Numerical Modelling of Waveguide Interface

Clayton G. Webster
Department of Mathematics and Statistics
McMaster University

August 11, 2003

Supervisors: Dimitry Pelinovsky, Walter Craig

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

44

4 |

Page 2 of 42

Go Back

Full Screen

Close

1. Formalism of Electrodynamics

1. Formalism of Electrodynamics

Numerical Algorithms:

Periodic Boundary...

Absorbing Layers

Summary

Title Page

H
Page 2 of 42

Go Back

Full Screen

Close

1. Formalism of Electrodynamics

Numerical Algorithms:

2. Periodic Boundary Conditions

1. Formalism of Electrodynamics

Numerical Algorithms:

- 2. Periodic Boundary Conditions
- 3. Absorbing Layers

1. Formalism of Electrodynamics

Numerical Algorithms:

- 2. Periodic Boundary Conditions
- 3. Absorbing Layers
- 4. Summary

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

44

Page 3 of 42

Go Back

Full Screen

Close

• Prof. Dimitry Pelinovsky, Department of Mathematics, McMaster University dmpeli.math.mcmaster.ca

- Prof. Dimitry Pelinovsky, Department of Mathematics, McMaster University dmpeli.math.mcmaster.ca
- Prof. Walter Craig, Department of Mathematics, McMaster University math.mcmaster.ca/craig/index.html

Formalism of...
Periodic Boundary...
Absorbing Layers
Summary

Title Page

Page 3 of 42

Go Back

Full Screen

Close

- Prof. Dimitry Pelinovsky, Department of Mathematics, McMaster University dmpeli.math.mcmaster.ca
- Prof. Walter Craig, Department of Mathematics, McMaster University math.mcmaster.ca/craig/index.html

Formalism of . . .
Periodic Boundary . . .
Absorbing Layers

Summary

Title Page

Page 3 of 42

Go Back

Full Screen

Close

- Prof. Dimitry Pelinovsky, Department of Mathematics, McMaster University dmpeli.math.mcmaster.ca
- Prof. Walter Craig, Department of Mathematics, McMaster University math.mcmaster.ca/craig/index.html

• Prof. Wei-Ping Huang, Department Electrical and Computer Engineering, McMaster University photonsrvr.mcmaster.ca/huang/home.htm

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

- Prof. Dimitry Pelinovsky, Department of Mathematics, McMaster University dmpeli.math.mcmaster.ca
- Prof. Walter Craig, Department of Mathematics, McMaster University math.mcmaster.ca/craig/index.html

- Prof. Wei-Ping Huang,
 Department Electrical and Computer Engineering, McMaster University
 photonsrvr.mcmaster.ca/huang/home.htm
- Dr. Chenglin Xu, Apollo Photonics, Inc., Hamilton, Ontario www.apollophoton.com

Formalism of...
Periodic Boundary...
Absorbing Layers

Title Page

Summary

4 *>*

Page 3 of 42

Go Back

Full Screen

Close

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

44

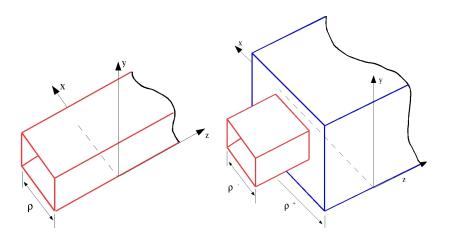
Go Back

Full Screen

Close

• To develop a computational algorithm for solving the stationary Maxwell equation at the interface between two planar waveguides

• To develop a computational algorithm for solving the stationary Maxwell equation at the interface between two planar waveguides

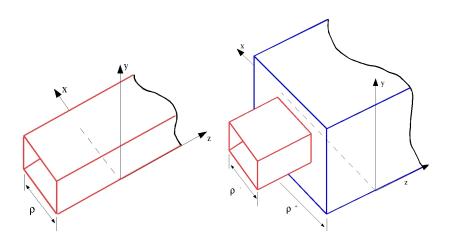


Formalism of . . . Periodic Boundary . . . Absorbing Layers Summary Title Page Page 4 of 42 Go Back

Full Screen

Close

• To develop a computational algorithm for solving the stationary Maxwell equation at the interface between two planar waveguides



• Extent the computational algorithm to absorb outgoing waves from mirror-reflected waveguides

Formalism of . . .
Periodic Boundary . . .
Absorbing Layers
Summary
Title Page

Page 4 of 42

Go Back

Full Screen

Close

Stationary Maxwell equation

Stationary Maxwell equation

$$\nabla \times \nabla \times \mathbf{E}_{\omega}(\mathbf{x}, \omega) - n^{2}(\mathbf{x}, \omega) \frac{\omega^{2}}{c^{2}} \mathbf{E}_{\omega}(\mathbf{x}, \omega) = 0$$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

Stationary Maxwell equation

$$\nabla \times \nabla \times \mathbf{E}_{\omega}(\mathbf{x}, \omega) - n^{2}(\mathbf{x}, \omega) \frac{\omega^{2}}{c^{2}} \mathbf{E}_{\omega}(\mathbf{x}, \omega) = 0$$

• $\mathbf{E}_{\omega}(\mathbf{x}, \omega)$ is the Fourier Transform of $\mathbf{E}(\mathbf{x}, t)$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 5 of 42

Go Back

Full Screen

Close

Stationary Maxwell equation

$$\nabla \times \nabla \times \mathbf{E}_{\omega}(\mathbf{x}, \omega) - n^{2}(\mathbf{x}, \omega) \frac{\omega^{2}}{c^{2}} \mathbf{E}_{\omega}(\mathbf{x}, \omega) = 0$$

- $\mathbf{E}_{\omega}(\mathbf{x}, \omega)$ is the Fourier Transform of $\mathbf{E}(\mathbf{x}, t)$
- $\mathbf{E}(\mathbf{x},t)$ is the electric field vector

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 5 of 42

Go Back

Full Screen

Close

Stationary Maxwell equation

$$\nabla \times \nabla \times \mathbf{E}_{\omega}(\mathbf{x}, \omega) - n^{2}(\mathbf{x}, \omega) \frac{\omega^{2}}{c^{2}} \mathbf{E}_{\omega}(\mathbf{x}, \omega) = 0$$

- $\mathbf{E}_{\omega}(\mathbf{x}, \omega)$ is the Fourier Transform of $\mathbf{E}(\mathbf{x}, t)$
- $\mathbf{E}(\mathbf{x},t)$ is the electric field vector
- $\mathbf{E}_{\omega} = (E_{\omega,x}, E_{\omega,y}, E_{\omega,z}), \mathbf{x} = (x, y, z)$

Formalism of . . .

