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Abstract

We study the spectrum of the linearized NLS equation in three dimensions in
association with the energy spectrum. We prove that unstable eigenvalues of the
linearized NLS problem are related to negative eigenvalues of the energy spec-
trum, while neutrally stable eigenvalues may have both positive and negative
energies. The nonsingular part of the neutrally stable essential spectrum is al-
ways related to the positive energy spectrum. We derive bounds on the number
of unstable eigenvalues of the linearized NLS problem and study bifurcations
of embedded eigenvalues of positive and negative energies. We develop the L2-
scattering theory for the linearized NLS operators and recover results of Grillakis
[5] with a Fermi golden rule. c© 2004 Wiley Periodicals, Inc.

1 Introduction

In this paper we consider the spectrum of the linearized operator L = J H ,

(1.1) J =

(
1 0
0 −1

)
, H =

(
−� + ω + f (x) g(x)

g(x) −� + ω + f (x)

)
,

where x ∈ R
3, ω > 0, and f, g : R

3 → R are exponentially decaying C∞ func-
tions. The spectral problem on L2(R3, C

2),

(1.2) Lψ = zψ,

is related to the linearization of the nonlinear Schrödinger (NLS) equation,

(1.3) iψt = −�ψ + U (x)ψ + F(|ψ |2)ψ ,

where (x, t) ∈ R
3 × R and ψ ∈ C. For suitable functions U (x) and F(|ψ |2), the

NLS equation (1.3) possesses special solutions

(1.4) ψ = φ(x)eiωt ,
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where φ : R
3 → R and φ ∈ C∞. We assume that φ(x) is an exponentially

decreasing solution of the elliptic problem

(1.5) −�φ + ωφ + U (x)φ + F(φ2)φ = 0 .

If φ(x) > 0 ∀x ∈ R
3, it is referred to as the ground state. A unique radially

symmetric ground state exists if U (x) = 0 or if U (x) is radially symmetric [15].
If φ(x) is sign indefinite, it is referred to as the excited state.

Linearization of the nonlinear Schrödinger equation (1.3) with the ansatz

(1.6) ψ = (φ(x) + ϕ(x)e−i zt + θ̄ (x)ei z̄t)eiωt ,

where (ϕ, θ) : R
3 �→ C

2, z ∈ C, leads to the spectral problem (1.2) with ψ =

(ϕ, θ)T, f (x) = U (x)+F(φ2)+F ′(φ2)φ2, and g(x) = F ′(φ2)φ2. The eigenvalues
z of the spectral problem (1.2) are said to be unstable if Im(z) > 0, neutrally stable
if Im(z) = 0, and stable if Im(z) < 0. We assume that U (x) ∈ C∞ is exponentially
decreasing and F ∈ C∞, F(0) = 0, such that assumptions on f (x) and g(x) are
satisfied.

The nonlinear Schrödinger equation (1.3) in the space of three dimensions
was recently studied in the context of asymptotic stability of the ground states
[3, 17, 29]. Spectral and orbital stability of the ground states follows from the gen-
eral theorems of Weinstein [31] and Grillakis, Shatah, and Strauss [6, 7], since H
has a single negative eigenvalue for the positive ground state φ(x) [26]. Spectral
instabilities of excited states were studied by Jones [10] and Grillakis [5] with spe-
cial instability criteria. Instabilities and radiative decay of the excited states of the
NLS equation (1.3) was recently proven by Tsai and Yau [27, 28].

We study spectral properties of the linearized NLS problem (1.2) in the context
of instabilities of excited states of the NLS equation (1.3). Our main results are
based on separation of spectra of positive and negative energies, where the energy
functional is defined on H 1(R3, C

2):

(1.7) h = 〈ψ, Hψ〉 .

We will be using the notation 〈f, g〉 for the vector inner product of f, g ∈ L2(R3, C
2)

and notation ( f, g) for the scalar inner product of f, g ∈ L2(R3, C).
Using analysis of constrained eigenvalue problems, we prove that the spectrum

of H with negative energy (1.7) is related to a subset of isolated or embedded
eigenvalues z of the point spectrum of L corresponding to the eigenvectors ψ(x).
This part of the spectrum produces instabilities of the excited states, in which case
the linearized NLS problem (1.2) has eigenvalues z with Im(z) > 0. Sharp bounds
on the number and type of unstable eigenvalues of the linearized operator L are
given in terms of negative eigenvalues of the energy operator H ; see also [14, 16].
They improve and generalize the special results obtained in [5, 10].

Using an analysis of wave operators, we prove that the spectrum of H with
positive energy (1.7) is related to a nonsingular part of the essential spectrum of L
as well as to another subset of isolated or embedded eigenvalues z with Im(z) = 0.
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This part of the spectrum does not produce instabilities of excited states, but it
leads to instabilities when eigenvalues z with negative energy (1.7) coalesce with
essential spectrum or eigenvalues z with positive energy (1.7).

Using analysis of a Fermi golden rule, we study the singular part of the essen-
tial spectrum, which is related to embedded eigenvalues z with Im(z) = 0 and
|Re(z)| > ω. We prove that embedded eigenvalues z with positive energy (1.7)
disappear under generic perturbation, while the ones with negative energy (1.7)
bifurcate into isolated complex eigenvalues z of the point spectrum of L .

Bifurcations from resonances were recently studied by Kapitula and Sandstede
[11], who also suggested that instability bifurcations may occur from the interior
points of the essential spectrum. We will prove here that these instability bifurca-
tions do not occur in the linearized NLS problem (1.2), since no resonances may
occur in the interior points of the essential spectrum of L . The instability bifurca-
tions in the interior points therefore arise only when an embedded eigenvalue with
negative energy (1.7) is supported in the spectrum of L .

Our paper is structured as follows: Main results on spectra of positive and neg-
ative energy are formulated in Section 2. The point spectrum of negative energy
is studied in Section 3. The nonsingular essential spectrum of positive energy is
considered in Section 4. Bifurcations of embedded eigenvalues of positive and
negative energies are described in Section 5. Section 6 concludes the paper with
sharp bounds on the number and type of unstable eigenvalues of L .

2 Main Formalism

We use Pauli matrices

(2.1) σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

and rewrite L explicitly as

(2.2) L = (−� + ω + f (x))σ3 + ig(x)σ2 .

We notice that σ1Lσ1 = −L , σ3Lσ3 = L∗, and σjσk = −σkσj for j �= k. We also
decompose the operator L into the unbounded differential part L0 and bounded
potential part V (x) as L = L0 + V (x), where L0 = (−� + ω)σ3 and V (x) =

f (x)σ3 + ig(x)σ2.

ASSUMPTION 2.1 Let V (x) = B∗ A. Then, A(x) and B(x) are continuous, expo-
nentially decaying matrix-valued functions such that

(2.3) |Ai, j (x)| + |Bi, j (x)| < Ce−α|x | ∀x ∈ R
3, 1 ≤ i, j ≤ 2,

for some α > 0, C > 0.

We denote the point spectrum of L as σp(L) and the essential spectrum of L
as σe(L). The point spectrum is the union of isolated and embedded eigenvalues,
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while the essential spectrum includes the continuous spectrum with resonances and
embedded eigenvalues. We use the local L2

s space defined as

(2.4) L2
s = { f : (1 + |x |2)

s
2 f ∈ L2} .

Before formulating our main results, we shall prove that the operator L has
finitely many eigenvalues and no resonances at interior points of the essential spec-
trum. For analysis, we use the Birman-Schwinger kernel (see p. 89 in [23]), which
was applied to the linearized NLS problem (1.2) by Grillakis [5, appendix]. Using
a formal substitution � = −Aψ , we can see that the linearized NLS problem

(2.5) (L0 − z)ψ = −B∗ Aψ

is equivalent to the problem

(2.6) (I + Q0(z))� = 0 , Q0(z) = A(L0 − z)−1 B∗ ,

where I is the identity matrix in C
2×2 and 0 is the zero vector in C

2.

PROPOSITION 2.2 The set of isolated and embedded eigenvalues in the spectral
problem (2.6) is finite, and the corresponding generalized eigenspaces are finite-
dimensional.

PROOF: For Im(z) �= 0, Q0(z) : L2 → L2 is well-defined and compact. De-
note the extension of Q0(z) to D+ = {Im(z) ≥ 0} by Q+

0 (z). By Agmon [1], we
have

(2.7) lim
|z|→∞

‖Q+
0 (z)‖L2 �→L2 = 0 .

Then, by analytic Fredholm theory, the set of eigenvalues of the operator (I +

Q+
0 (z)) with nonempty generalized kernel Ng has a zero measure in D+. This set is

finite and dim
∑

zj
Ng(I +Q+

0 (zj )) < ∞, because A(x) and B(x) are exponentially
decreasing; see [5, 18]. �

PROPOSITION 2.3 Let D be the finite set of embedded eigenvalues, E be the set of
endpoints of the essential spectrum, E = {ω} ∪ {−ω}, and σe(L) be the essential
spectrum, σe(L) = R − (−ω,ω), of the spectral problem (2.6). For all 	 ∈ S,
where S = σe(L) − (D ∪ E), we have Ng(I + Q+

0 (	 + i0)) = 0.

The proof of Proposition 2.3 is based on the following lemma:

LEMMA 2.4 Suppose 	 ∈ R and |	| > ω. We have the following maps:

(i) ψ → � = −Aψ ,

ker(L − 	) ⊂ L2 → ker(I + Q+
0 (	)) ⊂ L2 ,

(ii) � → � = B∗� ,

ker(I + Q+
0 (	)) ⊂ L2 → ker(I + V (L0 − 	 − i0)−1) ⊂ L2

s , s ∈ R ,

(iii) � → ψ = (L0 − 	 − i0)−1� ,

ker(I + V (L0 − 	 − i0)−1) ⊂ L2
s → ker(L − 	) ⊂ L2 , s >

1

2
.
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PROOF: The only nontrivial step is the proof of (iii). We follow [20, XIII.8]
and consider 	 > ω. The crucial step consists in proving the following two claims:

(2.8) ψ ∈ L2 , ψ ∈ D(L0) ,

and

(2.9) (L − 	)ψ = 0

such that 	 is an eigenvalue for L . The second claim (2.9) follows from the first
claim (2.8), since for η ∈ C∞:

〈η, L0ψ〉 = lim
ε→0+

〈
η, L0(L0 − 	 − iε)−1�

〉
= lim

ε→0+
〈η, (	 + iε)ψ + �〉 = 〈η, (	 − V )ψ〉 .

