T, ·)‖Hs ≤ C

for every T0 > 0, where C is T0-independent.

Remark 2.5. As it follows from the spectral bands shown on Fig. 2, it is clear
that the non-resonance assumption (23) is satisfied for every m0 ∈ N and
�0 
= 0 and it fails for every m0 ∈ N and �0 = 0 with the exception of the
lowest spectral band.

Remark 2.6. The approximation result of Theorem 2.3 should not be taken
for granted. There exists a number of counterexamples [27,28], where a for-
mally correctly derived amplitude equation makes wrong predictions about the
dynamics of the original system.
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Remark 2.7. The new difficulty in the proof of Theorem 2.3 on the periodic
quantum graph Γ comes from the vertex conditions (2)–(3), which have to
be incorporated into the functional analytic set-up from [7,20] used for the
derivation of the amplitude equation (21). Since the NLS equation (1) only
contains cubic nonlinearities, the proof of Theorem 2.3 does not require near-
identity transformations and is based on a simple application of Gronwall’s
inequality.

2.4. The amplitude equations at the Dirac points

Near Dirac points, which correspond to m0 ∈ N and �0 = 0 on Fig. 2 with the
exception of the lowest spectral band, see Remark 2.5, the cubic NLS equation
(21) cannot be justified. However, we can find a coupled-mode (Dirac) system,
as it is done for smooth periodic potentials (see Section 2.2.1 in [20]). Eigen-
values of infinite multiplicities appearing as the flat bands in Fig. 2 represent
an obstacle in the standard justification analysis.

To overcome the obstacle, we can consider solutions of the original sys-
tem (9) which satisfy the symmetry constraint un,+(t, x) = un,−(t, x), see
Remark 2.1. In this way, all flat bands shown on Fig. 2 disappear as they
violate the symmetry constraint.

Figure 4 shows the spectral bands of the spectral problem (13) under the
symmetry constraint un,+ = un,−. The flat bands are removed due to the sym-
metry constraints. Near the Dirac points, we can now justify the coupled-mode
(Dirac) system by using the analysis developed in the proof of Theorem 2.3.

To be specific, we consider an intersection point of the two spectral bands
at � = 0, as per Figure 4, such that ω(2m0)(0) = ω(2m0+1)(0) for some fixed

Figure 4. The spectral bands ω of the spectral problem (13)
plotted versus the Bloch wave number � for the periodic quan-
tum graph Γ under the symmetry constraint un,+ = un,−. The
intersection points of the spectral curves at � = 0 are called
Dirac points
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m0 ∈ N. We relabel these two bands, and introduce

ω+(�) =
{

ω(2m0)(�), for � ≤ 0,
ω(2m0+1)(�), for � > 0,

(25)

and

ω−(�) =
{

ω(2m0+1)(�), for � ≤ 0,
ω(2m0)(�), for � > 0.

(26)

We denote the associated eigenfunctions with f+(�, x) and f−(�, x). In order
to derive the Dirac system we make the ansatz

εΨdirac(t, x) = εA+(T,X)f+(0, x)e−iω+(0)t + εA−(T,X)f−(0, x)e−iω−(0)t,
(27)

where T = ε2t, X = ε2x, and A±(T,X) ∈ C. Formal asymptotic expansions
show that at the lowest order in ε, the wave amplitudes A± satisfy the cubic
Dirac system on the homogeneous space:

i∂T A+ + i∂�ω
+(0)∂XA+ +

∑
j1,j2,j3∈{+,−}

ν+
j1j2j3

Aj1Aj2Aj3 = 0, (28)

i∂T A− + i∂�ω
−(0)∂XA− +

∑
j1,j2,j3∈{+,−}

ν−
j1j2j3

Aj1Aj2Aj3 = 0, (29)

where the coefficients ν±
j1j2j3

∈ C are given by

νj
j1,j2,j3

=
〈f j(0, ·), f j1(0, ·)f j2(0, ·)f j3(0, ·)〉L2

Γ

‖f j(0, ·)‖2
L2

Γ

, j, j1, j2, j3 ∈ {+,−}.

The system (28)–(29) is invariant under the transformation (X,A+, A−) �→
(−X,A−, A+). The Cauchy problem is locally well-posed in Sobolev spaces.
Depending on the nonlinear terms, it is also globally well-posed in Sobolev
spaces [21]. Assuming existence of a global solution to the cubic Dirac system
(28)–(29), the approximation result is given by the following theorem.

Theorem 2.8. For every C0 > 0 and T0 > 0, there exist ε0 > 0 and C > 0
such that for all solutions A± ∈ C(R,H2(R)) of the Dirac-system (28)–(29)
with

sup
T∈[0,T0]

‖A±(T, ·)‖H2 ≤ C0

and for all ε ∈ (0, ε0), there are solutions U ∈ C([0, T0/ε2], L∞(R)) of the
original system (9) satisfying the bound

sup
t∈[0,T0/ε2]

sup
x∈R

|U(t, x) − εΨdirac(t, x)| ≤ Cε3/2.

where εΨdirac is given by (27).

The proof of Theorem 2.8 is a straightforward modification of the proof
of Theorem 2.3, cf. Remark 6.1.



 63 Page 12 of 30 S. Gilg, D. Pelinovsky and G. Schneider NoDEA

3. Local existence and uniqueness

Here we prove the local existence and uniqueness of solutions to the original
system (9). We consider the operator L = −∂2

x in the space

L2 = {U = (u0, u+, u−) ∈ (L2(R))3 : supp(un,j) = In,j , n ∈ Z, j ∈ {0,+,−}}
with the domain of definition

H2 :={U ∈L2 : un,j ∈H2(In,j), n∈Z, j ∈{0,+,−}, (2) − (3) is satisfied},

equipped with the norm

‖U‖H2 :=

(∑
n∈Z

‖un,0‖2
H2(In,0)

+ ‖un,+‖2
H2(In,+) + ‖un,−‖2

H2(In,−)

)1/2

.