Periodic Boundary..

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

Stationary Maxwell equation

$$\nabla \times \nabla \times \mathbf{E}_{\omega}(\mathbf{x}, \omega) - n^{2}(\mathbf{x}, \omega) \frac{\omega^{2}}{c^{2}} \mathbf{E}_{\omega}(\mathbf{x}, \omega) = 0$$

- $\mathbf{E}_{\omega}(\mathbf{x}, \omega)$ is the Fourier Transform of $\mathbf{E}(\mathbf{x}, t)$
- $\mathbf{E}(\mathbf{x},t)$ is the electric field vector
- $\mathbf{E}_{\omega} = (E_{\omega,x}, E_{\omega,y}, E_{\omega,z}), \mathbf{x} = (x, y, z)$
- $n^2(\mathbf{x}, \omega)$ is the frequency-dependent dielectric constant

Formalism of . . .

Periodic Boundary..

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

Stationary Maxwell equation

$$\nabla \times \nabla \times \mathbf{E}_{\omega}(\mathbf{x}, \omega) - n^{2}(\mathbf{x}, \omega) \frac{\omega^{2}}{c^{2}} \mathbf{E}_{\omega}(\mathbf{x}, \omega) = 0$$

- $\mathbf{E}_{\omega}(\mathbf{x}, \omega)$ is the Fourier Transform of $\mathbf{E}(\mathbf{x}, t)$
- $\mathbf{E}(\mathbf{x},t)$ is the electric field vector
- $\mathbf{E}_{\omega} = (E_{\omega,x}, E_{\omega,y}, E_{\omega,z}), \mathbf{x} = (x, y, z)$
- $n^2(\mathbf{x}, \omega)$ is the frequency-dependent dielectric constant
- \bullet c is the speed of light in vacuum

Formalism of . . .

Periodic Boundary..

Absorbing Layers

Summary

Title Page

Page 5 of 42

Go Back

Full Screen

Close

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

44

Page 6 of 42

Go Back

Full Screen

Close

 \bullet 2D waveguide problem that is y-independent

- ullet 2D waveguide problem that is y-independent
- $\omega = \omega_0$ (a single frequency)

Formalism of ...

Periodic Boundary ...

Absorbing Layers

Summary

Title Page

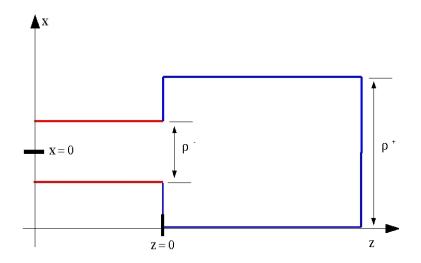
Page 6 of 42

Go Back

Full Screen

Close

- 2D waveguide problem that is y-independent
- $\omega = \omega_0$ (a single frequency)



$$D^- = \{(x, z) \in \mathbb{R}^2 : z \le 0\}$$
 $D^+ = \{(x, z) \in \mathbb{R}^2 : z \ge 0\}.$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

TE Case: $\mathbf{E}_{\omega}(\mathbf{x}, \omega_0) = (0, E_{\omega,y}, 0), \mathbf{x} = (x, z)$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 7 of 42

Go Back

Full Screen

Close

TE Case:
$$\mathbf{E}_{\omega}(\mathbf{x}, \omega_0) = (0, E_{\omega,y}, 0), \mathbf{x} = (x, z)$$

$$\nabla^2 \Psi(x,z) + q(x,z)\Psi(x,z) = 0$$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 7 of 42

Go Back

Full Screen

Close

TE Case:
$$\mathbf{E}_{\omega}(\mathbf{x}, \omega_0) = (0, E_{\omega,y}, 0), \mathbf{x} = (x, z)$$

$$\nabla^2 \Psi(x,z) + q(x,z)\Psi(x,z) = 0$$

• $\Psi(x,z) = E_{\omega,y}(\mathbf{x},\omega_0), \ \Psi : \mathbb{R}^2 \to \mathbb{C}$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 7 of 42

Go Back

Full Screen

Close

TE Case:
$$\mathbf{E}_{\omega}(\mathbf{x}, \omega_0) = (0, E_{\omega,y}, 0), \mathbf{x} = (x, z)$$

$$\nabla^2 \Psi(x, z) + q(x, z)\Psi(x, z) = 0$$

- $\Psi(x,z) = E_{\omega,y}(\mathbf{x},\omega_0), \ \Psi : \mathbb{R}^2 \to \mathbb{C}$
- $q(x,z) = n^2(x,z) \frac{\omega_0^2}{c^2}$ (quantum potential function)

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 7 of 42

Go Back

Full Screen

Close

TE Case:
$$\mathbf{E}_{\omega}(\mathbf{x}, \omega_0) = (0, E_{\omega,y}, 0), \mathbf{x} = (x, z)$$

$$\nabla^2 \Psi(x, z) + q(x, z)\Psi(x, z) = 0$$

- $\Psi(x,z) = E_{\omega,y}(\mathbf{x},\omega_0), \ \Psi : \mathbb{R}^2 \to \mathbb{C}$
- $q(x,z) = n^2(x,z) \frac{\omega_0^2}{c^2}$ (quantum potential function)

The PDE Problem:

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

TE Case:
$$\mathbf{E}_{\omega}(\mathbf{x}, \omega_0) = (0, E_{\omega, y}, 0), \mathbf{x} = (x, z)$$

$$\nabla^2 \Psi(x,z) + q(x,z)\Psi(x,z) = 0$$

- $\Psi(x,z) = E_{\omega,y}(\mathbf{x},\omega_0), \ \Psi: \mathbb{R}^2 \to \mathbb{C}$
- $q(x,z) = n^2(x,z) \frac{\omega_0^2}{c^2}$ (quantum potential function)

The PDE Problem:

$$q(x,z) = \begin{cases} q^{+}(x), & \text{for } z \ge 0 \\ q^{-}(x), & \text{for } z \le 0 \end{cases} \quad \Psi(x,z) = \begin{cases} \Psi^{+}(x,z), & \text{for } (x,z) \in D^{+} \\ \Psi^{-}(x,z), & \text{for } (x,z) \in D^{-} \end{cases}$$
$$\lim_{|x| \to \infty} q^{\pm}(x) = q_{\infty}^{\pm} > 0$$

Formalism of . . .

Periodic Boundary..