In order to prove the first claim (2.8), we rewrite explicitly

(2.10)

(
ψ1

ψ2

)
= ((−� + ω)σ3 − 	 − i0)−1

(
�1

�2

)
and

(2.11)

(
�1

�2

)
= −

(
f g

−g − f

) (
ψ1

ψ2

)
such that

(2.12) (−� + ω + 	)ψ2 = −g(x)ψ1 − f (x)ψ2 .

Since 	 > 0 and f (x) and g(x) are exponentially decreasing, we conclude that
|ψ2(x)| ≤ Ce−α|x | ∀x ∈ R

3 for some α > 0, C > 0, and therefore ψ2 ∈ L2 and
ψ2 ∈ D(�). Furthermore, it follows from lemma 8 in [20, XIII.8] that ψ1 ∈ L2

and ψ1 ∈ D(�) if we can prove that

(2.13) Im
(
(−� + ω − 	 − i0)−1�1,�1

)
= 0 .

Using (2.10)–(2.11), we have

(2.14)
(
(−� + ω − 	 − i0)−1�1,�1

)
= −(ψ1, f ψ1) − (ψ1, gψ2) ,

and therefore

(2.15) Im
(
(−� + ω − 	 − i0)−1�1,�1

)
= − Im (ψ1, gψ2) = 0 ,

where the last equality follows from (2.12). �

COROLLARY 2.5 Let ψ(x) be the eigenvector for the embedded eigenvalue 	 ∈ R,
	 > ω in problem (2.5). Then, ψ ∈ L2

s , s > 0.

PROOF: It follows from the proof of Lemma 2.4 that ψ2 ∈ L2
s , s > 0. Since

�1 ∈ L2
s , s > 0, then theorem IX.41 in [20] implies that ψ1 ∈ L2

s , s > 0. �

Besides Assumption 2.1, we simplify analysis with more assumptions on the
spectrum of problems (2.5) and (2.6).

ASSUMPTION 2.6 For 	 = ±ω, we have Ng(I + Q+
0 (	 + i0)) = 0.



6 S. CUCCAGNA, D. PELINOVSKY, AND V. VOUGALTER

ASSUMPTION 2.7 ker(L) = {ϕ0} and Ng(L) = {ϕ0,ϕ1}, where ϕ0 and ϕ1 repre-
sent translations of bound states (1.4) along the complex phase φ �→ eiθφ, θ ∈ R,
and along the parameter ω, as follows:

(2.16) ϕ0 =

(
φ(x)

−φ(x)

)
, ϕ1 = −

(
∂ωφ(x)

∂ωφ(x)

)
.

ASSUMPTION 2.8 No real eigenvalues z of L exist such that 〈ψ, Hψ〉 = 0, where
ψ is the eigenvector of L .

Assumption 2.6 states that the endpoints 	 = ±ω are neither resonances nor
eigenvalues of L . Resonances and eigenvalues at the endpoints are studied in a
separate paper [4]. Assumption 2.7 states that the kernel of L is one-dimensional,
while the generalized kernel Ng(L) is two-dimensional, according to the symmetry
of the NLS equation (1.3). Although this assumption is somewhat restrictive, we
refer to a recent paper [2] for the case of Ng(L) of higher algebraic multiplicity.
Finally, Assumption 2.8 excludes positive real eigenvalues z with zero energy (1.7),
which are considered in a separate paper [30].

Employing Assumptions 2.6, 2.7, and 2.8, we consider a decomposition of
L2(R3, C

2) into the L-invariant Jordan blocks:

(2.17) L2 =
∑

z∈σp(L)

Ng(L − z) ⊕ Xc(L) =
∑

z∈σp(L)

Ng(L∗ − z) ⊕ Xc(L∗) ,

where σp(L) = σp(L∗), while Xc(L) and Xc(L∗) are constrained subspaces de-
fined by

(2.18) Xc(L) =
[ ∑

z∈σp(L)

Ng(L∗ − z)
]⊥

, Xc(L∗) =
[ ∑

z∈σp(L)

Ng(L − z)
]⊥

.

Let n(H) be the (finite) number of negative eigenvalues of H in L2(R3, C
2),

counting algebraic multiplicity. Let n(H)|X , X ⊂ L2, be the number of negative
eigenvalues of P H P in X , where P : L2 �→ X is an orthogonal projection onto X .

Let Nreal be the number of positive real eigenvalues of L , Nimag be the number
of positive imaginary eigenvalues of L , and Ncomp be the number of complex eigen-
values of L in the first open quadrant, counting their multiplicities. It is clear from
Assumption 2.7 and Section 3 that dim(σp(L)) = 2 + 2Nreal + 2Nimag + 4Ncomp. It
is also understood from Assumptions 2.6 and 2.8 that Nreal includes both isolated
eigenvalues for 0 < 	 < ω and embedded eigenvalues for 	 > ω with the nonzero
energy (1.7). Using this setting, we reproduce Theorem 3.1 from [7] and formulate
new results on the relations between numbers n(H), Nreal, Nimag, and Ncomp.

THEOREM 2.9 Let Assumption 2.7 be satisfied. Then Q′(ω) �= 0, where Q(ω) =∫
R3 φ2(x)dx is the squared L2 norm of the standing wave solution (1.4). Let X0(L)

be the constrained subspace of L2(R3, C
2),

(2.19) X0(L) =
{
ψ ∈ L2 : 〈ψ,ϕ∗

0〉 = 0, 〈ψ,ϕ∗
1〉 = 0

}
,
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where ϕ∗
0 = σ3ϕ0, ϕ∗

1 = σ3ϕ1. Then n(H)|X0 = n(H) − 1 if Q′(ω) > 0 and
n(H)|X0 = n(H) if Q′(ω) < 0.

THEOREM 2.10 Let Assumption 2.8 be satisfied. Let N−
real and N+

real be the num-
ber of positive real eigenvalues of L corresponding to eigenvectors ψ(x) with the
negative and positive energy (1.7), respectively, such that Nreal = N−

real + N+
real. Let

Xc(L) be the nonsingular part of the essential spectrum of L in (2.17). Then

(2.20) n(H)
∣∣

Xc
= n(H)

∣∣
X0

− 2N−
real − Nimag − 2Ncomp .

THEOREM 2.11 Let Assumptions 2.1, 2.6, and 2.8 be satisfied. The energy func-
tional (1.7) is strictly positive quadratic form in Xc(L),

(2.21) 〈ψ, Hψ〉 > 0 , ψ ∈ Xc(L) .

Theorem 2.9 and 2.10 are proven in Section 3, while Theorem 2.11 is proven
in Section 4. These results lead to the closure relation between the negative index
of H and the eigenvalues of L in the linearized NLS problem (1.2).

COROLLARY 2.12 Let Assumptions 2.1, 2.6, 2.7, and 2.8 be satisfied. Then the
following closure relation is true:

(2.22) Nimag + 2Ncomp + 2N−
real = n(H) − p(Q′) ,

where p(Q′) = 1 if Q′(ω) > 0 and p(Q′) = 0 if Q′(ω) < 0.

Corollary 2.12 can be used in tracing bifurcations of unstable eigenvalues Nimag

and Ncomp in the linearized NLS problem (1.2) by parameter continuations [14].
The closure relation (2.22) was first formulated in [16] for the matrix linearized
NLS equation on x ∈ R. It was proven in [16] with Sylvester’s inertia law of matrix
analysis. Our analysis here does not use matrix analysis but relies on functional
analysis of energy operators and constrained quadratic forms.

3 Point Spectrum of Negative Energy

We focus here on the point spectrum σp(L), which consists of a finite set of
isolated and embedded eigenvalues of finite multiplicities. We show that a subset
of the point spectrum of L in the linearized NLS problem (1.2) is related to the
spectrum of H with negative energy (1.7). For simplicity, we work with simple
eigenvalues and discuss the general case of multiple eigenvalues at the end of this
section.

For our analysis, we conveniently rewrite the eigenvalue problem (1.2) in the
equivalent form

(3.1) L+u = zw , L−w = zu .

The new problem (3.1) follows from the linearized NLS problem (1.2) with ψ =

(u + w, u − w)T and L± = −� + ω + f (x) ± g(x). The energy functional (1.7)
is equivalently written as

(3.2) h = 2(u, L+u) + 2(w, L−w) ,
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where ( f, g) stands for the scalar inner product of f, g ∈ C. We consider separately
the cases of real, purely imaginary, and complex eigenvalues z.

Let z = z0 > 0 be a simple real eigenvalue of problem (3.1) with the eigen-
vector (u0, w0)

T. It is obvious that problem (3.1) has another simple eigenvalue
z = −z0 with the eigenvector (u0,−w0)

T. The adjoint problem also has eigenval-
ues z0 and −z0, with the eigenvectors (w0, u0)

T and (−w0, u0)
T, respectively. It

follows from system (3.1) that

(3.3) (u0, L+u0) = z0(w0, u0) = (w0, L−w0) .

We have the following lemma:

LEMMA 3.1 Let z = z0 > 0 be a simple, real eigenvalue of L. The quadratic
forms (u0, L+u0) = (w0, L−w0) are nonzero.

PROOF: Suppose (u0, L+u0) = (w0, L−w0) = 0. By the Fredholm alternative,
there exists an eigenvector (u(1)

0 , w
(1)

0 )T ∈ Ng(L − z0) that satisfies the nonhomo-
geneous equation

(3.4) L+u(1)

0 = z0w
(1)

0 + w0 , L−w
(1)

0 = z0u(1)

0 + u0 .