For the local existence and uniqueness of solutions to system (9), we need the
following results.

Lemma 3.1. The space H2 is closed under pointwise multiplication.

Proof. For each open interval In,j for n ∈ Z, j ∈ {0,+,−}, the Sobolev space
H2(In,j) is closed under pointwise multiplication. Therefore, there is a positive
constant C such that for every u, v ∈ H2, we have

‖un,jvn,j‖H2(In,j) ≤ C‖un,j‖H2(In,j)‖vn,j‖H2(In,j).

If U and V are continuous at the vertices, then UV is also continuous at the
vertices. If U and V satisfy the flux continuity conditions (3), then by the
product rule for continuous functions U and V , the product UV also satisfies
the flux continuity conditions (3). The support for U , V , and UV is identical.
Finally, by the Cauchy-Schwarz inequality, we have

‖UV ‖2
H2 =

∑
n∈Z,j∈{0,+,−}

‖un,jvn,j‖2
H2(In,j)

≤ C2
∑

n∈Z,j∈{0,+,−}
‖un,j‖2

H2(In,j)
‖vn,j‖2

H2(In,j)

≤ C2‖U‖2
H2‖V ‖2

H2 .

The statement of the lemma is proved.

Lemma 3.2. The operator L with the domain H2 is self-adjoint and positive
semi-definite in L2.

Proof. Using the Kirchhoff boundary conditions (2)–(3), it is an easy exercise
to show that

〈U,LV 〉L2 = 〈LU, V 〉L2

is true for every U, V ∈ H2. Then, the operator L with the domain H2 is
self-adjoint (similar to Theorem 1.4.4 in [6]). Positivity and semi-definiteness
of L follows from the integration by parts
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〈U,LU〉L2 =
∑

n∈Z,j∈{0,±}
‖∂xun,j‖2

L2(In,j)
≥ 0,

where the Kirchhoff boundary conditions (2)–(3) have been used again. �
As a consequence of classical semigroup theory, cf. [19], we have

Corollary 3.3. The skew symmetric operator −iL with the domain H2 defines
a unitary group (e−iLt)t∈R in L2 such that ‖e−iLtU‖L2 = ‖U‖L2 for every
t ∈ R.

By Corollary 3.3, we obtain another ingredient of the existence and
uniqueness theory.

Lemma 3.4. There exists a positive constant CL such that

‖e−iLtU‖H2 ≤ CL‖U‖H2 (30)

for every U ∈ H2 and every t ∈ R.

Proof. We obtain the following chain of inequalities:

‖e−iLtU‖H2 ≤ C‖(1 + L)e−iLtU‖L2

≤ C‖e−iLt(1 + L)U‖L2

≤ C‖(1 + L)U‖L2

≤ C‖U‖H2 ,

where we have used the equivalence between ‖U‖H2 and ‖(1 + L)U‖L2 , the
commutativity of L and e−iLt, and the existence of the unitary group in Corol-
lary 3.3. �

We are now ready to prove the local existence and uniqueness of solutions
of the Cauchy problem associated with the original system (9) in H2.

Theorem 3.5. For every U0 ∈ H2, there exists a T0 = T0(‖U0‖H2) > 0 and a
unique solution U ∈ C([−T0, T0],H2) of the original system (9) with the initial
data U |t=0 = U0.

Proof. The estimates from Lemmas 3.1 and 3.4 allow us to proceed with the
general theory for semilinear dynamical systems [19]. Namely, by Duhamel’s
principle, we rewrite the Cauchy problem associated with the original system
(9) as the integral equation

U(t, ·) = e−iLtU(0, ·) + i

∫ t

0

e−iL(t−τ)|U(τ, ·)|2U(τ, ·)dτ, (31)

where the solution is considered in the space

M := {U ∈ C([−T0, T0],H2) : sup
t∈[−T0,T0]

‖U(t, ·)‖H2 ≤ 2CL‖U(0, ·)‖H2},

and the constant CL is defined by the bound (30) in Lemma 3.4. For every
U0 ∈ H2, there is a sufficiently small T0 = T0(‖U0‖H2) > 0 such that the
right-hand side of the integral equation (31) is a contraction in the space M.
Therefore, the existence of a unique solution U ∈ C([−T0, T0],H2) follows from
Banach’s fixed-point theorem. �
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4. Bloch transform

The justification of the NLS approximation in the context of nonlinear Klein–
Gordon equations with smooth spatially periodic coefficients in [7] or in the
context of the Gross–Pitaevskii equation with a smooth periodic potential in
[20] heavily relies on the use of the Bloch transform. In order to transfer the
evolution problem (9) to Bloch space, we first recall the fundamental properties
of Bloch transform on the real line. Next, we generalize Bloch transform to
periodic quantum graphs, first in L2 and then for smooth functions. In Sect. 7,
we explain how to generalize our approach developed for the periodic graph
sketched in Fig. 1 to other periodic graphs.

General Floquet–Bloch theory for spectral problems posed on periodic
quantum graphs is reviewed in [6, Chapter 4]. However, as far as we can see,
the approach of [6, Chapter 4] does not allow us to transfer the proof of [7] and
[20] to the periodic quantum graphs. In what follows, we explain the necessary
modifications of the Bloch transform for the periodic quantum graphs.

4.1. Bloch transform on the real line

Bloch transform T generalizes Fourier transform F from spatially homoge-
neous problems to spatially periodic problems. It was introduced by Gelfand
[12] and it appears for instance in the handling of the Schrödinger operator
with a spatially periodic potential [26]. Bloch transform is (formally) defined
by

ũ(�, x) = (T u)(�, x) =
∑
n∈Z

u(x + 2πn)e−i�x−2πin�. (32)

The inverse of Bloch transform is given by

u(x) = (T −1ũ)(x) =
∫ 1/2

−1/2

ei�xũ(�, x)d�. (33)

By construction, ũ(�, x) is extended from (�, x) ∈ T1 × T2π to (�, x) ∈ R × R

according to the continuation conditions:

ũ(�, x) = ũ(�, x + 2π) and ũ(�, x) = ũ(� + 1, x)eix. (34)

The following lemma specifies the well-known property of Bloch transform
acting on Sobolev function spaces, cf. [11,20].