Absorbing Layers

Summary

Title Page

Page 7 of 42

Go Back

Full Screen

Close

TE Case:
$$\mathbf{E}_{\omega}(\mathbf{x}, \omega_0) = (0, E_{\omega,y}, 0), \mathbf{x} = (x, z)$$

$$\nabla^2 \Psi(x,z) + q(x,z)\Psi(x,z) = 0$$

- $\Psi(x,z) = E_{\omega,y}(\mathbf{x},\omega_0), \ \Psi: \mathbb{R}^2 \to \mathbb{C}$
- $q(x,z) = n^2(x,z) \frac{\omega_0^2}{c^2}$ (quantum potential function)

The PDE Problem:

$$q(x,z) = \begin{cases} q^+(x), & \text{for } z \geq 0 \\ q^-(x), & \text{for } z \leq 0 \end{cases} \quad \Psi(x,z) = \begin{cases} \Psi^+(x,z), & \text{for } (x,z) \in D^+ \\ \Psi^-(x,z), & \text{for } (x,z) \in D^- \end{cases}$$

$$\lim_{|x| \to \infty} q^\pm(x) = q_\infty^\pm > 0$$

$$\Downarrow$$

$$\nabla^2 \Psi^+(x,z) + q^+(x) \Psi^+(x,z) = 0, \quad (x,z) \in D^+$$

$$\nabla^2 \Psi^-(x,z) + q^-(x) \Psi^-(x,z) = 0, \quad (x,z) \in D^-$$

Formalism of . . .

Periodic Boundary..

Absorbing Layers

Summary

Title Page

Page 7 of 42

Go Back

Full Screen

Close

TE Case:
$$\mathbf{E}_{\omega}(\mathbf{x}, \omega_0) = (0, E_{\omega,y}, 0), \mathbf{x} = (x, z)$$

Stationary Schrodinger equation

$$\nabla^2 \Psi(x,z) + q(x,z)\Psi(x,z) = 0$$

- $\Psi(x,z) = E_{\omega,y}(\mathbf{x},\omega_0), \ \Psi: \mathbb{R}^2 \to \mathbb{C}$
- $q(x,z) = n^2(x,z) \frac{\omega_0^2}{c^2}$ (quantum potential function)

The PDE Problem:

BC's: $\Psi^-, \Psi^+ \to 0$ as $|x| \to \infty$

MC's: $\Psi^{-}(x,0) = \Psi^{+}(x,0), \quad \frac{\partial \Psi^{-}}{\partial x}(x,0) = \frac{\partial \Psi^{+}}{\partial x}(x,0)$

Formalism of . . .

Periodic Boundary..

Absorbing Layers

Summary

Title Page

Page 7 of 42

Go Back

Full Screen

Close

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Close

$$\frac{d^2}{dz^2}\theta(z) + \lambda\theta(z) = 0$$

$$\frac{d^2}{dx^2}\Phi(x) + q(x)\Phi(x) = \lambda\Phi(x) \qquad (\star)$$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 8 of 42

Go Back

Full Screen

Close

$$\frac{d^2}{dz^2}\theta(z) + \lambda\theta(z) = 0$$

$$\frac{d^2}{dx^2}\Phi(x) + q(x)\Phi(x) = \lambda\Phi(x) \qquad (\star)$$

• λ is a constant parameter.

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

$$\frac{d^2}{dz^2}\theta(z) + \lambda\theta(z) = 0$$

$$\frac{d^2}{dx^2}\Phi(x) + q(x)\Phi(x) = \lambda\Phi(x) \qquad (\star)$$

- λ is a constant parameter.
- $(\star) \Rightarrow 1D$ spectral problem for the Schrodinger operator

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 8 of 42

Go Back

Full Screen

Close

$$\frac{d^2}{dz^2}\theta(z) + \lambda\theta(z) = 0$$

$$\frac{d^2}{dx^2}\Phi(x) + q(x)\Phi(x) = \lambda\Phi(x) \qquad (\star)$$

- λ is a constant parameter.
- $(\star) \Rightarrow 1D$ spectral problem for the Schrodinger operator

$$\mathcal{L} = \frac{d^2}{dx^2} + q(x)$$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

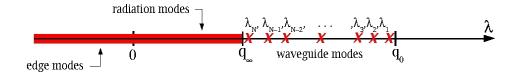
Close

$$\frac{d^2}{dz^2}\theta(z) + \lambda\theta(z) = 0$$

$$\frac{d^2}{dx^2}\Phi(x) + q(x)\Phi(x) = \lambda\Phi(x) \qquad (\star)$$

- λ is a constant parameter.
- $(\star) \Rightarrow 1D$ spectral problem for the Schrodinger operator

$$\mathcal{L} = \frac{d^2}{dx^2} + q(x)$$



Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

Formalism of . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

44

$$\Psi(x,z) = \sum_{sp(\mathcal{L})} c_{\lambda} \Phi_{\lambda}(x) e^{-i\beta z} + \sum_{sp(\mathcal{L})} d_{\lambda} \Phi_{\lambda}(x) e^{i\beta z}$$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

44

•

Page 9 of 42

Go Back

Full Screen

Close

$$\Psi(x,z) = \sum_{sp(\mathcal{L})} c_{\lambda} \Phi_{\lambda}(x) e^{-i\beta z} + \sum_{sp(\mathcal{L})} d_{\lambda} \Phi_{\lambda}(x) e^{i\beta z}$$

• $\Phi_{\lambda}(x)$ are eigenfunctions

•
$$\beta \equiv \sqrt{\lambda} = \begin{cases} \beta_R, & \text{if } \lambda = \{\lambda_j\}_{j=1}^N \text{ or } 0 \le \lambda \le q_\infty \\ i\beta_I, & \text{if } \lambda < 0 \end{cases}$$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

$$\Psi(x,z) = \sum_{sp(\mathcal{L})} c_{\lambda} \Phi_{\lambda}(x) e^{-i\beta z} + \sum_{sp(\mathcal{L})} d_{\lambda} \Phi_{\lambda}(x) e^{i\beta z}$$

• $\Phi_{\lambda}(x)$ are eigenfunctions

•
$$\beta \equiv \sqrt{\lambda} = \begin{cases} \beta_R, & \text{if } \lambda = \{\lambda_j\}_{j=1}^N \text{ or } 0 \le \lambda \le q_\infty \\ i\beta_I, & \text{if } \lambda < 0 \end{cases}$$

- c_{λ} represent the reflected wave coefficients
- d_{λ} represent the incident and transmitted wave coefficients

Formalism of . . .