However, the dimension of Ng(L − z0) must be 1, by the assumption that z = z0

is a simple eigenvalue. The contradiction is resolved when

(u0, L+u0) = (w0, L−w0) �= 0 .

�

Let z = i z I , zI > 0, be a simple, purely imaginary eigenvalue of problem (3.1)
with the eigenvector (u R + iu I , wR + iwI )

T. We show that we can set uI = 0,
wR = 0. Indeed, the spectral problem (3.1) is rewritten with z = i z I as

(3.5)

{
L+u R = −zI wI

L−wI = zI u R,

{
L+uI = zI wR

L−wR = −zI u I .

Since z = i z I is a simple eigenvalue, the vectors (u R, wI )
T and (uI ,−wR)T are

linearly dependent, so that we can set uI = 0, wR = 0. Thus, problem (3.1) has the
eigenvalue z = i z I with the eigenvector (u R, iwI )

T. It also has the eigenvalue z =

−i z I with the eigenvector (u R,−iwI )
T. The adjoint problem has the eigenvalues

i z I and −i z I with the eigenvectors (iwI , u R)T and (−iwI , u R)T, respectively. It
follows from (3.5) that

(3.6) (u R, L+u R) = −zI (wI , u R) = −(wI , L−wI ) .

The proof of Lemma 3.1 implies that (u R, L+u R) = −(wI , L−wI ) �= 0 if z = i z I ,
zI > 0, is a simple eigenvalue of L .

Let z = zR + i z I such that zR > 0 and zI > 0 be a simple complex eigenvalue
of problem (3.1) with the eigenvector (u R + iu I , wR + iwI )

T. Components of the
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eigenvector are coupled by the system of equations

(3.7)

{
L+u R = zRwR − zI wI

L+uI = zI wR + zRwI

and

(3.8)

{
L−wR = zRu R − zI u I

L−wI = zI u R + zRuI .

It is obvious that problem (3.1) has three other eigenvalues z̄, −z, and −z̄ with the
eigenvectors (u R−iu I , wR−iwI )

T, (u R+iu I ,−wR−iwI )
T, and (u R−iu I ,−wR+

iwI )
T, respectively. The adjoint problem has the same four eigenvalues with the

adjoint eigenvectors (w, u)T. Using the decomposition(
u
w

)
= c1

(
u R

wR

)
+ c2

(
uI

wI

)
,

where (c1, c2) are arbitrary parameters, we show that quadratic forms (u, L+u)

and (w, L−w) have one positive and one negative eigenvalue. The quadratic forms
transform as follows:

(u, L+u) = 〈c, M+c〉 , (w, L−w) = 〈c, M−c〉 ,

where c = (c1, c2)
T ∈ C

2 and the matrices M± take the forms

(3.9) M+ =

(
(u R, L+u R) (u R, L+uI )

(uI , L+u R) (uI , L+uI )

)
and

(3.10) M− =

(
(wR, L−wR) (wR, L−wI )

(wI , L−wR) (wI , L−wI )

)
.

LEMMA 3.2 Let z = zR + i z I be a simple, complex eigenvalue such that zR > 0
and zI > 0. Matrices M± have one positive and one negative eigenvalue and
M+ = M−.

PROOF: We derive two relations from (3.7) and (3.8):

zR(wR, uI ) − zI (wI , uI ) = zR(wI , u R) + zI (wR, u R) ,(3.11)

zR(wI , u R) − zI (wI , uI ) = zR(wR, uI ) + zI (wR, u R) .(3.12)

Since zR, zI �= 0, we have relations

(3.13) (wI , uI ) = −(wR, u R) , (wI , u R) = (wR, uI ) ,

and equivalently,

(uI , L+uI ) = −(u R, L+u R) , (uI , L+u R) = (u R, L+uI ) .(3.14)

Therefore, tr(M+) = 0 and det(M+) = −(u R, L+u R)2 − (u R, L+uI )
2 ≤ 0. By the

Fredholm alternative, we have det(M+) �= 0 if z = zR + i z I is a simple complex
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eigenvalue. Therefore, det(M+) < 0 and the matrix M+ has one positive and one
negative eigenvalue. Similarly, we prove that M+ = M−. �

Let K = Nreal + Nimag + 2Ncomp and assume that all nonzero eigenvalues of L
are simple. We define the linear constrained subspace Xc(L) from orthogonality
conditions

(3.15) Xc =
{
ψ ∈ X0(L) : {〈ψ, ϕ∗

j 〉 = 0}2K
j=1

}
,

where X0(L) is given by (2.19) and ϕ∗
j is the adjoint vector to the eigenvector ϕ j

of problem (1.2) with z = zj . The index 1 ≤ j ≤ K runs through all nonzero
eigenvalues of σp(L).

Equivalently, we rewrite the spaces X0(L) and Xc(L) for the vector u =

(u, w)T ∈ C
2:

X̂0 =
{
u ∈ L2 : (u, φ) = 0, (w, ∂ωφ) = 0

}
,(3.16)

X̂c =
{
u ∈ X̂0(L) : {(u, wj ) = 0, (w, uj ) = 0}K

j=1

}
.(3.17)

Abusing notation, we understand that (uj = u0, wj = w0) is the eigenvector for a
simple real eigenvalue z = z0 > 0, (uj = u R , wj = wI ) is the eigenvector for a
simple purely imaginary eigenvalue z = i z I , zI > 0, and (uj = u R , wj = wR) and
(uj+1 = uI , wj+1 = wI ) are eigenvectors for a pair of simple, complex eigenvalues
z = zR + i z I and z = zR − i z I , where zR > 0 and zI > 0. Using the same
notation, we prove that the eigenvectors (uj , wj ) for distinct eigenvalues z = zj are
orthogonal with respect to the adjoint eigenvectors (wj , uj ).

LEMMA 3.3 Let zi and zj be two eigenvalues of problem (3.1) with two eigenvec-
tors (ui , wi )

T and (uj , wj )
T such that zi �= ±zj and zi �= ±z̄ j . Components of the

eigenvectors are skew-orthogonal as follows:

(3.18) (ui , wj ) = (wi , uj ) = 0 .

Moreover, each separate set {uj }
K
j=1 and {wj }

K
j=1 is linearly independent.

PROOF: Orthogonality relations (3.18) follow from system (3.1) in L2(R3, C
2),

when zi �= ±zj and zi �= ±z̄ j . Linear independence of eigenvectors is standard for
distinct eigenvalues. Furthermore, each separate set {uj }

K
j=1 and {wj }

K
j=1 is linearly

independent, when all Re(zj ) ≥ 0, Im(zj ) ≥ 0, and zj �= 0. �

We prove Theorems 2.9 and 2.10, based on the following abstract lemma:

LEMMA 3.4 Let L be a self-adjoint operator on a Hilbert space X ⊂ L2 with a
finite negative index n(L)|X , empty kernel, and positive essential spectrum. Let Xc

be the constrained linear subspace

(3.19) Xc =
{
v ∈ X : {(v, vj ) = 0}N

j=1

}
,
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where the set {vj }
N
j=1 ∈ X is linearly independent. Let negative eigenvalues of L in

Xc be defined by the problem

(3.20) Lv = µv −

N∑
j=1

νjvj , v ∈ Xc, µ < 0 ,

where {νj }
N
j=1 is a set of Lagrange multipliers. Let the matrix-valued function A(µ)

be defined in the form

(3.21) Ai, j (µ) = (vi , (µ − L)−1vj ) , µ /∈ σ(L) .

If P eigenvalues of A(0) are nonnegative, then n(L)|Xc = n(L)|X − P.

Before proving Lemma 3.4, we consider the following elementary fact:

LEMMA 3.5 If B is a negative definite operator on a Hilbert space X, (v, Bv) < 0
for all v ∈ X, v �= 0, and the set {vj }

N
j=1 ∈ X is linearly independent, then the

matrix B̂, given by

(3.22) B̂i, j = (vi , Bvj ) , 1 ≤ i, j ≤ N ,

is negative definite on C
N .

PROOF: For any x = (x1, . . . , xN )T ∈ C
N , x �= 0, the matrix B̂ is negative

definite since

(3.23) 〈x, B̂x〉 =
( N∑

j=1

xjvj , B
N∑

j=1

xjvj

)

and the set {vj }
N
j=1 is linearly independent such that

∑N
j=1 xjvj �= 0. �

PROOF OF LEMMA 3.4: Via spectral calculus (see [19, 22]), we have the de-
composition in X ⊂ L2:

(3.24) Ai, j (µ) =

∫ ∞

µ1

(vi , d Eλvj )

µ − λ
, µ /∈ σ(L) ,

where Eλ is the spectral family associated with the operator L , µ1 is the smallest
eigenvalue in X , and σ(L) is the spectrum of L in X . An easy calculation yields∣∣∣∣ Ai, j (µ + h) − Ai, j (µ)

h
+

∫ ∞

µ1

(vi , d Eλvj )

(µ − λ)2

∣∣∣∣
≤ |h|‖vi‖X

∥∥∥∥
∫ ∞

µ1

d Eλ

(µ − λ)2(µ + h − λ)

∥∥∥∥
X

‖vj‖X

≤
|h|

d(µ)2(d(µ) − |h|)
‖vi‖X‖vj‖X ,(3.25)
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where d(µ) = min{|µ − λ|, λ ∈ σ(L)}. Since the upper bound in (3.25) vanishes
in the limit h → 0, the derivative A′

i, j (µ) exists,

(3.26) A′
i, j (µ) = −

∫ ∞

µ1

(vi , d Eλvj )

(µ − λ)2
= −

(
vi , (µ − L)−2vj

)
.