Lemma 4.1. Bloch transform T is an isomorphism between

Hs(R) and L2(T1,H
s(T2π)),

where L2(T1,H
s(T2π)) is equipped with the norm

‖ũ‖L2(T1,Hs(T2π)) =

(∫ 1/2

−1/2

‖ũ(�, ·)‖2
Hs(T2π)d�

)1/2

.

Bloch transform T defined by (32) is related to the Fourier transform F
by the following formula, cf. [11,20],
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ũ(�, x) =
∑
j∈Z

eijxû(� + j), (35)

where û(ξ) = (Fu) (ξ), ξ ∈ R, is the Fourier transform of u on the real axis.
Multiplication of two functions u(x) and v(x) in x-space corresponds to

the convolution integral in Bloch space:

(ũ 
 ṽ)(�, x) =

1/2∫
−1/2

ũ(� − m,x)ṽ(m,x)dm, (36)

where the continuation conditions (34) have to be used for |� − m| > 1/2.
If χ : R → R is 2π periodic, then

T (χu)(�, x) = χ(x)(T u)(�, x). (37)

The relations (36) and (37) are well-known [7,11] and can be proved from
(32) and (35).

4.2. The system in Bloch space

Thanks to the definitions (6), (7), and (8), it is obvious how to transfer the
evolution problem (9) into Bloch space. We apply the Bloch transform T to
all components of U = (u0, u+, u−) and obtain

i∂tŨ(t, �, x) = L̃(�)Ũ(t, �, x) − (Ũ 
 Ũ 
 Ũ)(t, �, x), (38)

where the operator L̃(�) := −(∂x+i�)2 appears in the periodic spectral problem
(13), the function Ũ(t, �, x) = (ũ0, ũ+, ũ−)(t, �, x) satisfies the continuation
conditions

Ũ(t, �, x) = Ũ(t, �, x + 2π) and Ũ(t, �, x) = Ũ(t, � + 1, x)eix, (39)

and the convolution integrals are applied componentwise as in

Ũ 
 Ũ 
 Ũ =
(
ũ0 
 ũ0 
 ũ0, ũ+ 
 ũ+ 
 ũ+, ũ− 
 ũ− 
 ũ−

)
.

In order to guarantee that ũj(t, �, ·) has support in I0,j for j ∈ {0,+,−}, we
define periodic cut-off functions

χj(x) =
{

1, x ∈ Ij ,
0, elsewhere, j ∈ {0,+,−}. (40)

With the help of property (37), we obtain

T (uj)(�, x) = T (χjuj)(�, x) = χj(x)(T uj)(�, x), j ∈ {0,+,−}.

Therefore, the support of T (uj)(�, x) with respect to x is contained in Ij for
any j ∈ {0,+,−}.
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4.3. Bloch transform for smooth functions

Since we proved the local existence and uniqueness of solutions in H2, the
domain of definition of the operator L := −∂2

x in L2, we have to work in
Bloch space with its counterpart H̃2, the domain of definition of the operator
L̃(�) := −(∂x + i�)2 in the space L2(T1, L

2
Γ). We define

H̃2 = {Ũ ∈ L2(T1, L
2
Γ) : ũj ∈ L2(T1,H

2(I0,j)), j ∈ {0,+,−},
(14) − (15) is satisfied},

equipped with the norm

‖Ũ‖H̃2 =

( ∫ 1/2

−1/2

(
‖ũ0(�, ·)‖2

H2(I0,0) + ‖ũ+(�, ·)‖2
H2(I0,+) + ‖ũ−(�, ·)‖2

H2(I0,−)

)
d�

)1/2

.

The following lemma presents an important result for the justification analysis
in Bloch space.

Lemma 4.2. The Bloch transform T is an isomorphism between the spaces H2

and H̃2.

Proof. We start with the function u0 defined in (6). The L2 function u0 which
is in H2 on the intervals [2nπ, 2nπ + π] for n ∈ Z is extended smoothly to
a global H2 function u0,ext. According to Lemma 4.1, we have T (u0,ext) ∈
L2(T1,H

2(T2π)). With the cut-off function χ0 defined in (40), we find by
using (37) that

ũ0 = T (u0) = T (χ0u0,ext) = χ0T (u0,ext).

Therefore, for fixed � ∈ T1, we have supp(ũ0) = I0,0. From the properties of
T (u0,ext), we conclude that ũ0 ∈ L2(T1,H

2(I0,0)). The components u± are
handled with the same technique. The boundary conditions (2)–(3) transfer in
Bloch space into the boundary conditions (14)–(15). �

5. Estimates for the residual terms

Here we decompose the evolution problem (38) into two parts. The first part
reduces to the effective amplitude equation of the type (21) but written in
Fourier space. The other part satisfies the evolution problem where the resid-
ual terms can be estimated in the space H̃2. Since the residual term after a
standard decomposition similar to (19) and (20) is still large for estimates, we
will also introduce an improved approximation by singling out some terms in
the second part of the decomposition. Although the estimates are performed
in Fourier and Bloch space, they can be easily transferred back to physical
space.