Periodic Boundary..

Absorbing Layers

Summary

Title Page

44

Page 9 of 42

Go Back

Full Screen

Close

$$\Psi(x,z) = \sum_{sp(\mathcal{L})} c_{\lambda} \Phi_{\lambda}(x) e^{-i\beta z} + \sum_{sp(\mathcal{L})} d_{\lambda} \Phi_{\lambda}(x) e^{i\beta z}$$

- $\Phi_{\lambda}(x)$ are eigenfunctions
- $\beta \equiv \sqrt{\lambda} = \begin{cases} \beta_R, & \text{if } \lambda = \{\lambda_j\}_{j=1}^N \text{ or } 0 \le \lambda \le q_\infty \\ i\beta_I, & \text{if } \lambda < 0 \end{cases}$
- c_{λ} represent the reflected wave coefficients
- d_{λ} represent the incident and transmitted wave coefficients

Left of the Interface:

Formalism of . . .

Periodic Boundary..

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

$$\Psi(x,z) = \sum_{sp(\mathcal{L})} c_{\lambda} \Phi_{\lambda}(x) e^{-i\beta z} + \sum_{sp(\mathcal{L})} d_{\lambda} \Phi_{\lambda}(x) e^{i\beta z}$$

- $\Phi_{\lambda}(x)$ are eigenfunctions
- $\beta \equiv \sqrt{\lambda} = \begin{cases} \beta_R, & \text{if } \lambda = \{\lambda_j\}_{j=1}^N \text{ or } 0 \le \lambda \le q_\infty \\ i\beta_I, & \text{if } \lambda < 0 \end{cases}$
- c_{λ} represent the reflected wave coefficients
- d_{λ} represent the incident and transmitted wave coefficients

Left of the Interface:

$$\Psi^{-}(x,z) = \sum_{j=1}^{N^{-}} c_{j}^{-} \Phi_{j}^{-}(x) e^{-i\beta_{j}^{-}z} + \int_{-\infty}^{0} c^{-}(\lambda) \Phi^{-}(x,\lambda) e^{\beta_{I}^{-}(\lambda)z} d\lambda + \int_{0}^{q_{\infty}^{-}} c^{-}(\lambda) \Phi^{-}(x,\lambda) e^{-i\beta_{R}^{-}(\lambda)z} d\lambda + \sum_{j=1}^{N^{-}} d_{j}^{-} \Phi_{j}^{-}(x) e^{i\beta_{j}^{-}z}$$

Formalism of . . .

Periodic Boundary . .

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

44

Go Back

Full Screen

Close

$$\nabla \cdot \mathbf{S}_0 = 0$$

Formalism of...

Periodic Boundary...

Absorbing Layers

Summary

Page 10 of 42

Go Back

Full Screen

Close

$$\nabla \cdot \mathbf{S}_0 = 0$$

• S_0 is the time averaging *Poynting* vector

$$\nabla \cdot \mathbf{S}_0 = 0$$

• S_0 is the time averaging *Poynting* vector

TE Case: $S_0 = (S_{0,x}, 0, S_{0,z})$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Close

$$\nabla \cdot \mathbf{S}_0 = 0$$

• S_0 is the time averaging *Poynting* vector

TE Case: $S_0 = (S_{0,x}, 0, S_{0,z})$

$$S_{0,z} \sim i\Psi \frac{\partial \overline{\Psi}}{\partial z} - i\frac{\partial \Psi}{\partial z} \overline{\Psi}$$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 10 of 42

Go Back

Full Screen

Close

$$\nabla \cdot \mathbf{S}_0 = 0$$

• S_0 is the time averaging *Poynting* vector

TE Case: $S_0 = (S_{0,x}, 0, S_{0,z})$

$$S_{0,z} \sim i\Psi \frac{\partial \overline{\Psi}}{\partial z} - i\frac{\partial \Psi}{\partial z} \overline{\Psi}$$

Conservation of Energy across the interface:

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 10 of 42

Go Back

Full Screen

Close

$$\nabla \cdot \mathbf{S}_0 = 0$$

• S_0 is the time averaging *Poynting* vector

TE Case: $S_0 = (S_{0,x}, 0, S_{0,z})$

$$S_{0,z} \sim i\Psi \frac{\partial \overline{\Psi}}{\partial z} - i\frac{\partial \Psi}{\partial z} \overline{\Psi}$$

Conservation of Energy across the interface:

$$\frac{\partial}{\partial x} \left(S_{0,x} \right) + \frac{\partial}{\partial z} \left(S_{0,z} \right) = 0$$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 10 of 42

Go Back

Full Screen

Close

$$\nabla \cdot \mathbf{S}_0 = 0$$

• S_0 is the time averaging *Poynting* vector

TE Case: $S_0 = (S_{0,x}, 0, S_{0,z})$

$$S_{0,z} \sim i\Psi \frac{\partial \overline{\Psi}}{\partial z} - i\frac{\partial \Psi}{\partial z} \overline{\Psi}$$

Conservation of Energy across the interface:

$$\frac{\partial}{\partial x} (S_{0,x}) + \frac{\partial}{\partial z} (S_{0,z}) = 0$$

$$\int_{-\infty}^{\infty} (S_{0,z}) \, dx = C$$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 10 of 42

Go Back

Full Screen

Close

The Propagation Problem

Close

The Propagation Problem

$$\left[\frac{d^2}{dx^2} + q(x)\right] \Phi(x) = \lambda \Phi(x), \quad x \in \mathbb{R}$$

$$\Phi(-M) = \Phi(M), \qquad \Phi'(-M) = \Phi'(M)$$

$$q(x) = \begin{cases} q_{\infty}, & \text{for } |x| \ge \rho \\ q_0, & \text{for } |x| < \rho \end{cases}$$

Formalism of . . .

Periodic Boundary...