The operator −(µ− L)−2 is negative definite such that the matrix A′(µ) is negative
definite on C

N by Lemma 3.5. Let {αi (µ)}N
i=1 be real-valued eigenvalues of A(µ)

and {νi (µ)}N
i=1 be eigenvectors of A(µ). According to the perturbation theory,

the derivatives α′
i (µ) are given by eigenvalues of the matrix 〈νi (µ), A′(µ)ν j (µ)〉.

Since A′(µ) is negative definite, we have α′
i (µ) < 0, 1 ≤ i ≤ N , by Lemma 3.5.

Therefore {αi (µ)}N
i=1 are monotonically decreasing functions for µ /∈ σ(L).

Let Lv
j
k = µkv

j
k , µk < 0, 1 ≤ k ≤ K0, 1 ≤ j ≤ mk , where mk is the

multiplicity of µk and {v
j
k }

mk
j=1 is the orthonormal set of eigenfunctions for µk . The

negative index of the operator L in X is n(L)|X =
∑K0

k=1 mk ≡ K . Via spectral
calculus, we have

(3.27) A(µ) =
1

µ − µk
Ak + Bk(µ) ,

where

(Ak)i, j = (Pkvi , Pkvj ) , 1 ≤ i, j ≤ N ,

(Bk)i, j (µ) =

∫
[µ1,∞)\(µk−δ,µk+δ)

(vi , d Eλvj )

µ − λ
, 1 ≤ i, j ≤ N ,

and Pk is the projection onto the subspace spanned by {v
j
k }

mk
j=1. It is clear that

there exists δ such that no other eigenvalues of operator L occur in the interval
(µk − δ, µk + δ). The nth derivative for the (i, j)–element of the matrix Bk(µ) is

dn

dµn
(Bk)i, j (µ) = (−1)nn!

∫
[µ1,∞)\(µk−δ,µk+δ)

(vi , d Eλvj )

(µ − λ)n+1
, 1 ≤ i, j ≤ N ,

where n is any nonnegative integer, and µ ∈ (µk − 1
2δ, µk + 1

2δ). Therefore,

∣∣∣∣ dn

dµn
(Bk)i, j (µ)

∣∣∣∣ ≤ n!

∣∣∣∣
(

vi ,

∫
[µ1,∞)\(µk−δ,µk+δ)

d Eλ

(µ − λ)n+1
vj

)∣∣∣∣
≤ n!‖vi‖X

∥∥∥∥
∫

[µ1,∞)\(µk−δ,µk+δ)

d Eλ

(µ − λ)n+1

∥∥∥∥
X

‖vj‖X
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by the Schwarz inequality and the definition of the operator norm. Furthermore,
we have the estimate for µ ∈ (µk − 1

2δ, µk + 1
2δ):∥∥∥∥

∫
[µ1,∞)\(µk−δ,µk+δ)

d Eλ

(µ − λ)n+1

∥∥∥∥
X

=

sup

{
1

|µ − λ|n+1
, λ ∈ σ(L), λ �= µk

}
≤

(
2

δ

)n+1

,

and therefore for µ ∈ (µk − 1
2δ, µk + 1

2δ)

(3.28)

∣∣∣∣ dn

dµn
(Bk)i, j (µ)

∣∣∣∣ ≤ n!

(
2

δ

)n+1

‖vi‖X‖vj‖X .

We conclude that the infinitely differentiable, matrix-valued function Bk(µ) is an-
alytic in the neighborhood of µ = µk by comparison with geometric series. The
representation (3.27) implies that the eigenvalue problem for A(µ) can be written
as

(Ak + Bk(µ)(µ − µk))νi (µ) = αi (µ)(µ − µk)νi (µ) , 1 ≤ i ≤ N .

The Hermitian matrix Ak + Bk(µ)(µ−µk) is analytic in the neighborhood of µ =

µk and therefore, according to perturbation theory (see, e.g., [20]), its eigenvalues
are analytic in the neighborhood of µ = µk such that

αi (µ)(µ − µk) = α0
i + (µ − µk)βi (µ) , 1 ≤ i ≤ N ,

where α0
i are eigenvalues of Ak and βi (µ) are analytic near µ = µk . Therefore,

the behavior of αi (µ) in the neighborhood of µ = µk depends on the rank of the
matrix Ak according to the behavior near µ = µk :

(3.29) αi (µ) =
α0

i

µ − µk
+ βi (µ) , 1 ≤ i ≤ N .

Since the matrix Ak is nonnegative for all x ∈ C
N ,

〈x, Akx〉 =
∥∥∥Pk

N∑
i=1

xivi

∥∥∥2

X
≥ 0 ;

then α0
i ≥ 0, 1 ≤ i ≤ N . Given Nk = rank(Ak) such that 0 ≤ Nk ≤ min(mk, N ),

there are precisely Nk linearly independent {Pkvi }
Nk
i=1. Then we can construct the

orthonormal set of eigenvectors {vi
k}

mk
i=1 corresponding to µk such that vi

k /∈ Xc,
1 ≤ i ≤ Nk , and vi

k ∈ Xc, Nk + 1 ≤ i ≤ mk . Therefore, α0
i > 0, 1 ≤ i ≤ Nk , such

that
lim

µ→µ+
k

αi (µ) = +∞ , lim
µ→µ−

k

αi (µ) = −∞ , 1 ≤ i ≤ Nk ,

while α0
i = 0, Nk + 1 ≤ i ≤ N , such that αi (µ), Nk + 1 ≤ i ≤ N , are continuous

at µ = µk .
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Assume now that αi (µ), 1 ≤ i ≤ N , has vertical asymptotes at µ = µi1 <

µi2 < · · · < µiKi
< 0. Each element of the matrix A(µ) in (3.21) can be estimated

using the Schwarz inequality and spectral calculus for µ < µ1:

∣∣(vi , (µ − L)−1vj )
∣∣ ≤ ‖vi‖X

(∫ ∞

µ1

(vj , d Eλvj )

(µ − λ)2

) 1
2

≤
‖vi‖X‖vj‖X

|µ| − |µ1|

such that the eigenvalues αi (µ), 1 ≤ i ≤ N , tend to 0 as µ → −∞. Since they are
monotonically decreasing when µ /∈ σ(L), we have αi (µ) < 0 on µ ∈ (−∞, µi1).

On the interval µ ∈ (µil , µil+1), 1 ≤ l ≤ Ki − 1, the eigenvalue αi (µ) is
continuous and monotonic and has a simple zero at µ = µ∗

l , µ∗
l ∈ (µil , µil+1) with

the unique eigenfunction

v∗
l =

N∑
j=1

νl
j (µ

∗
l − L)−1vj ,

where A(µ∗
l )νi (µ

∗
l ) = 0 and νi (µ

∗
l ) = (νl

1, . . . , ν
l
N )T. Since

∥∥(µ∗
l − L)−1vi

∥∥2
X

=

∫ ∞

µ1

(vi , d Eλvi )

(µ∗
l − λ)2

≤
‖vi‖

2
X

d(µ∗
l , σ (L))2

< ∞ , 1 ≤ i ≤ N ,

where d(µ∗
l ) = min{|µ∗

l − λ|, λ ∈ σ(L)}, we prove that ‖u∗
l ‖X < ∞. Therefore,

(Ki − 1) negative eigenvalues of L in Xc are located at µ∗
l ∈ (µil , µil+1), 1 ≤ l ≤

Ki − 1. Due to the monotonicity, αi (µ) > 0 on µ ∈ (µiKi
, 0) if αi (0) ≥ 0 or αi (µ)

has precisely one zero at µ = µ∗
Ki

, µ∗
Ki

∈ (µiKi
, 0), if αj (0) < 0.

The negative index of the operator L in the constrained subspace Xc is

n(L)
∣∣

Xc
= K −

N∑
i=1

(Ki − Ki + 1 − �(−αi (0))) = n(L)
∣∣

X
− P ,

where �(x) is the Heaviside step function and P is the number of nonnegative
eigenvalues αi (0), 1 ≤ i ≤ N , such that 0 ≤ P ≤ N . �

PROOF OF THEOREM 2.9: By Assumption 2.7, the Jordan block for Ng(L)

ends on the eigenvector ϕ1 in (2.16). By the Fredholm alternative theorem, it
implies that

(3.30) (φ, ∂ωφ) =
1

2
Q′(ω) �= 0 .

Consider the self-adjoint diagonal operator (L+, L−) on L2(R3, C
2). Define nega-

tive eigenvalues of L± in X̂0(L) by the constrained problem

(3.31) L+u = µu − ν+
0 φ , L−w = µw − ν−

0 ∂ωφ , (u, w)T ∈ X̂0 ,

where µ < 0 and ν±
0 are Lagrange multipliers. Then, we apply Lemma 3.4 with a

single constraint (N = 1) and compute

(3.32) A+(0) = −(φ, L−1
+ φ) =

1

2
Q′(ω) .
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The proof of the theorem follows from Lemma 3.4 if A−(0) is negative. Using
L−φ = 0 and Q′(ω) �= 0, we prove that A−(0) is unbounded. Since A−(µ) is
monotonically decreasing for µ /∈ σ(L−), we have

(3.33) lim
µ→0−

A−(µ) = −∞ .

Extending the last paragraph of the proof of Lemma 3.4 to the case when

lim
µ→0−

αi (µ) = −∞ ,

we prove the statement of theorem. �

PROOF OF THEOREM 2.10: Consider the self-adjoint diagonal operator
(L+, L−) on a subspace X̂0(L) ⊂ L2(R3, C

2). Define negative eigenvalues of
L± in X̂c(L) by the constrained problem:

L+u = µu −

K∑
j=1

ν+
j P+

0 wj ,

L−w = µw −

K∑
j=1

ν−
j P−

0 uj , (u, w)T ∈ X̂c ,

(3.34)

where µ < 0, {ν±
j }K

j=1 is a set of Lagrange multipliers, and P±
0 is orthogonal

projection from L2(R3, C
2) to X̂0(L). By Lemma 3.3, components of the eigen-

vectors (uj , wj )
T, 1 ≤ j ≤ K , are linearly independent and skew-orthogonal to

components of eigenvectors (0, φ) and (∂ωφ, 0) for the zero eigenvalue such that
(wj , ∂ωφ) = 0, P+

0 wj = wj , and (uj , φ) = 0, P−
0 uj = uj , 1 ≤ j ≤ K .