In order to recover the ansatz (19) and (20) used for the derivation of the
effective amplitude equation (21) in Bloch space, we split the solution to the
evolution problem (38) into two parts. We write

Ũ(t, �, x) = Ṽ (t, �)f (m0)(�, x) + Ũ⊥(t, �, x), (41)
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where the orthogonality condition 〈f (m0)(�, ·), Ũ⊥(t, �, ·)〉L2
Γ

= 0 is used for
uniqueness of the decomposition. We find two parts of the evolution problem:

i∂tṼ (t, �) = ω(m0)(�)Ṽ (t, �) − NV (Ṽ , Ũ⊥)(t, �) (42)

and

i∂tŨ
⊥(t, �, x) = L̃(�)Ũ⊥(t, �, x) − N⊥(Ṽ , Ũ⊥)(t, �, x), (43)

where

NV (Ṽ , Ũ⊥)(t, �) = 〈f (m0)(�, ·), (Ũ 
 Ũ 
 Ũ)(t, �, ·)〉L2
Γ

and

N⊥(Ṽ , Ũ⊥)(t, �, x) = (Ũ 
 Ũ 
 Ũ)(t, �, x) − NV (Ṽ , Ũ⊥)(t, �)f (m0)(�, x).

Next, we estimate each part of the evolution problem.

5.1. Derivation of the effective amplitude equation

The effective amplitude equation (21) can be derived from equation (42) by
evaluating it at Ũ⊥ = 0. To be precise, we write

NV (Ṽ , Ũ⊥)(t, �) =
∫
T1

∫
T1

β(�, �1, �2, �1 + �2 − �) (44)

× Ṽ (t, �1)Ṽ (t, �2)Ṽ (t, �1 + �2 − �)d�1d�2 + NV,rest(Ṽ , Ũ⊥)(t, �)

where we used Ṽ (t, �) = Ṽ (t,−�), and introduced the kernel β by

β(�, �1, �2, �1 + �2 − �)

:=
〈
f (m0)(�, ·), f (m0)(�1, ·)f (m0)(�2, ·)f (m0)(�1 + �2 − �, ·)

〉
L2

Γ
. (45)

We note that NV,rest(Ṽ , 0) = 0. Let us now make the ansatz

Ṽapp(t, �) = Ã

(
ε2t,

� − �0
ε

)
E(t, �), (46)

with

E(t, �) := e−iω(m0)(�0)te−i∂�ω(m0)(�0)(�−�0)t,

insert (46) into the evolution problem (42), and set the coefficients of ε2E to
zero. As a result, we obtain the leading-order equation in the form

i∂T Ã(T, ξ) =
1
2
∂2

� ω(m0)(�0)ξ2Ã(T, ξ)

−ν

∫ 1
2ε

− 1
2ε

∫ 1
2ε

− 1
2ε

Ã(T, ξ1)Ã(T, ξ2)Ã(T, ξ1 + ξ2 − ξ)dξ1dξ2, (47)

where � = �0+εξ, T = ε2t, and ν = β(�0, �0, �0, �0) coincides with the definition
of ν in the amplitude equation (21).
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By letting ε → 0, in particular
∫ 1

2ε

− 1
2ε

dξ →
∫ ∞

−∞ dξ, and Ã(T, ξ) → Â(T, ξ)
as ε → 0, equation (47) yields formally the NLS equation in Fourier space,
namely

i∂T Â(T, ξ) − 1
2
∂2

� ω(m0)(�0)ξ2Â(T, ξ) + ν(Â ∗ Â ∗ Â)(T, ξ) = 0. (48)

Equation (48) corresponds to the amplitude equation (21) in physical space.
The formal calculations will be made rigorous in Sect. 5.3.

Remark 5.1. If A(·) is defined on R and if it is scaled with the small parame-
ter ε, then the Fourier transform of A(ε·) is ε−1Â(ε−1·). Therefore, a small
term of the formal order O(εr) in physical space corresponds to a small term
of the formal order O(εr−1) in Fourier space. Since Bloch space is very sim-
ilar to Fourier space, we have implemented the corresponding orders in the
representation (46) compared to the standard approximation (19).

5.2. The improved approximation

The simple approximation (46) produces a number of terms in the second
equation (43) which are of the formal order O(ε2) in Bloch space and which
do not cancel each other. These terms are collected together in the so called
residual. However, in order to bound the error with a simple application of
Gronwall’s inequality, as we do in Sect. 6, we need the residual to be of the
formal order O(ε3) in Bloch space.

As in [14], the O(ε2) terms can be canceled by adding higher order terms
to the approximation (46) in (41). Therefore, we set

Ũ⊥
app(t, �, x) = ε2B̃

(
ε2t,

� − �0
ε

, x

)
E(t, �). (49)

Inserting (49) into the evolution problem (43) and equating the coefficients of
ε2E to zero gives the following equation in the lowest order in ε:

ω(m0)(�0)B̃
(
ε2t, ξ, x

)
= L̃(�0)B̃

(
ε2t, ξ, x

)
−ε−2E−1(t, �)N⊥(Ṽapp, 0)(t, �, x), (50)

where � = �0 + εξ. Note that all E factors cancel each other in the nonlinear
terms. Moreover, the pre-factor ε−2 cancels with the factor ε2 coming from the
two times convolution of the scaled ansatz functions. The equation (50) can
be solved with respect to B̃ if L̃(�0)−ω(m0)(�0)I is invertible. The invertibility
condition

inf
m∈N\{m0}

∣∣∣ω(m)(�0) − ω(m0)(�0)
∣∣∣ > 0 (51)

is satisfies for the spectral problem (10) under the condition (23) of Theorem
2.3. Substituting Ã and B̃ obtained from (47) and (50) into (46) and (49), and
inserting the approximation (Ṽapp, Ũ⊥

app) into the evolution problem (42) and
(43) cancel out all terms of the formal order O(ε2). According to Remark 5.1,
this corresponds to the cancelation of all terms of the formal order O(ε3) in
physical space. Hence the residual is formally of the order O(ε3) in Bloch space
and of the order O(ε4) in physical space.
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5.3. From Fourier space to Bloch space

As in Theorem 2.3, let A ∈ C(R,H3(R)) be a solution of the effective amplitude
equation (21). Here we show that the residual of the evolution problem (38)
given by

R̃es(Ũ)(t, �, x) = −i∂tŨ(t, �, x) + L̃(�)Ũ(t, �, x) − (Ũ 
 Ũ 
 Ũ)(t, �, x), (52)

can be estimated in H̃2 to be of order O(ε7/2) if the improved approximations
is constructed by using the decomposition (41) with (Ṽapp, Ũ⊥

app) given by (46)
and (49).