Absorbing Layers

Summary

Title Page

_

Page 11 of 42

Go Back

Full Screen

Close

The Propagation Problem

$$\left[\frac{d^2}{dx^2} + q(x)\right] \Phi(x) = \lambda \Phi(x), \quad x \in \mathbb{R}$$

$$\Phi(-M) = \Phi(M), \qquad \Phi'(-M) = \Phi'(M)$$

$$q(x) = \begin{cases} q_{\infty}, & \text{for } |x| \ge \rho \\ q_0, & \text{for } |x| < \rho \end{cases}$$

• ρ is the width of the waveguide

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

44

4

Page 11 of 42

Go Back

Full Screen

Close

The Propagation Problem

$$\left[\frac{d^2}{dx^2} + q(x)\right] \Phi(x) = \lambda \Phi(x), \quad x \in \mathbb{R}$$

$$\Phi(-M) = \Phi(M), \qquad \Phi'(-M) = \Phi'(M)$$

$$q(x) = \begin{cases} q_{\infty}, & \text{for } |x| \ge \rho \\ q_0, & \text{for } |x| < \rho \end{cases}$$

- ρ is the width of the waveguide
- $-M \le x \le M$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 11 of 42

Go Back

Full Screen

Close

The Propagation Problem

$$\left[\frac{d^2}{dx^2} + q(x)\right] \Phi(x) = \lambda \Phi(x), \quad x \in \mathbb{R}$$

$$\Phi(-M) = \Phi(M), \qquad \Phi'(-M) = \Phi'(M)$$

$$q(x) = \begin{cases} q_{\infty}, & \text{for } |x| \ge \rho \\ q_0, & \text{for } |x| < \rho \end{cases}$$

- ρ is the width of the waveguide
- $-M \le x \le M$
- $q = q^{\pm}(x)$ and $\Phi = \Phi^{\pm}(x)$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 11 of 42

Go Back

Full Screen

Close

The Propagation Problem

$$\left[\frac{d^2}{dx^2} + q(x)\right] \Phi(x) = \lambda \Phi(x), \quad x \in \mathbb{R}$$

$$\Phi(-M) = \Phi(M), \qquad \Phi'(-M) = \Phi'(M)$$

$$q(x) = \begin{cases} q_{\infty}, & \text{for } |x| \ge \rho \\ q_0, & \text{for } |x| < \rho \end{cases}$$

- ρ is the width of the waveguide
- $-M \le x \le M$
- $q = q^{\pm}(x)$ and $\Phi = \Phi^{\pm}(x)$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 11 of 42

Go Back

Full Screen

Close

Formalism of...
Periodic Boundary...
Absorbing Layers

Summary

Full Screen

Close

• Divide [-M, M] into 2N equal parts of width $h = \frac{M}{N}$

Formalism of . . . Periodic Boundary . . . Absorbing Layers Summary Title Page Page 12 of 42 Go Back Full Screen Close

- Divide [-M, M] into 2N equal parts of width $h = \frac{M}{N}$
- Set $x_0 = -M$ and $x_{2N} = M$ as the boundary mesh points

Formalism of . . . Periodic Boundary... Absorbing Layers Summary Title Page Page 12 of 42 Go Back Full Screen Close

- Divide [-M, M] into 2N equal parts of width $h = \frac{M}{N}$
- Set $x_0 = -M$ and $x_{2N} = M$ as the boundary mesh points
- Set the interior mesh points: $x_n = -M + nh$ for n=1,2,...,(2N-1)

Formalism of...
Periodic Boundary...
Absorbing Layers
Summary

Close

- Divide [-M, M] into 2N equal parts of width $h = \frac{M}{N}$
- Set $x_0 = -M$ and $x_{2N} = M$ as the boundary mesh points
- Set the interior mesh points: $x_n = -M + nh$ for n=1,2,...,(2N-1)
- Apply Central Differences for the second derivative at each mesh point:

Formalism of . . .
Periodic Boundary . . .
Absorbing Layers
Summary

Close

- Divide [-M, M] into 2N equal parts of width $h = \frac{M}{N}$
- Set $x_0 = -M$ and $x_{2N} = M$ as the boundary mesh points
- Set the interior mesh points: $x_n = -M + nh$ for n=1,2,...,(2N-1)
- Apply Central Differences for the second derivative at each mesh point:

$$\frac{\Phi_{n+1} + \Phi_{n-1} - 2\Phi_n}{h^2} + q_n \Phi_n = \lambda \Phi_n, \quad n = 1, 2, ..., 2N$$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

- Divide [-M, M] into 2N equal parts of width $h = \frac{M}{N}$
- Set $x_0 = -M$ and $x_{2N} = M$ as the boundary mesh points
- Set the interior mesh points: $x_n = -M + nh$ for n=1,2,...,(2N-1)
- Apply Central Differences for the second derivative at each mesh point:

$$\frac{\Phi_{n+1} + \Phi_{n-1} - 2\Phi_n}{h^2} + q_n \Phi_n = \lambda \Phi_n, \quad n = 1, 2, ..., 2N$$

- Φ_n denotes a numerical approximation for $\Phi(x_n)$
- $q_n = q(x_n)$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 12 of 42

Go Back

Full Screen

Close

- Divide [-M, M] into 2N equal parts of width $h = \frac{M}{N}$
- Set $x_0 = -M$ and $x_{2N} = M$ as the boundary mesh points
- Set the interior mesh points: $x_n = -M + nh$ for n=1,2,...,(2N-1)
- Apply Central Differences for the second derivative at each mesh point:

$$\frac{\Phi_{n+1} + \Phi_{n-1} - 2\Phi_n}{h^2} + q_n \Phi_n = \lambda \Phi_n, \quad n = 1, 2, ..., 2N$$

- Φ_n denotes a numerical approximation for $\Phi(x_n)$
- $\bullet \ q_n = q(x_n)$

$$A\mathbf{\Phi} = \lambda h^2 \mathbf{\Phi}$$

Formalism of . . .

Periodic Boundary...

Absorbing Layers

Summary

Title Page

Page 12 of 42

Go Back

Full Screen

Close

The Finite-Difference Frequency-Domain Method

- Divide [-M, M] into 2N equal parts of width $h = \frac{M}{N}$
- Set $x_0 = -M$ and $x_{2N} = M$ as the boundary mesh points
- Set the interior mesh points: $x_n = -M + nh$ for n=1,2,...,(2N-1)
- Apply Central Differences for the second derivative at each mesh point:

$$\frac{\Phi_{n+1} + \Phi_{n-1} - 2\Phi_n}{h^2} + q_n \Phi_n = \lambda \Phi_n, \quad n = 1, 2, ..., 2N$$

- Φ_n denotes a numerical approximation for $\Phi(x_n)$
- $q_n = q(x_n)$

$$A\mathbf{\Phi} = \lambda h^2 \mathbf{\Phi}$$

$$A = \begin{pmatrix} Q_1 & 1 & 0 & & \dots & 1 \\ 1 & Q_2 & 1 & 0 & \dots & 0 \\ 0 & 1 & Q_3 & 1 & 0 \dots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & & \dots & 1 & Q_{2N-1} & 1 \\ 1 & 0 & \dots & 0 & 1 & Q_{2N} \end{pmatrix}, \mathbf{\Phi} = \begin{pmatrix} \Phi_1 \\ \Phi_2 \\ \vdots \\ \Phi_{2N} \end{pmatrix}$$

Formalism of . . .