Define matrices A±(µ) by the elements:

A+
i, j (µ) =

(
wi , (µ − L+)−1wj

)
, A−

i, j (µ) =
(
ui , (µ − L−)−1uj

)
.

It follows from the orthogonality relations (3.18) that the matrices A±(0) are de-
composed into diagonal blocks. For the real eigenvalue z = z0, the blocks include
the diagonal entry

A+
j, j (0) = A−

j, j (0) = −
1

z0
(u0, w0) = −

1

z2
0

(u0, L+u0) = −
1

z2
0

(w0, L−w0) .

For the purely imaginary eigenvalues z = i z I , the blocks include the diagonal entry

A+
j, j (0) = −A−

j, j (0) =
1

zI
(u R, wI ) = −

1

z2
I

(u R, L+u R) =
1

z2
I

(wI , L−wI ) .

For the complex eigenvalue z = zR + i z I , the blocks include the 2 × 2 matrix
M+ = M− defined in (3.9)–(3.10):

A+
i,k(0) = A−

i,k(0) = −
(
Z2 M+

)
I,J

,
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where j ≤ i , k ≤ j + 1, 1 ≤ I, J ≤ 2, and

Z =
1

z2
R + z2

I

(
zR zI

−zI zR

)
.

Since

det
(
Z2 M+

)
=

det(M+)

(z2
R + z2

I )
2

< 0 ,

the matrix Z2 M+ has one positive and one negative eigenvalue, similarly to matrix
M+. Counted together, the matrices A±(0) have 2N−

real + Nimag + 2Ncomp positive
eigenvalues. Therefore, the reduction formula (2.20) is proven by Lemma 3.4. �

The proof of Theorem 2.10 is given in the case of simple eigenvalues. Gener-
alization for semisimple eigenvalues is trivial. Multiple eigenvalues can be con-
sidered as the limiting case of simple eigenvalues. Multiple purely imaginary and
complex eigenvalues preserve the relation (2.20) in the limiting case, while multi-
ple real eigenvalues with zero energy (3.2) violate the relation (2.20) in the limiting
case. We excluded the latter eigenvalues by Assumption 2.8 to simplify the formal-
ism.

4 Nonsingular Essential Spectrum of Positive Energy

We focus here on the action of L in Xc(L), where Xc(L) is the nonsingular part
of the essential spectrum of L , defined equivalently in (2.18) and (3.15). We show
that the nonsingular essential spectrum of L is related to the spectrum of H with
the positive energy (1.7).

We prove Theorem 2.11 using the scattering theory of wave operators in Xc(L).
From a technical standpoint, we apply the theory of global smoothness by Kato
[12] and prove that the operator L acts in Xc(L) like the operator L0 acts in
L2(R3, C

2). The concept of global smoothness for the proof of existence and com-
pleteness of wave operators cannot be used in many classical situations, e.g., for
short-range Schrödinger operators on the line. In some situations, a local smooth-
ness can be used instead; see [20, theorem XIII.7C]. The local smoothness applies
to the operator L , which does not meet Assumption 2.6, as shown in the separate
paper [4]. We formulate the main result on existence of wave operators in Xc(L).

PROPOSITION 4.1 Let Assumptions 2.1, 2.6, and 2.8 be satisfied. Then there exist
isomorphisms between Hilbert spaces W : L2 �→ Xc(L) and Z : Xc(L) �→ L2,
which are inverses of each other, defined as follows:

(4.1) ∀u ∈ L2,∀v ∈ Xc(L∗) : 〈W u, v〉 = 〈u, v〉

+ lim
ε→0+

1

2π i

∫ +∞

−∞

〈A(L0 − λ − iε)−1u, B(L∗ − λ − iε)−1v〉dλ ,
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and

(4.2) ∀u ∈ Xc(L),∀v ∈ L2 : 〈Zu, v〉 = 〈u, v〉

+ lim
ε→0+

1

2π i

∫ +∞

−∞

〈A(L − λ − iε)−1u, B(L0 − λ − iε)−1v〉dλ .

By Kato [12], Proposition 4.1 is proven with two lemmas below.

LEMMA 4.2 There exists c > 0 such that ∀u ∈ L2 and ∀ε �= 0, the following
bounds are true: ∫ ∞

−∞

‖A(L0 − iε − λ)−1u‖2 dλ ≤ c‖u‖2 ,(4.3) ∫ ∞

−∞

‖B(L0 − iε − λ)−1u‖2 dλ ≤ c‖u‖2 .(4.4)

PROOF: See the corollary to theorem XIII.25 in [20] for the proof. �

LEMMA 4.3 There exists c > 0 such that ∀ε �= 0, the following bounds are true:∫ ∞

−∞

‖B(L∗ − iε − λ)−1u‖2 dλ ≤ c‖u‖2 ∀u ∈ Xc(L∗) ,(4.5) ∫ ∞

−∞

‖A(L − iε − λ)−1u‖2 dλ ≤ c‖u‖2 ∀u ∈ Xc(L) .(4.6)

PROOF: We prove the second bound (4.6). The proof of the first bound (4.5)
can be done similarly. We write

(4.7) A(L − z)−1v =
(
I + Q+

0 (z)
)−1

A(L0 − z)−1v .

If (I + Q+
0 (z))−1 is uniformly bounded in z ∈ D, there is nothing to prove. By

Propositions 2.2 and 2.3 and by Assumption 2.6, this operator is unbounded only
near isolated and embedded eigenvalues of L . If z0 is an isolated eigenvalue of L ,
then A(L − z)−1v is analytic near z = z0 if v ∈ Xc(L) because the orthogonal
projection of v in Ng(L − z0) is empty. We show that similar arguments can be de-
veloped for embedded eigenvalues. By Assumption 2.8, the embedded eigenvalue
z = 	0 has a nonzero energy (1.7).

Suppose z = 	0 > ω is an embedded eigenvalue of L . For simplicity we
assume that dim ker(L − 	0) = 1 such that there exist φ0 and φ∗

0:

(4.8) (L − 	0)φ0 = 0 , (L∗ − 	0)φ
∗
0 = 0 ,

〈
φ0,φ

∗
0

〉
= 1 .

It follows from the explicit form (1.1) that

(4.9) φ∗
0 =

σ3φ0

〈φ0, σ3φ0〉
.
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By Assumption 2.8, 〈φ0, σ3φ0〉 �= 0, which is equivalent to the condition that
dim Ng(L − 	0) = 1. The embedded eigenvalue z = 	0 is a singular point for
(I + Q+

0 (z))−1 with the Laurent expansion

(4.10)
(
I + Q+

0 (z)
)−1

=

M−1∑
l=0

(z − 	0)
−M+lC−M+l + F(z) ,

where F(z) is analytic around z = 	0 and C−M+l are finite rank operators for some
M < ∞; see [25]. We have

(4.11)
(
I + Q+

0 (	0)
)
C−M = 0 ,

(
I + Q+

0 (	0)
)∗

C∗
−M = 0 ,

and Lemma 2.4 implies that

(4.12) C−M = c0 Aφ0

〈
· , Bφ∗

0

〉
,

where c0 is a constant.
We show that M = 1 and c0 = 1. The operator A(L − z)−1φ0 has the main

term (	0 − z)−1 Aφ0 in the Laurent expansion at z = 	0, while the operator (I +

Q+
0 (z))−1 A(L0 − z)−1φ0 has the main term −c0(z − 	0)

−M Aφ0. While Aφ0 �= 0
by Lemma 2.4, it follows from (4.7) that the two terms must be the same such that
M = 1 and c0 = 1.

A uniform expansion of A(L − z)−1v in z near z = 	0 follows from equations
(4.7) and (4.10):

(4.13) A(L − z)−1v =

− 	0)
−1 Aφ0

〈
A(L0 − z)−1v, Bφ∗

0

〉
+ F(z)A(L0 − z)−1v .

Since the ator F(z) is bounded in z, the second term of (4.13) is in the y space
H 2(D+), where D+ = {z ∈ C : Im z ≥ 0}. We analyze the singular part, given by
the first term of (4.13):

(z − 	0)
−1 Aφ0

〈
A[R0(z) − R0(	0)]v, Bφ∗

0

〉
+ (z − 	0)

−1 Aφ0

〈
AR0(	0)v, Bφ∗

0

〉
= Aφ0

〈
AR0(	0)R0(z)v, Bφ∗

0

〉
− (z − 	0)

−1 Aφ0

〈
v,φ∗

0

〉
,

where R0(z) = (L0 − z)−1 and we have used that

R0(z) − R0(	0) = (z − 	0)R0(	0)R0(z) .

If v ∈ Xc(L), then 〈v,φ∗
0〉 = 0 and

A(L − z)−1v = −Aφ0

〈
R0(z)v,φ∗

0

〉
+ F(z)A(L0 − z)−1v .(4.14)

By Corollary 2.5, the eigenvectors φ0(x) and φ∗
0(x) are rapidly decreasing such

that 〈R0(z)v,φ∗
0〉 is in the Hardy space H 2(D+), and so is A(L − z)−1v. �
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PROOF OF THEOREM 2.11: Let Pc and P∗
c be spectral projections on Xc(L)

and Xc(L∗), respectively. Then

(4.15) P∗
c σ3 = σ3 Pc , W ∗σ3 = σ3 Z , Z∗σ3 = σ3W , Z L = L0 Z .

If ψ ∈ Xc(L), there exists ψ̂ ∈ L2 such that ψ = W ψ̂ . Therefore, a simple
transformation shows that

〈ψ, Hψ〉 = 〈W ψ̂, σ3LW ψ̂〉 = 〈W ψ̂, L∗ Z∗σ3ψ̂〉

= 〈L0 Z W ψ̂, σ3ψ̂〉 = 〈(−� + ω)I ψ̂, ψ̂〉 > 0 .