Before we start, we introduce some weights with respect to the �-variable,
namely

ρ�0,ε,s(�) =

[
1 +

(
� − �0

ε

)2
]s/2

.

Remark 5.2. Regularity of functions in physical space corresponds to decay
rates of their Fourier transforms at infinity. Due to Parseval’s identity, Fourier
transform is an isomorphism between Hs and L2 equipped with a weight ρ0,1,s.
Furthermore, weights ρ∗,1,∗ appear with functions which are not scaled with
respect to ε, whereas weights ρ∗,ε,∗ appear with functions which are scaled with
respect to ε. The scaled weights ρ∗,ε,∗ are necessary to transfer the smallness
property ∂xA(εx) = ε∂XA(X) = O(ε) from physical space into Fourier space,
cf. Lemma 5.4.

As a consequence of the assumptions on A ∈ C(R,H3(R)), the Fourier
transform Â is a solution of the NLS equation in Fourier space (48) and satisfies
Âρ0,1,3 ∈ L2(R). By the Cauchy–Schwarz inequality, we have

‖Âρ0,1,2‖L1 ≤ ‖Âρ0,1,3‖L2‖ρ0,1,−1‖L2 ≤ C‖Âρ0,1,3‖L2 , (53)

hence, Âρ0,1,2 ∈ L1(R). For such a function Â in Fourier space, we define a
function Ã in Bloch space by

Ã(T, ε−1(� − �0)) = χ̃�0(�)Â(T, ε−1(� − �0)), (54)

where χ̃�0 is defined as the cutoff function

χ̃�0(�) =
{

1, � − �0 ∈ [−δ, δ] ,
0, otherwise,

with δ > 0 being sufficiently small but independent of the small parameter ε.
Using the periodicity condition

Ã
(
T, ε−1(� + 1 − �0)

)
= Ã

(
T, ε−1(� − �0)

)
, � ∈ R, (55)

we extend Ã(T, ε−1(� − �0)) periodically in � over R. By construction, the
leading-order approximation

Ṽappf (m0)ρ�0,ε,3 ∈ H̃2



 63 Page 20 of 30 S. Gilg, D. Pelinovsky and G. Schneider NoDEA

is of the order O(ε1/2) due to the scaling properties of the L2-norm. Therefore,
we are losing ε1/2 when we perform estimates in H̃2. In order to avoid losing
ε1/2, let us consider estimates in the following L1-based space

C̃2 = {Ũ ∈ L1(T1, L
2
Γ) : ũj ∈ L1(T1,H

2(I0,j)), j ∈ {0,+,−},
(14) − (15) is satisfied},

equipped with the norm

‖Ũ‖C̃2 =
∫ 1/2

−1/2

(
‖ũ0(�, ·)‖H2(I0,0) + ‖ũ+(�, ·)‖H2(I0,+) + ‖ũ−(�, ·)‖H2(I0,−)

)
d�.

Compared to the estimates in H̃2, the leading-order approximation

Ṽappf (m0)ρ�0,ε,2 ∈ C̃2

is of the order O(ε). Due to Young’s inequality and (53) we have

‖Ṽ 
 W̃‖H̃2 ≤ ‖Ṽ ‖C̃2‖W̃‖H̃2 ,

respectively with weights

‖(Ṽ 
 W̃ )ρ�0,ε,2‖H̃2 ≤ C‖Ṽ ρ�0,ε,2‖C̃2‖W̃ρ�0,ε,2‖H̃2 ,

with a constant C independent of the small parameter ε. Using these estimates
shows that

E−1(t, ·)N⊥(Ṽapp, 0)(t, ·, ·)ρ�0,ε,2(·) ∈ H̃2

is of the order O(ε5/2) in H̃2 and of the order O(ε3) in C̃2. Moreover, we have

supp
(
E−1(t, ·)N⊥(Ṽapp, 0)(t, ·, ·)

)
⊂ [�0 − 3δ, �0 + 3δ].

Hence, we drop (50) and define

B̃
(
ε2t, ξ, x

)
= (L̃(�) − ω(m0)(�0)I)−1ε−2E−1(t, �)N⊥(Ṽapp, 0)(t, �, x), (56)

where again � = �0 + εξ. The inverse (L̃(�) − ω(m0)(�0)I)−1 exists due to the
non-resonance condition (23) for δ > 0 sufficiently small, but independent of
the small parameter ε > 0. The change from L̃(�0) in equation (50) to L̃(�)
here allows us to avoid an expansion of L̃(�) at � = �0, which would correspond
to a loss of regularity.

By construction in (49), we have that Ũ⊥
appρ�0,ε,2 ∈ H̃2 is of the order

O(ε5/2) and Ũ⊥
appρ�0,ε,1 ∈ C̃2 is of the order O(ε3). Thus, we set

εΨ̃(t, �, x) = Ṽapp(t, �)f (m0)(�, x) + Ũ⊥
app(t, �, x), (57)

with Ṽapp and Ũ⊥
app defined in (46) and (49).

Remark 5.3. In contrast to the approximation εΨnls, the approximation εΨ =
T −1(εΨ̃) satisfies the Kirchhoff boundary conditions (2)–(3).
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5.4. Estimates in Bloch space

By construction of εΨ̃, the lower order terms are canceled out so that R̃es(εΨ̃)
is formally of the order O(ε4) in physical space and of the order of O(ε3) in
Bloch space. In order to put this formal count on a rigorous footing, we use
the following elementary result.