Periodic Boundary...

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

The Finite-Difference Frequency-Domain Method

- Divide [-M, M] into 2N equal parts of width $h = \frac{M}{N}$
- Set $x_0 = -M$ and $x_{2N} = M$ as the boundary mesh points
- Set the interior mesh points: $x_n = -M + nh$ for n=1,2,...,(2N-1)
- Apply Central Differences for the second derivative at each mesh point:

$$\frac{\Phi_{n+1} + \Phi_{n-1} - 2\Phi_n}{h^2} + q_n \Phi_n = \lambda \Phi_n, \quad n = 1, 2, ..., 2N$$

- Φ_n denotes a numerical approximation for $\Phi(x_n)$
- $q_n = q(x_n)$

$$A\mathbf{\Phi} = \lambda h^2 \mathbf{\Phi}$$

$$A = \begin{pmatrix} Q_1 & 1 & 0 & & \dots & 1 \\ 1 & Q_2 & 1 & 0 & \dots & 0 \\ 0 & 1 & Q_3 & 1 & 0 \dots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & & \dots & 1 & Q_{2N-1} & 1 \\ 1 & 0 & \dots & 0 & 1 & Q_{2N} \end{pmatrix}, \boldsymbol{\Phi} = \begin{pmatrix} \Phi_1 \\ \Phi_2 \\ \vdots \\ \Phi_{2N} \end{pmatrix}$$

• $Q_n = h^2 q_n - 2$, n = 1, 2, ..., 2N

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 12 of 42

Go Back

Full Screen

Close

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

1

Page 13 of 42

Go Back

Full Screen

Close

Left of the Interface: $A^-\Phi^-_{\mathbf{j}} = \lambda^-_j h^2\Phi^-_{\mathbf{j}}$

Formalism of . . . Periodic Boundary . . . Absorbing Layers Summary Title Page Page 13 of 42 Go Back Full Screen

Close

Left of the Interface: $A^-\Phi_{\mathbf{j}}^- = \lambda_j^- h^2\Phi_{\mathbf{j}}^-$

Right of the Interface: $A^+\Phi^+_{\mathbf{j}} = \lambda_j^+ h^2 \Phi^+_{\mathbf{j}}$

Formalism of...
Periodic Boundary...
Absorbing Layers

Summary

Title Page

Page 13 of 42

Go Back

Full Screen

Close

Left of the Interface: $A^-\Phi_{\mathbf{j}}^- = \lambda_j^- h^2\Phi_{\mathbf{j}}^-$

Right of the Interface: $A^+\Phi^+_{\mathbf{j}} = \lambda_j^+ h^2\Phi^+_{\mathbf{j}}$

• eigenvalues λ_j^{\pm} are real

Formalism of...

Periodic Boundary...

Absorbing Layers

Summary

Close

Left of the Interface: $A^-\Phi_{\mathbf{j}}^- = \lambda_j^- h^2\Phi_{\mathbf{j}}^-$

Right of the Interface: $A^+\Phi^+_{\mathbf{j}} = \lambda_j^+ h^2 \Phi^+_{\mathbf{j}}$

- eigenvalues λ_j^{\pm} are real
- eigenvectors $\Phi_{\mathbf{i}}^{\pm}$ are orthogonal in \mathbb{R}^{2N}

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

44

Page 13 of 42

Go Back

Full Screen

Close

Left of the Interface: $A^-\Phi_{\mathbf{j}}^- = \lambda_j^- h^2\Phi_{\mathbf{j}}^-$

Right of the Interface: $A^+\Phi^+_{\mathbf{j}} = \lambda_j^+ h^2 \Phi^+_{\mathbf{j}}$

- eigenvalues λ_j^{\pm} are real
- eigenvectors $\Phi_{\mathbf{i}}^{\pm}$ are orthogonal in \mathbb{R}^{2N}

$$D^{-} = Q_{-}^{-1}A^{-}Q_{-} = Q_{-}^{T}A^{-}Q_{-} = \operatorname{diag}\{\lambda_{1}^{-}, \lambda_{2}^{-}, ..., \lambda_{2N}^{-}\}$$

$$D^{+} = Q_{+}^{-1}A^{+}Q_{+} = Q_{+}^{T}A^{+}Q_{+} = \operatorname{diag}\{\lambda_{1}^{+}, \lambda_{2}^{+}, ..., \lambda_{2N}^{+}\}$$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 13 of 42

Go Back

Full Screen

Close

Left of the Interface: $A^-\Phi_{\mathbf{j}}^- = \lambda_j^- h^2\Phi_{\mathbf{j}}^-$

Right of the Interface: $A^+\Phi^+_{\mathbf{j}} = \lambda_j^+ h^2 \Phi^+_{\mathbf{j}}$

- eigenvalues λ_j^{\pm} are real
- eigenvectors $\Phi_{\mathbf{i}}^{\pm}$ are orthogonal in \mathbb{R}^{2N}

$$D^{-} = Q_{-}^{-1}A^{-}Q_{-} = Q_{-}^{T}A^{-}Q_{-} = \operatorname{diag}\{\lambda_{1}^{-}, \lambda_{2}^{-}, ..., \lambda_{2N}^{-}\}$$

$$D^+ = Q_+^{-1}A^+Q_+ = Q_+^TA^+Q_+ = \mathrm{diag}\{\lambda_1^+, \lambda_2^+, ..., \lambda_{2N}^+\}$$

• Q_{\pm} is $2N \times 2N$ matrix whose jth column is $\Phi_{\mathbf{j}}^{\pm}$ respectively

Formalism of . . .

Periodic Boundary . .