�

COROLLARY 4.4 There exists a constant C such that for all t > 0

(4.16) ‖ei Lt : Xc(L) → Xc(L)‖ < C .

Corollary 4.4 is taken as a hypothesis in the recent paper [21], while the ar-
guments leading to the statement in the original paper [3] are inconclusive. The
statement is proven trivially in the context of Proposition 4.1.

5 Embedded Eigenvalues of Positive and Negative Energies

We focus here on the singular part of the essential spectrum of L . Since res-
onances are impossible due to Proposition 2.3 and Assumption 2.6, the singular
part is only related to embedded eigenvalues of the point spectrum z = 	0, where
|	0| > ω. The embedded eigenvalues are structurally unstable, so that a generic
perturbation with a nonzero Fermi golden rule results in bifurcations of embedded
eigenvalues off the essential spectrum. We show that embedded eigenvalues of L
with positive energy (1.7) disappear from the point spectrum of L , while embedded
eigenvalues of L with negative energy (1.7) become isolated complex eigenvalues
of the point spectrum of L . These results are in agreement with our main results,
formulated in Theorems 2.10 and 2.11, since the nonsingular essential spectrum
of L has positive energy (1.7), while complex eigenvalues of L are related to the
spectrum of H with negative energy (1.7).

Embedded eigenvalues with negative energy are very typical in the linearized
NLS problem (1.2), since the diagonal part of operator L takes the form of the pair
of Schrödinger operators Ls and (−Ls), where Ls = −� + ω + f (x), pointing
in opposite directions. When φ = 0, we have f = U (x) and g = 0 such that
negative eigenvalues of Ls become embedded eigenvalues with negative energy in
the linearized NLS problem (1.2); see also [28, 29].

Instability of embedded eigenvalues with negative energy for the linearized
NLS problem (1.2) was shown with variational arguments by Grillakis [5, the-
orem 2.4]. Recently Tsai and Yau [28] proved the same results with the Fermi
golden rule arguments. Soffer and Weinstein [24] also used the time-dependent
resonance theory with the Fermi golden rule. The concept of the Fermi golden rule
is related to rigorous methods used in literature of the late 1960s; see [8, 9].
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Following Howland [8, 9], we frame the problems treated in [5, 28] in a gen-
eral context and show that the analysis involving Weinstein-Aronszajn determinant
contains all essential elements in the proof of structural instability of embedded
eigenvalues. We strengthen theorem 2.4 of [5] by allowing the embedded eigenval-
ues to have positive energy (1.7) as well. Also, our Assumptions 2.1, 2.6, and 2.8
are weaker than assumption (∗) in [5, p. 320]. Assumptions of [28] satisfy both our
assumptions and assumption (∗). Our main result is formulated in the following
proposition:

PROPOSITION 5.1 Let Assumptions 2.1, 2.6, and 2.8 be satisfied. Assume that
wave operators W : L2 �→ Xc(L) and Z : Xc(L) �→ L2 for the unperturbed
operator L = L0 + V (x) exist. Let L1 = L + εV1(x), where V1(x) = B∗

1 A1, and
A1 and B1 are smooth functions that satisfy the decay rate (2.3). Let z = 	0 > ω

be a semisimple, embedded eigenvalue of L such that

dim ker(L − 	0) = dim(Ng(L − 	0)) = N

with the basis of eigenvectors {φ j }
N
j=1. Suppose that 〈φ j , Hφ j 〉 < 0 for 1 ≤ j ≤ k

and 〈φ j , Hφ j 〉 > 0 for k + 1 ≤ j ≤ N. Then for generic V1(x) and for small
ε, the point spectrum of L1 has exactly 2k complex conjugate eigenvalues z with
Im(z) �= 0 and no embedded eigenvalues near z = 	0.

Although it is assumed explicitly in Proposition 5.1, existence and complete-
ness of wave operators W : L2 �→ Xc(L) and Z : Xc(L) �→ L2 is proven for
the unperturbed operator L = L0 + V (x) in Proposition 4.1. The proof of Propo-
sition 5.1 is based on two results of Howland [8, 9]. First, we relate locations
of embedded eigenvalues with zeros of an analytic function �(z), which is the
Weinstein-Aronszajn determinant [8]. Then, we look for zeros of �(z) at small ε

and use the Fermi golden rule [9].

LEMMA 5.2 Let Q+(z) = A1(L − z)−1 B∗
1 and Q+

1 (z) = A1(L1 − z)−1 B∗
1 be

operator extensions in D+ = {z ∈ C : Im z ≥ 0}. Let z0 ∈ D+, z0 �= ±ω be an
eigenvalue of L. Then Q+(z) and Q+

1 (z) are meromorphic in a neighborhood of
z = z0 with the respective principal parts

A1(L − z)−1|Ng(L−z0) B∗
1 , A1(L1 − z)−1|Ng(L1−z0) B∗

1 .

PROOF: Let A1 = A. It follows from (4.7) for L = L0 + B∗ A that

(5.1) A(L − z)−1 B∗
1 =

(
I + B∗(L0 − z)−1 A

)−1
A(L0 − z)−1 B∗

1 ,

where A(L0 − z)−1 B∗
1 is analytic around z = z0 and (I + B∗(L0 − z)−1 A)−1 is

meromorphic around z0. As a result, A(L −z)−1 B∗
1 is meromorphic around z = z0.

Denote by P the projection onto Ng(L−z0), according to the decomposition (2.17):

(5.2) A(L − z)−1 B∗
1 = A(L − z)−1|Ng(L−z0) B∗

1 + A(I − P)(L − z)−1 B∗
1 .

Since A(L − z)−1 B∗
1 v and AP(L − z)−1 B∗

1 v are meromorphic near any z0 ∈ R,
z0 �= ±ω, then A(I − P)(L − z)−1 B∗

1 v is meromorphic. Let ṽ = (I − P)B∗
1 v
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such that ṽ ∈ Xc(L). By Lemma 4.3, A(L − z)−1ṽ is in the Hardy space H 2(D+).
Therefore, z0 ∈ R, z0 �= ±ω, cannot be a pole for A(I − P)(L − z)−1 B∗

1 v, so it is
analytic around z = z0.

Let A1 �= A and choose the factorizations V = B∗ A and V1 = B∗
1 A1 so that

A1 A−1 ∈ L∞. Then the lemma is proven as

(5.3) A1(L − z)−1 B∗
1 = A1 A−1 A(L − z)−1 B∗

1 .

Similarly, let L1 = L0+V2, where V2 = B∗
2 A2 and A2 and B2 are smooth functions

that satisfy the decay rate (2.3) such that A1 A−1
2 ∈ L∞(R3). Then, we write

(5.4) A1(L1 − z)−1 B∗
1 = A1 A−1

2 A2(L1 − z)−1 B∗
1 ,

where A2(L1−z)−1 B∗
1 satisfies the analogue of (5.1). As a result, the last statement

of the lemma follows from the same arguments, which are used for L and applied
now to L1. �

By theorem 1 in [25] and also lemma 1.4 in [8], Lemma 5.2 implies that there
exists an analytic, operator-valued function A(z) such that

(5.5) A(z)(I + Q+(z)) = I + F(z) ,

where F(z) is meromorphic of finite rank. The Weinstein-Aronszajn determinant
�(z) is defined in [13, p. 161] as

(5.6) �(z) = det(I + F(z)) .

The function �(z) is meromorphic and complex-valued in z ∈ D+.

LEMMA 5.3 Let ν(z, L) = dim(Ng(L − z)) and ν(z, L1) = dim(Ng(L1 − z)) in
z ∈ D+. Let ν(z,�) be the index of �(z) such that ν(z,�) = k if z is a zero of
order k, ν(z,�) = −k if z is a pole of order k, and ν(z,�) = 0 otherwise. If
z = 	0 > ω is an embedded eigenvalue of L, then

(5.7) ν(	0, L1) = ν(	0, L) + ν(	0,�) .

PROOF: Denote by P and P1 the projections on Ng(L −	0) and Ng(L1 −	0),
respectively, associated to the Jordan block decomposition. Let D0 be a small disk
centered at z = 	0. By calculations in [8], we have

ν(	0,�) =
1

2π i
tr

∫
∂ D0

d

dz
Q+(z)(I + Q+(z))−1 dz

=
1

2π i
tr

∫
∂ D0

A1(L − z)−1(L1 − z)−1 B∗
1 dz ,(5.8)

where tr stands for trace, defined in [13, p. 162]. We prove that the representation
(5.8) is equivalent to

ν(	0,�) = tr Res
[
A1 P(L − z)−1(L1 − z)−1 B∗

1 , 	0
]

+ tr Res
[
A1(L − z)−1(L1 − z)−1 P1 B∗

1 , 	0
]
,(5.9)
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where Res stands for residue. It is clear that

Res
[
A1(L − z)−2 B∗

1 (I + A1(L − z)−1 B∗
1 )−1, 	0

]
(5.10)

= − Res
[
A1(L − z)−2 B∗

1 A1(L − z)−1 B∗
1 (I + A1(L − z)−1 B∗

1 )−1, 	0
]

− Res
[
A1(L − z)−2 B∗

1 A1(L1 − z)−1 B∗
1 , 	0

]
.

Given two analytic functions F(z) and G(z) in a Banach algebra, with principal
parts Fsing and Gsing at a given point z = z0, then

Res[FG, z0] = Res[FsingG, z0] + Res[FGsing, z0] .