Lemma 5.4. Let m, s ≥ 0 and let g : T1 → R satisfy

|g(�)| ≤ C|� − �0|s, � ∈ T1, (58)

for some C > 0. Then, we have

‖ρ0,1,m(·)g(·)Ã(ε−1(· − �0))‖L2(T1) ≤ Cεs+1/2‖ρ0,1,m+sÂ‖L2(R). (59)

Proof. We estimate the left-hand side as follows:

‖ρ0,1,m(·)g(·)Ã(ε−1(· − �0))‖2
L2(T1)

=
∫
T1

|g(�)|2(1 + �2)m

∣∣∣∣Ã
(

� − �0
ε

)∣∣∣∣
2

d�

≤ sup
�∈T1

|g(�)|2(1 + ε−2|� − �0|2)−s−m(1 + �2)m

×
∫
T1

(1 + ε−2(� − �0)2)m+s

∣∣∣∣Ã
(

� − �0
ε

)∣∣∣∣
2

d�

≤ C2ε2sε‖ρ0,1,m+sÂ‖2
L2(R),

where the last inequality follows from the scaling transformation for the squared
L2-norm, cf. also the subsequent Remark 5.6. �

By using Lemma 5.4, we obtain the estimate on R̃es(εΨ̃) given by (57).

Lemma 5.5. Let A ∈ C([0, T0],H3) be a solution of the amplitude equation
(21) for some T0 > 0. Then, there is a positive ε-independent constant CRes

that only depends on the norm of the solution A such that

sup
t∈[0,T0/ε2]

‖R̃es(εΨ̃)‖H̃2 ≤ CResε
7/2. (60)

or equivalently,
sup

t∈[0,T0/ε2]

‖Res(εΨ)‖H2 ≤ CResε
7/2. (61)

Proof. We define

R̃esV (Ṽ , Ũ⊥)(t, �) = −i∂tṼ (t, �) + ω(m0)(�)Ṽ (t, �) − NV (Ṽ , Ũ⊥)(t, �),

R̃es
⊥

(Ṽ , Ũ⊥)(t, �, x) = −i∂tŨ
⊥(t, �, x) + L̃(�)Ũ⊥(t, �, x) − N⊥(Ṽ , Ũ⊥)(t, �, x).

By construction we have

R̃es
⊥

(Ṽapp, Ũ⊥
app)(t, �, x) = s1 + s2, (62)

where

s1 = (−i∂t + ω(m0)(�0))Ũ⊥
app(t, �, x)

= (−(ε2∂�ω
(m0)(�0)(� − �0) + ε4∂T )B̃ (T, ξ, x))E(t, �)

= (−(ε3∂�ω
(m0)(�0)ξ + ε4∂T )B̃ (T, ξ, x))E(t, �)
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and

s2 = N⊥(Ṽ , 0)(t, �, x) − N⊥(Ṽ , Ũ⊥)(t, �, x),

again with � = �0 + εξ. Via (56) the term ∂T B̃ in s1 can be expressed in
terms of ∂T Ṽapp, respectively in terms of ∂T A, where ∂T A can be expressed
by the right-hand side of the amplitude equation (21). Similarly, the term
ξB̃ (T, ξ, x) can be estimated in terms of ξÂ(T, ξ). Since Ũ⊥

app obviously is in
H̃2, we eventually have the estimate

‖s1‖H̃2 ≤ Cε7/2‖Â‖2
L1‖Âρ0,1,1‖L2

+ Cε9/2‖Â‖2
L1(‖Âρ0,1,2‖L2 + ‖Â‖2

L1‖Â‖L2).

In s2 by pure counting of powers of ε we find the formal order O(ε3) in Bloch
space and due to the scaling properties of the L2-norm, we have

‖s2‖H̃2 ≤ CAε7/2,

where the constant CA depends on ‖Âρ0,1,3‖L2 .
Next we have

R̃esV (Ṽapp, Ũ⊥
app)(t, �) = r1 + r2, (63)

where

r1 = −i∂tṼapp(t, �) + ω(m0)(�)Ṽapp(t, �) − NV (Ṽapp, 0)(t, �)

+ Eχ̃�0(�)(i∂T Â(T, ξ) − 1
2
∂2

� ω(m0)(�0)ξ2Â(T, ξ) + ν(Â ∗ Â ∗ Â)(T, ξ))

and

r2 = NV (Ṽapp, 0)(t, �) − NV (Ṽapp, Ũ⊥
app)(t, �).

The term r2 is of the formal order O(ε3) in Bloch space and due to the scaling
properties of the L2-norm, it is of the order O(ε7/2) in L2. The second line in
r1 vanishes identically since it is a multiple of the effective amplitude equation
(21). The prefactor E is necessary to compare the second line in r1 with the
first line in r1. The cut-off function χ̃�0 is needed to bring (21) from Fourier
space to Bloch space.

The comparison of the terms of the first line in r1 condense in estimates
for the difference between ω(m0)(�) and its second Taylor polynomial at �0,

T2(�; �0) = ω(m0)(�0) + ∂�ω
(m0)(�0)(� − �0) +

1
2
∂2

� ω(m0)(�0)(� − �0)2,

the difference between the nonlinear coefficient β = β(�, �1, �2, �1 + �2 − �) de-
fined in (45) and the coefficient ν = β(�0, �0, �0, �0), and the difference between
Â and Ã.

In detail, we use the estimate∣∣∣ω(m0)(�) − T2(�; �0)
∣∣∣ ≤ C|� − �0|3

and apply Lemma 5.4 with m = 0 and s = 3 to find

‖(ω(m0)(·) − T2(·; �0))Ã(ε−1(· − �0))‖L2(T1) ≤ Cε7/2‖ρ0,1,3Â‖L2(R). (64)
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For the difference between the nonlinear coefficients, we use the estimate

|β(�, �1, �2, �1 + �2 − �) − β(�0, �0, �0, �0)|
≤ C(|� − �0| + |�1 − �0| + |�2 − �0| + |�1 + �2 − � − �0|)

and apply an obvious generalization of Lemma 5.4 to multilinear terms. It
remains to estimate the difference between Â and Ã. Since |χ̃�0(�) − 1| ≤
C|� − �0|m for every m ≥ 0, we have for m = 3,

‖Ã(ε−1(· − �0)) − Â(ε−1(· − �0))‖L2 = ‖(1 − χ̃�0)Â(ε−1(· − �0))‖L2

≤ ε1/2 sup
�∈R

|(1 − χ̃0(ε�))(1 + |�|)−3|‖Âρ0,1,3‖L2

≤ Cε7/2‖Âρ0,1,3‖L2 .