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

Formalism of...
Periodic Boundary...
Absorbing Layers
Summary

Title Page

•

Page 14 of 42

Go Back

Full Screen

Close

Left of the Interface: z < 0

Formalism of . . . Periodic Boundary . . . Absorbing Layers Summary Title Page Page 14 of 42 Go Back Full Screen

Close

Left of the Interface: z < 0

$$\Psi^{-} = \sum_{j=1}^{2N} a_j \Phi_{\mathbf{j}}^{-} e^{-i\beta_{j}^{-} z} + \sum_{j=1}^{2N} c_j \Phi_{\mathbf{j}}^{-} e^{+i\beta_{j}^{-} z}, \quad \beta_{j}^{-} = \sqrt{\lambda_{j}^{-}}$$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 14 of 42

Go Back

Full Screen

Close

Left of the Interface: z < 0

$$\Psi^{-} = \sum_{j=1}^{2N} a_j \Phi_{\mathbf{j}}^{-} e^{-i\beta_{j}^{-} z} + \sum_{j=1}^{2N} c_j \Phi_{\mathbf{j}}^{-} e^{+i\beta_{j}^{-} z}, \quad \beta_{j}^{-} = \sqrt{\lambda_{j}^{-}}$$

• a_j and c_j are the discretized reflected and incident wave coefficients

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

-

Go Back

Full Screen

Close

Left of the Interface: z < 0

$$\Psi^{-} = \sum_{j=1}^{2N} a_j \Phi_{\mathbf{j}}^{-} e^{-i\beta_{j}^{-} z} + \sum_{j=1}^{2N} c_j \Phi_{\mathbf{j}}^{-} e^{+i\beta_{j}^{-} z}, \quad \beta_{j}^{-} = \sqrt{\lambda_{j}^{-}}$$

• a_j and c_j are the discretized reflected and incident wave coefficients

Right of the Interface: z > 0

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

Left of the Interface: z < 0

$$\Psi^{-} = \sum_{j=1}^{2N} a_j \Phi_{\mathbf{j}}^{-} e^{-i\beta_{j}^{-} z} + \sum_{j=1}^{2N} c_j \Phi_{\mathbf{j}}^{-} e^{+i\beta_{j}^{-} z}, \quad \beta_{j}^{-} = \sqrt{\lambda_{j}^{-}}$$

• a_j and c_j are the discretized reflected and incident wave coefficients

Right of the Interface: z > 0

$$\Psi^{+} = \sum_{j=1}^{2N} b_{j} \Phi_{j}^{+} e^{+i\beta_{j}^{+} z}, \quad \beta_{j}^{+} = \sqrt{\lambda_{j}^{+}}$$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

Left of the Interface: z < 0

$$\Psi^{-} = \sum_{j=1}^{2N} a_j \Phi_{\mathbf{j}}^{-} e^{-i\beta_{j}^{-} z} + \sum_{j=1}^{2N} c_j \Phi_{\mathbf{j}}^{-} e^{+i\beta_{j}^{-} z}, \quad \beta_{j}^{-} = \sqrt{\lambda_{j}^{-}}$$

• a_j and c_j are the discretized reflected and incident wave coefficients

Right of the Interface: z > 0

$$\Psi^{+} = \sum_{j=1}^{2N} b_j \Phi_{\mathbf{j}}^{+} e^{+i\beta_{j}^{+} z}, \quad \beta_{j}^{+} = \sqrt{\lambda_{j}^{+}}$$

• b_i are the discretized transmitted wave coefficients

Formalism of . . .

Periodic Boundary...

Absorbing Layers

Summary

Title Page

Page 14 of 42

Go Back

Full Screen

Close

Left of the Interface: z < 0

$$\Psi^{-} = \sum_{j=1}^{2N} a_j \Phi_{\mathbf{j}}^{-} e^{-i\beta_{j}^{-} z} + \sum_{j=1}^{2N} c_j \Phi_{\mathbf{j}}^{-} e^{+i\beta_{j}^{-} z}, \quad \beta_{j}^{-} = \sqrt{\lambda_{j}^{-}}$$

• a_j and c_j are the discretized reflected and incident wave coefficients

Right of the Interface: z > 0

$$\Psi^{+} = \sum_{j=1}^{2N} b_{j} \Phi_{j}^{+} e^{+i\beta_{j}^{+} z}, \quad \beta_{j}^{+} = \sqrt{\lambda_{j}^{+}}$$

ullet b_j are the discretized transmitted wave coefficients

At the Interface: z = 0

Formalism of . . .

Periodic Boundary...

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

Left of the Interface: z < 0

$$\Psi^{-} = \sum_{j=1}^{2N} a_j \Phi_{\mathbf{j}}^{-} e^{-i\beta_{j}^{-} z} + \sum_{j=1}^{2N} c_j \Phi_{\mathbf{j}}^{-} e^{+i\beta_{j}^{-} z}, \quad \beta_{j}^{-} = \sqrt{\lambda_{j}^{-}}$$

• a_i and c_i are the discretized reflected and incident wave coefficients

Right of the Interface: z > 0

$$\Psi^{+} = \sum_{j=1}^{2N} b_{j} \Phi_{\mathbf{j}}^{+} e^{+i\beta_{j}^{+} z}, \quad \beta_{j}^{+} = \sqrt{\lambda_{j}^{+}}$$

• b_i are the discretized transmitted wave coefficients

At the Interface: z=0

$$\sum_{j=1}^{2N} c_j \mathbf{\Phi}_{\mathbf{j}}^- + \sum_{j=1}^{2N} a_j \mathbf{\Phi}_{\mathbf{j}}^- = \sum_{j=1}^{2N} b_j \mathbf{\Phi}_{\mathbf{j}}^+$$

$$\sum_{j=1}^{2N} \beta_j^- c_j \mathbf{\Phi}_j^- - \sum_{j=1}^{2N} \beta_j^- a_j \mathbf{\Phi}_j^- = \sum_{j=1}^{2N} \beta_j^+ b_j \mathbf{\Phi}_j^+$$

Formalism of . . .

Periodic Boundary...

Absorbing Layers

Summary

Title Page

Page 14 of 42

Go Back

Full Screen

Close

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 15 of 42

Go Back

Full Screen

Close

Projection Operators P_k :

Close

Projection Operators P_k :

$$P_k(\mathbf{f}) = \mathbf{\Phi}_{\mathbf{k}}^+ \langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{f} \rangle, \quad \mathbf{f} \in \mathbb{R}^{2N}$$

Formalism of...
Periodic Boundary...
Absorbing Layers
Summary

Close

Projection Operators P_k :

$$P_k(\mathbf{f}) = \mathbf{\Phi}_{\mathbf{k}}^+ \langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{f} \rangle, \quad \mathbf{f} \in \mathbb{R}^{2N}$$

applied to the interface equations

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

Projection Operators P_k :

$$P_k(\mathbf{f}) = \mathbf{\Phi}_{\mathbf{k}}^+ \langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{f} \rangle, \quad \mathbf{f} \in \mathbb{R}^{2N}$$

applied to the interface equations

$$\sum_{j=1}^{2N} c_j \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle + \sum_{j=1}^{2N} a_j \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle = b_k$$

$$\sum_{j=1}^{2N} \beta_j^- c_j \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle - \sum_{j=1}^{2N} \beta_j^- a_j \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle = \beta_k^+ b_k$$

Formalism of . . .