Using this formula and Lemma 5.2, we transform (5.10) to the form

− Res
[
A1 P(L − z)−2 B∗

1 A1(L1 − z)−1 B∗
1 , 	0

]
− Res

[
A1(L − z)−2 B∗

1 A1(L1 − z)−1 P1 B∗
1 , 	0

]
,

which is the right-hand side of (5.9). Using the formula

(L − z)−1 − (L1 − z)−1 = (L1 − z)−1 B∗
1 A1(L − z)−1 ,

we have

(5.11) P
[
(L − z)−1 − (L1 − z)−1

]
P =

P(L − z)−1 B∗
1 (I + Q+(z))−1 A1(L − z)−1 P

and

(5.12) P1
[
(L − z)−1 − (L1 − z)−1

]
P1 =

P1(L1 − z)−1 B∗
1 (I + Q+

1 (z))−1 A1(L1 − z)−1 P1 .

It follows from Lemma 5.2 that the right-hand sides of (5.11) and (5.12) are mero-
morphic around z = 	0. Next, let A(z) and B(z) be operator-valued functions that
are meromorphic at z = 0 such that

A(z) =
∑
k∈Z

Ak zk , B(z) =
∑
k∈Z

Bkzk ,

where Ak and Bk are of finite rank for all k ∈ Z. Then we have

tr Res[A(z)B(z), 0] = tr
[ ∑

k∈Z

Ak B−k−1

]

= tr
[ ∑

k∈Z

Bk A−k−1

]

= tr Res[B(z)A(z), 0] .
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As a result,

ν(	0,�) = tr Res
[
P[(L − z)−1 − (L1 − z)−1]P, 	0

]
+ tr Res

[
P1[(L − z)−1 − (L1 − z)−1]P1, 	0

]
.

Since the right-hand sides of (5.11) and (5.12) are meromorphic at z = 	0 and

P(L − z)−1 = (L − z)−1 P = (L − z)−1|Ng(L−	0) ,

P1(L1 − z)−1 = (L1 − z)−1 P1 = (L1 − z)−1|Ng(L1−	0) ,

we conclude that P(L1 − z)−1 P and P1(L − z)−1 P1 are meromorphic functions
around z = 	0. By an elementary approximation argument, Lemma 5.2 implies
that

P(P − P1)P = − Res
[
P[(L − z)−1 − (L1 − z)−1]P, 	0

]
,

P1(P − P1)P1 = − Res
[
P1[(L − z)−1 − (L1 − z)−1]P1, 	0

]
,

such that

ν(	0,�) = − tr[P(P − P1)P] − tr[P1(P − P1)P1] = tr P1 − tr P ,

which is equivalent to (5.7). �

The concluding lemma applies the result of Lemma 5.3 to perturbation expan-
sions near the embedded eigenvalue z = 	0.

LEMMA 5.4 For generic V1(x), the degeneracy of the embedded eigenvalue z =

	0 breaks and the perturbed eigenvalues zj (ε), 1 ≤ j ≤ N, are analytic at ε = 0
and coincide with eigenvalues of the matrix

(5.13) �̂i, j (ε) = 	0δi, j + ε
〈
A1φi , B1φ

∗
j

〉
− ε2

〈
Q+

c (	0)A1φi , B1φ
∗
j

〉
+ O(ε3) ,

where

(5.14) Q+
c (z) = Q+(z) − (	0 − z)−1

N∑
j=1

A1φ j

〈
· ,φ∗

j

〉
B∗

1

and {φ∗
j }

N
j=1 is the basis in ker(L∗ − 	0) such that 〈φi ,φ

∗
j 〉 = δi, j .

PROOF: It follows from (5.14) that(
I + εQ+

c (z)
)−1(

I + εQ+(z)
)

= I + F(z) ,

where the meromorphic, finite rank operator F(z) is given explicitly by

F(z) =
(
I + εQ+

c (z)
)−1

ε(	0 − z)−1
N∑

j=1

A1φ j

〈
· ,φ∗

j

〉
B∗

1 .

Let �̂(z, ε) = (	0 − z)N�(z, ε) = (	0 − z)N det(I + F(z)). Using the identity

det(I + AB) = det(I + B A)
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for any finite rank operators A and B, we reduce �̂(z, ε) to the form

�̂(z, ε) = det
(
	0 − z + ε

N∑
j=1

A1φ j

〈
(I + εQ+

c (z))−1·, B1φ
∗
j

〉)
.

The determinant �̂(z, ε) is calculated by being restricted to the space {A1φ j }
N
j=1

and with the perturbation series expansions resulting in (5.13). �

PROOF OF PROPOSITION 5.1: The proof follows that of theorem 2.1 in [9]. We
use the relation between the sets {φ j }

N
j=1 and {φ∗

j }
N
j=1:

(5.15) φ∗
j =

σ3φ j

〈φ j , σ3φ j 〉
,

where 〈φ j , σ3φ j 〉 �= 0 for a semisimple eigenvalue z = 	0. We consider the

imaginary part of the matrix �̂i, j (ε) in (5.13):

(5.16) Im �̂i, j (ε) = −ε2 Im〈Q+
c (	0)A1φi , B1σ3φ j 〉

〈φ j , σ3φ j 〉
+ O(ε3) ,

where Q+
c (z) follows from (5.14) as

Q+
c (z) = A1

( ∑
zj ∈σp\	0

Pzj + Pc

)
(L − z)−1 B∗

1 .

The projections Pzj to the point spectrum σp(L) do not affect the imaginary part of
(5.16), since the operator

(	0 − zj )
−1σ3 Pzj + (	0 − z̄ j )

−1σ3 Pz̄j

is self-adjoint for any eigenvalue zj ∈ σp(L) with Im(zj ) �= 0, while the operator
(	0 − zj )

−1σ3 Pzj is real-valued for any zj ∈ σp(L) with Im(zj ) = 0. On the
other hand, the projection Pc to the nonsingular essential spectrum Xc(L) affects
the imaginary part of (5.16) as follows:

Im �̂i, j (ε) = −ε2 Im〈Pc(L − 	0)
−1 B∗

1 A1φi , A∗
1 B1σ3φ j 〉

〈φ j , σ3φ j 〉
+ O(ε3)

= −ε2 Im〈Pc(L − 	0)
−1V1φi , σ3V1φ j 〉

〈φ j , σ3φ j 〉
+ O(ε3) ,(5.17)

where we have used that V ∗
1 σ3 = σ3V1. We show that the matrix with elements

Im〈Pc(L − 	0)
−1V1φi , σ3V1φ j 〉
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is nonnegative. We use wave operators and introduce the set {φ̂ j }
N
j=1 such that

PcV1φ j = W φ̂ j . Using (4.15), we show that

Im
〈
Pc(L − 	0)

−1V1φi , σ3V1φ j

〉
= Im

〈
(L − 	0)

−1W φ̂i , σ3W φ̂ j

〉
= π

〈
δ(L0 − 	0)φ̂i , W ∗σ3W φ̂ j

〉
= π

〈
δ(L0 − 	0)φ̂i , σ3φ̂ j

〉
= π

(
δ(−� + ω − 	0)φ̂i1, φ̂j1

)
.(5.18)

The last matrix in (5.18) is nonnegative. For a generic potential V1, the matrix
is strictly positive. It follows from (5.17) that the sign of eigenvalues of Im �̂ is
given by the signatures of 〈φ j , σ3φ j 〉 = 	−1

0 〈φ j , Hφ j 〉, 1 ≤ j ≤ N . According to

conditions of Proposition 5.1, there are k eigenvalues zj (ε) of the matrix �̂i, j (ε)

such that Im(zj ) > 0 for ε �= 0 and N − k eigenvalues zj (ε) such that Im(zj ) < 0
for ε �= 0. The first k eigenvalues are true eigenvalues in the upper half-plane of z,
while the other N − k “eigenvalues” are resonances off the essential spectrum. No
embedded eigenvalues exist near z = 	0 for ε �= 0. �

6 Bounds on the Number of Unstable Eigenvalues

We conclude the paper with more precise statements on the number and type
of unstable eigenvalues z with Im(z) > 0 in the linearized NLS problem (1.2).
There are two types of unstable eigenvalues: positive imaginary eigenvalues z, the
number of which is denoted as Nimag, and complex eigenvalues in the first open
quadrant, the number of which is denoted as Ncomp, counting their multiplicity.
The bounds on the number of unstable eigenvalues Nimag and Ncomp were derived
in [16] with the use of Sylvester’s inertia law of matrix analysis in the context of the
matrix linearized NLS problem. We show here that these bounds follow naturally
from our main results, once the main theorems, Theorems 2.9, 2.10, and 2.11, are
rewritten for operators L̂± defined by

L̂+ =

(
L+ 0
0 0

)
, L̂− =

(
0 0
0 L−

)
.

It is clear from (3.2) that n(H) = n(L̂+)+n(L̂−), where n(L̂±) are the numbers of
negative eigenvalues of L̂± in L2(R3, C

2), counting their multiplicity. The bounds
on the number of unstable eigenvalues are formulated at the end of this section.

PROPOSITION 6.1 Let Assumption 2.7 be satisfied such that Q ′(ω) �= 0, where
Q(ω) =

∫
R3 φ2(x)dx. Let X̂0(L) be the constrained subspace of L2(R3, C

2),

defined in (3.16). Then n(L̂+)|X̂0
= n(L̂+) − 1 if Q′(ω) > 0 and n(L̂+)|X̂0

=

n(L̂+) if Q′(ω) < 0, while n(L̂−)|X̂0
= n(L̂−) in either case.

PROOF: The statement follows from the proof of Theorem 2.9 in Section 3; see
equations (3.31). �
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We simplify the following proposition with an additional assumption:

ASSUMPTION 6.2 No purely imaginary eigenvalues z of L exist with the eigen-
vector (u, w)T such that (u, L+u) = −(w, L−w) = 0.