By using these expansions, we derive the bound (60). Bound (61) holds thanks
to the isomorphism of Bloch transform T between H2 and H̃2. �
Remark 5.6. Compared to Remark 5.1 on the formal order in physical and
Bloch space, we note that bounds (60) and (61) are identical in physical and
Bloch space. This is because we gain ε1/2 in the H̃2-norm due to the concen-
tration and lose ε−1/2 in the H2-norm due to the long wave scaling.

Let us now recall that the approximation εΨnls given by (20) that leads
to the effective amplitude equation (21) is different from the improved approx-
imation εΨ, which is given by (57) in Bloch space. The next result compares
the two approximations. It is obtained by an elementary application of the
Lemmas 3.1, 4.2 and 5.4.
Lemma 5.7. Let A ∈ C([0, T0],H3) be a solution of the amplitude equation
(21) for some T0 > 0. Then, there exist positive ε-independent constants C
and Cψ that only depend on the norm of the solution A such that

sup
t∈[0,T0/ε2]

‖εΨ̃‖C̃2 ≤ CΨε (65)

and
sup

t∈[0,T0/ε2]

‖εΨ − εΨnls‖L∞ ≤ Cε3/2. (66)

Proof. The first estimate (65) immediately follows by the previous estimates
on each component of Ψ̃. The second estimate (66) follows by applying a slight
generalization of Lemma 5.4 to the difference f (m0)(�, ·)−f (m0)(�0, ·) and using
the triangle inequality, since the term Ũ⊥

app is much smaller compared to the
term Ṽappf (m0) in (57). Since the boundary conditions for the derivatives of
the eigenfunctions depend on � they can only be compared in H1(T2π). We
have

‖f (m0)(�, ·) − f (m0)(�0, ·)‖H1(T2π) ≤ C|� − �0|.
With the obvious generalization of Lemma 5.4 we obtain

‖(f (m0)(�, ·)−f (m0)(�0, ·))Ã(ε−1(· − �0))‖L2(T1,H1(T2π)) ≤Cε3/2‖ρ0,1,1Â‖L2(R).

Lemma 4.1 with s = 1 and Sobolev’s embedding theorem yield estimate (66).
�
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6. Estimates for the error term

Here we complete the proof of Theorem 2.3. The proof of the approximation
result is based on a simple application of Gronwall’s inequality.

First we note that, by the standard energy estimates, the local solution U
to the evolution problem (9) constructed in Theorem 3.5 can be continued to
the global solution U in H2 with a possible growth of the H2-norm as t → ∞.
We do not worry about the possible growth of the global solution U because
the approximation result of Theorem 2.3 is obtained on finite but long time
intervals with a precise control of the error terms, cf. bound (24).

We write the solution U to the evolution problem (9) as a sum of the
approximation term εΨ controlled by Lemma 5.7 and the error term ε3/2R,
i.e.,

U = εΨ + ε3/2R. (67)

Inserting this decomposition into the evolution problem (9) gives

∂tR = −iLR + iG(Ψ, R) (68)

where the linear operator L = −∂2
x is studied in Lemma 3.2 and the nonlinear

terms are expanded as

G(Ψ, R)=ε−3/2Res(εΨ)+ε2Ψ2R + 2ε2ΨRΨ+2ε5/2ΨRR+ε5/2R2Ψ + ε3R2R.

The product terms in the definition of G(Ψ, R) are understood componentwise
with R = (r0, r+, r−) and Ψ = (ψ0, ψ+, ψ−). Using the bounds

‖ΨR‖H2 ≤ C‖Ψ̃R̃‖H̃2 ≤ C‖Ψ̃‖C̃2‖R̃‖H̃2 ≤ CCΨ‖R̃‖H̃2 ≤ C2CΨ‖R‖H2 ,

where CΨ appears in (65) of Lemma 5.7, we estimate each term of G with the
help of Lemmas 3.1 and 5.5:

‖ε−3/2Res(εΨ)‖H2 ≤ CResε
2,

‖2ε2ΨRΨ‖H2 ≤ 2C1ε
2‖R‖H2 ,

‖ε2Ψ2R‖H2 ≤ C1ε
2‖R‖H2 ,

‖ε5/2R2Ψ‖H2 ≤ C1ε
5/2‖R‖2

H2 ,

‖2ε5/2ΨRR‖H2 ≤ 2C1ε
5/2‖R‖2

H2 ,

‖ε3R2R‖H2 ≤ C1ε
3‖R‖3

H2 ,

where C1 is a constant independent of ‖R‖H2 and the small parameter ε > 0.
Therefore, we find

‖G(Ψ, R)‖H2 ≤ CResε
2 + 3C1ε

2‖R‖H2 + 3C1ε
5/2‖R‖2

H2

+C1ε
3‖R‖3

H2 . (69)

For simplicity, we assume R(0) = 0. Then, the variation of constant formula
for the evolution system (68) yields the integral formula

R(t) =

t∫
0

e−iL(t−τ)iG(Ψ, R)(τ)dτ.
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By Lemma 3.4, the operator e−iLt forms a group in H2 which is uniformly
bounded with respect to t. Using Gronwall’s inequality finally allows us to
estimate the error term on the time scale T = ε2t for T ∈ [0, T0] by

sup
t∈[0,T0/ε2]

‖R(t)‖H2 ≤ CResT0e
4C1T0 =: M

for all ε ∈ (0, ε0), if ε0 > 0 is chosen so small that 3ε
1/2
0 M + ε0M

2 ≤ 1.
Sobolev’s embedding theorem, bound (66), and the decomposition (67) com-
plete the proof of the approximation result (24) of Theorem 2.3. �

Remark 6.1. We explain how the proof of Theorem 2.3 has to be modified in
order to prove Theorem 2.8. We only need H2 for the Dirac case instead of
H3 in the NLS case due to the fact that the functions ω± given by (25) and
(26) have to be expanded in � up to quadratic order for estimating the residual
terms. The decomposition formula (41) is replaced by

Ũ(t, �, x) = Ṽ+(t, �)f+(�, x) + Ṽ−(t, �)f−(�, x) + Ũ⊥(t, �, x), (70)

subject to the orthogonality constraints

〈f+(�, ·), Ũ⊥(t, �, ·)〉L2
Γ

= 〈f−(�, ·), Ũ⊥(t, �, ·)〉L2
Γ

= 0.

For the derivation of the coupled-mode system (28)–(29) we then make the
ansatz

Ṽapp,±(t, �) = ε−1Ã±
(
ε2t, ε−2�

)
e−iω±(0)t. (71)

Straightforward modifications of this kind can be performed at each step in
the proof of Theorem 2.3. This procedure yields the proof of Theorem 2.8.

7. Discussion

Here we discuss why the previously presented theory applies to other periodic
quantum graphs. The general strategy is as follows. Rescale the length of the
bonds in such a way that the basic cell of the periodic graph has a length
of 2π. The differential operators and the Kirchhoff boundary conditions at
the vertices have to be rescaled, too. We refrain from greatest generality and
explain this approach for two periodic quantum graphs, cf. Fig. 5, which are
slightly more complicated than the periodic graph plotted in Fig. 1.

Figure 5. a Generalization of the periodic quantum graph
sketched in Fig. 1. The central segment Γn,0 has length L0 and
the circular segments Γn,± have lengths L+ and L−. b A peri-
odic quantum graph with a vertical pendant and a horizontal
bond, each of length π, with Dirichlet boundary conditions at
the dead end
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In order to bring the quantum graph plotted in Fig. 5a into a form for
which our previous theory applies, we first identify Γ0,0 with [0, L0], Γ0,+ with
[0, L+], and Γ0,− with [0, L−]. The coordinates in these bonds are denoted
with y. Then on Γ0,0 we introduce πy = L0x and on Γ0,± we introduce πy =
L±(x−π). Hence we are back on our original quantum graph, but with different
equations and different vertex conditions, namely:

i∂tU +
L2

0

π2
∂2

xU + |U |2U = 0, for x ∈ (2πn, 2πn + π)

and

i∂tU +
L2

±
π2

∂2
xU + |U |2U = 0, for x ∈ (2πn + π, 2π(n + 1)),

subject to{
un,0(t, 2πn + π) = un,+(t, 2πn + π) = un,−(t, 2πn + π),
un+1,0(t, 2π(n + 1)) = un,+(t, 2π(n + 1)) = un,−(t, 2π(n + 1)),

and{
L0∂xun,0(t, 2πn + π) = L+∂xun,+(t, 2πn + π) + L−∂xun,−(t, 2πn + π),
L0∂xun+1,0(t, 2π(n + 1))=L+∂xun,+(t, 2π(n + 1))+L−∂xun,−(t, 2π(n+1)).

The spectral bands of the linear operator for the periodic graph on Fig. 5a
depend on parameter L0, L+, and L−.

In the case L0 
= L+ = L− (left panel on Fig. 6), the Dirac points
disappear and all spectral bands but the flat bands are disjoint. The flat bands
still intersect with the interior points of the spectral bands of L. As a result,
the justification of the amplitude equation (21) can still be developed for the
NLS equation on the periodic quantum graph but the non-resonance condition
(23) is satisfied for every m0 ∈ N and �0 ∈ T1, for which ω(m0)(�0) is different
from the eigenvalue corresponding to the flat spectral bands.

Figure 6. The Floquet–Bloch spectrum of the linear oper-
ator L = −∂2

x for the periodic quantum graph plotted on
Fig. 5a with L0 = π + 0.3 and L+ = L− = π (left) and
L0 = π, L+ = π, and L− = π + 0.3 (right)
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Figure 7. The Floquet–Bloch spectrum of the linear opera-
tor L = −∂2

x for the periodic quantum graph plotted in Fig. 5b

In the case L0 = L+ 
= L− (right panel on Fig. 6), the degeneracy of
all flat bands is broken and all spectral bands have nonzero curvature and are
disjoint from each other. As a result, the non-resonance condition (23) is now
satisfied for every m0 ∈ N and �0 ∈ T1 without any reservations.

In a similar way, the quantum graph plotted in Fig. 5b can be handled.
We refrain here from details and only show the spectral picture in Fig. 7. Dirac
points appear now at � = ± 1

2 and the flat bands are now disjoint from the other
bands. Correspondingly, both the NLS amplitude equation and the coupled-
mode (Dirac) equations can be justified for the periodic quantum graph at the
corresponding points in the spectral bands.

Finally, we can think of transferring the ideas of the justification analysis
to other nonlinear evolution equations, which would include the nonlinear wave
equations and systems with quadratic nonlinearities. Since the eigenfunctions
are not smooth at the graph vertices due to the Kirchhoff boundary conditions,
we may face difficulties with analysis of convolution terms and near-identity
transformations, in comparison with a similar analysis for smooth periodic
potentials [7]. Additionally, more complicated non-resonance conditions may
appear in the analysis of the nonlinear wave equation without the gauge co-
variance compared to the case of the cubic NLS equation (1). Thus, it will
be a purpose of subsequent works to extend the justification analysis to other
nonlinear evolution equations.
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