PROPOSITION 6.3 Let Assumptions 2.8 and 6.2 be satisfied. Let N−
real and N+

real be
the number of positive real eigenvalues of L corresponding to eigenvectors (u, w)T

with negative and positive values of (u, L+u), where (u, L+u) = (w, L−w). Let
N−

imag and N+
imag be the number of positive purely imaginary eigenvalues of L cor-

responding to eigenvectors (u, w)T with negative and positive values of (u, L+u),
respectively, where (u, L+u) = −(w, L−w). Let X̂c(L) be the nonsingular part of
the essential spectrum of L, defined in (3.17). Then

n(L̂+)|X̂c
= n(L̂+)|X̂0

− N−
real − N−

imag − Ncomp ,(6.1)

n(L̂−)|X̂c
= n(L̂−) − N−

real − N+
imag − Ncomp .(6.2)

PROOF: In the case of semisimple eigenvalues, the statement follows from the
proof of Theorem 2.10 in Section 3; see (3.34). Multiple complex eigenvalues
do not change the reduction formulas (6.1) and (6.2). Multiple real and purely
imaginary eigenvalues are excluded by Assumptions 2.8 and 6.2. �

PROPOSITION 6.4 Let Assumptions 2.1, 2.6, and 2.8 be satisfied. The quadratic
forms (u, L+u) and (w, L−w) are strictly positive in (u, w)T ∈ X̂c(L).

PROOF: We use completeness of the space X̂c(L), proven with wave operators
in Proposition 4.1. Let {(u	,w	)T}	∈S be the basis of eigenfunctions in X̂c(L),
where S = σe(L) − D and D is the finite set of embedded eigenvalues. The
continuous set of eigenfunctions is orthogonal with respect to the Dirac measure as

(6.3) (u	′, w	) = ρ	δ(	 − 	′) .

Using the decomposition for (u, w)T ∈ X̂c(L)

u(x) =

∫
	∈S

a	u	(x)d	 , w(x) =

∫
	∈S

b	w	(x)d	 ,(6.4)

and the orthogonality relations (6.3), we represent the quadratic forms (u, L+u)

and (w, L−w) as follows:

(u, L+u) =

∫
	∈S

	ρ	|a	|2 d	,(6.5)

(w, L−w) =

∫
	∈S

	ρ	|b	|2 d	 .(6.6)

Since h is positive definite in X̂c(L), proven in Theorem 2.11, we conclude that
	ρ	 > 0 for all 	 ∈ S. Therefore, the quadratic forms in (6.5) and (6.6) are both
positive definite. �
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COROLLARY 6.5 Let Assumptions 2.1, 2.6, 2.7, 2.8, and 6.2 be satisfied. The
linearized NLS problem (1.2) has Nunst = Nimag + 2Ncomp unstable eigenvalues z
with Im(z) > 0, where

(i) |n(L̂+) − n(L̂−) − p(Q′)| ≤ Nunst ≤ n(L̂+) + n(L̂−) − p(Q′) ,

(ii) Nimag ≥ |n(L̂+) − n(L̂−) − p(Q′)| , and

(iii) Ncomp ≤ min(n(L̂+) − p(Q′), n(L̂−)) ,

where p(Q′) = 1 if Q′(ω) > 0 and p(Q′) < 0 if Q′(ω) < 0.

Stability theorems of Grillakis, Shatah, and Strauss [6, 7], Grillakis [5], and
Jones [10] follow from Corollary 6.5. In particular, when n(L̂+) + n(L̂−) − p(Q′)

is odd, then |n(L̂+) − n(L̂−) − p(Q′)| is odd, and there exists at least one unstable
eigenvalue, Nimag ≥ 1 [6, 7]. When n(L̂−) = 0, all unstable eigenvalues are purely
imaginary such that Ncomp = 0 and Nimag = n(L̂+) − p(Q′) [5, 10]. The case
n(L̂−) = 0 commonly occurs for positive ground states of the NLS equation (1.3)
[29]. The case n(L̂−) = n(L̂+) − p(Q′) may occur for excited states of the NLS
equation, when complex unstable eigenvalues are also possible [28].

Acknowledgment. The work was completed during the research program on
“Resonances in Linear and Nonlinear Schrödinger Equations,” organized at the
Fields Institute in August 2003. The work was partially supported by NSERC
Grant No. 5-36694.

Bibliography

[1] Agmon, S. Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola
Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), no. 2, 151–218.

[2] Comech, A.; Pelinovsky, D. Purely nonlinear instability of standing waves with minimal energy.
Comm. Pure Appl. Math. 56 (2003), no. 11, 1565–1607.

[3] Cuccagna, S. Stabilization of solutions to nonlinear Schrödinger equations. Comm. Pure Appl.
Math. 54 (2001), no. 9, 1110–1145.

[4] Cuccagna, S.; Pelinovsky, D. Bifurcations from the end points of the essential spectrum in the
linearized NLS problem. Preprint, 2004.

[5] Grillakis, M. Analysis of the linearization around a critical point of an infinite-dimensional
Hamiltonian system. Comm. Pure Appl. Math. 43 (1990), no. 3, 299–333.

[6] Grillakis, M.; Shatah, J.; Strauss, W. Stability theory of solitary waves in the presence of sym-
metry. I. J. Funct. Anal. 74 (1987), no. 1, 160–197.

[7] Grillakis, M.; Shatah, J.; Strauss, W. Stability theory of solitary waves in the presence of sym-
metry. II. J. Funct. Anal. 94 (1990), no. 2, 308–348.

[8] Howland, J. S. On the Weinstein-Aronszajn formula. Arch. Rational Mech. Anal. 39 (1970),
323–339.



28 S. CUCCAGNA, D. PELINOVSKY, AND V. VOUGALTER

[9] Howland, J. S. Puiseux series for resonances at an embedded eigenvalue. Pacific J. Math. 55
(1974), 157–176.

[10] Jones, C. K. R. T. An instability mechanism for radially symmetric standing waves of a nonlin-
ear Schrödinger equation. J. Differential Equations 71 (1988), no. 1, 34–62.

[11] Kapitula, T.; Sandstede, B. Edge bifurcations for near integrable systems via Evans function
techniques. SIAM J. Math. Anal. 33 (2002), no. 5, 1117–1143.

[12] Kato, T. Wave operators and similarity for some non-selfadjoint operators. Math. Ann. 162
(1965/1966), 258–279.

[13] Kato, T. Perturbation theory for linear operators. 2nd ed. Grundlehren der Mathematischen
Wissenschaften, 132. Springer, Berlin–New York, 1976.

[14] Kevrekidis, P.; Kapitula, T.; Sandstede, B. Counting eigenvalues via the Krein signature in
infinite-dimensional Hamiltonian systems. Phys. D (2004), in press.

[15] McLeod, K. Uniqueness of positive radial solutions of �u + f (u) = 0 in R
n . II. Trans. Amer.

Math. Soc. 339 (1993), no. 2, 495–505.

[16] Pelinovsky, D. E. Inertia law for spectral stability of solitary waves in coupled nonlinear
Schrödinger equations. Proc. Roy. Soc. London Ser. A (2004), in press.

[17] Perelman, G. Asymptotic stability of solitary waves for nonlinear Schrödinger equations. Sem-
inaire: Équations aux Dérivées Partielles, 2002–2003, 18. École Polytechniques, Palaiseau,
2003.

[18] Rauch, J. Local decay of scattering solutions to Schrödinger’s equation. Comm. Math. Phys. 61
(1978), no. 2, 149–168.

[19] Reed, M.; Simon, B. Methods of modern mathematical physics. I. Functional analysis. Aca-
demic, New York–London, 1972.

[20] Reed, M.; Simon, B. Methods of modern mathematical physics. IV. Analysis of operators. Aca-
demic, New York–London, 1978.

[21] Rodnianski, I.; Schlag, W.; Soffer, A. Dispersive analysis of charge transfer models. Comm.
Pure Appl. Math., to appear.

[22] Simon, B. Quantum mechanics for Hamiltonians defined as quadratic forms. Princeton Series
in Physics. Princeton University, Princeton, N.J., 1971.

[23] Simon, B. Functional integration and quantum physics. Pure and Applied Mathematics, 86.
Academic, New York–London, 1979.

[24] Soffer, A.; Weinstein, M. I. Time dependent resonance theory. Geom. Funct. Anal. 8 (1998),
no. 6, 1086–1128.

[25] Steinberg, S. Meromorphic families of compact operators. Arch. Rational Mech. Anal. 31
(1968/1969), 372–379.

[26] Strauss, W. A. Nonlinear wave equations. CBMS Regional Conference Series in Mathematics,
73. American Mathematical Society, Providence, R.I., 1989.

[27] Tsai, T.-P. Asymptotic dynamics of nonlinear Schrödinger equations with many bound states.
J. Differential Equations 192 (2003), no. 1, 225–282.

[28] Tsai, T.-P.; Yau, H.-T. Relaxation of excited states in nonlinear Schrödinger equations. Int.
Math. Res. Not. (2002), no. 31, 1629–1673.

[29] Tsai, T.-P.; Yau, H.-T. Stable directions for excited states of nonlinear Schrödinger equations.
Comm. Partial Differential Equations 27 (2002), no. 11-12, 2363–2402.

[30] Vougalter, V.; Pelinovsky, D. Eigenvalues of zero energy in the linearized NLS problem.
Preprint, 2004.

[31] Weinstein, M. I. Lyapunov stability of ground states of nonlinear dispersive evolution equations.
Comm. Pure Appl. Math. 39 (1986), no. 1, 51–67.



SPECTRA OF POSITIVE AND NEGATIVE ENERGIES 29

SCIPIO CUCCAGNA DMITRY PELINOVSKY

University of Virginia McMaster University
Department of Mathematics Department of Mathematics
P. O. Box 400137 1280 Main Street West
Charlottesville, VA 22904-4137 Hamilton, Ontario L8S 4K1
E-mail: sc9gj@virginia.edu CANADA

E-mail: dmpeli@
math.mcmaster.ca

VITALI VOUGALTER

McMaster University
Department of Mathematics
1280 Main Street West
Hamilton, Ontario L8S 4K1
CANADA
E-mail: vougav@

math.mcmaster.ca

Received September 2003.
Revised April 2004.