Periodic Boundary...

Absorbing Layers

Summary

Title Page

Page 15 of 42

Go Back

Full Screen

Close

Projection Operators P_k :

$$P_k(\mathbf{f}) = \mathbf{\Phi}_{\mathbf{k}}^+ \langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{f} \rangle, \quad \mathbf{f} \in \mathbb{R}^{2N}$$

applied to the interface equations

$$\sum_{j=1}^{2N} c_j \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle + \sum_{j=1}^{2N} a_j \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle = b_k$$

$$\sum_{j=1}^{2N} \beta_j^- c_j \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle - \sum_{j=1}^{2N} \beta_j^- a_j \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle = \beta_k^+ b_k$$

$$\downarrow \downarrow$$

$$\sum_{j=1}^{2N} a_j (\beta_k^+ + \beta_j^-) \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle = -\sum_{j=1}^{2n} c_j (\beta_k^+ - \beta_j^-) \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle$$

Formalism of . . .

Periodic Boundary . .

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

Projection Operators P_k :

$$P_k(\mathbf{f}) = \mathbf{\Phi}_{\mathbf{k}}^+ \langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{f} \rangle, \quad \mathbf{f} \in \mathbb{R}^{2N}$$

applied to the interface equations

$$\sum_{j=1}^{2N} c_j \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle + \sum_{j=1}^{2N} a_j \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle = b_k$$

$$\sum_{j=1}^{2N} \beta_j^- c_j \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle - \sum_{j=1}^{2N} \beta_j^- a_j \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle = \beta_k^+ b_k$$

$$\downarrow \downarrow$$

$$\sum_{j=1}^{2N} a_j (\beta_k^+ + \beta_j^-) \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle = -\sum_{j=1}^{2n} c_j (\beta_k^+ - \beta_j^-) \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle$$

• a_j are the unknown reflected wave coefficients

Formalism of . . .

Periodic Boundary . .

Absorbing Layers

Summary

Title Page

Page 15 of 42

Go Back

Full Screen

Close

Projection Operators P_k :

$$P_k(\mathbf{f}) = \mathbf{\Phi}_{\mathbf{k}}^+ \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{f} \right\rangle, \quad \mathbf{f} \in \mathbb{R}^{2N}$$

applied to the interface equations

$$\sum_{j=1}^{2N} c_j \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle + \sum_{j=1}^{2N} a_j \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle = b_k$$

$$\sum_{j=1}^{2N} \beta_j^- c_j \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle - \sum_{j=1}^{2N} \beta_j^- a_j \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle = \beta_k^+ b_k$$

$$\downarrow \downarrow$$

$$\sum_{j=1}^{2N} a_j (\beta_k^+ + \beta_j^-) \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle = -\sum_{j=1}^{2n} c_j (\beta_k^+ - \beta_j^-) \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle$$

- a_i are the unknown reflected wave coefficients
- b_j are the unknown transmitted wave coefficients

Formalism of . . .

Periodic Boundary . .

Absorbing Layers

Summary

Title Page

Page 15 of 42

Go Back

Full Screen

Close

Projection Operators P_k :

$$P_k(\mathbf{f}) = \mathbf{\Phi}_{\mathbf{k}}^+ \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{f} \right\rangle, \quad \mathbf{f} \in \mathbb{R}^{2N}$$

applied to the interface equations

$$\sum_{j=1}^{2N} c_j \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle + \sum_{j=1}^{2N} a_j \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle = b_k$$

$$\sum_{j=1}^{2N} \beta_j^- c_j \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle - \sum_{j=1}^{2N} \beta_j^- a_j \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle = \beta_k^+ b_k$$

$$\downarrow \downarrow$$

$$\sum_{j=1}^{2N} a_j (\beta_k^+ + \beta_j^-) \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle = -\sum_{j=1}^{2n} c_j (\beta_k^+ - \beta_j^-) \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle$$

- a_i are the unknown reflected wave coefficients
- b_i are the unknown transmitted wave coefficients
- c_i are the known incident wave coefficients

Formalism of . . .

Periodic Boundary . .

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

Projection Operators P_k :

$$P_k(\mathbf{f}) = \mathbf{\Phi}_{\mathbf{k}}^+ \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{f} \right\rangle, \quad \mathbf{f} \in \mathbb{R}^{2N}$$

applied to the interface equations

$$\sum_{j=1}^{2N} c_j \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle + \sum_{j=1}^{2N} a_j \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle = b_k$$

$$\sum_{j=1}^{2N} \beta_j^- c_j \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle - \sum_{j=1}^{2N} \beta_j^- a_j \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle = \beta_k^+ b_k$$

$$\downarrow \downarrow$$

$$\sum_{j=1}^{2N} a_j (\beta_k^+ + \beta_j^-) \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle = -\sum_{j=1}^{2n} c_j (\beta_k^+ - \beta_j^-) \left\langle \mathbf{\Phi}_{\mathbf{k}}^+, \mathbf{\Phi}_{\mathbf{j}}^- \right\rangle$$

- a_i are the unknown reflected wave coefficients
- b_i are the unknown transmitted wave coefficients
- c_i are the known incident wave coefficients

Formalism of . . .

Periodic Boundary . .

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

Formalism of ...

Periodic Boundary ...

Absorbing Layers

Summary

Title Page

44

Go Back

Full Screen

Close

 $B\mathbf{a} = \mathbf{g}$

Formalism of . . .
Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 16 of 42

Go Back

Full Screen

Close

$$B\mathbf{a} = \mathbf{g}$$

- $\mathbf{a} = (a_1, a_2, ..., a_{2N})^T$ is the vector of reflection wave coefficients
- $\mathbf{b} = (b_1, b_2, ..., b_{2N})^T$ is the vector of transmitted wave coefficients
- $\mathbf{c} = (c_1, c_2, ..., c_{2N})^T$ is the vector of incident wave coefficients

Formalism of...
Periodic Boundary...
Absorbing Layers
Summary

Close

$$B\mathbf{a} = \mathbf{g}$$

- $\mathbf{a} = (a_1, a_2, ..., a_{2N})^T$ is the vector of reflection wave coefficients
- $\mathbf{b} = (b_1, b_2, ..., b_{2N})^T$ is the vector of transmitted wave coefficients
- $\mathbf{c} = (c_1, c_2, ..., c_{2N})^T$ is the vector of incident wave coefficients

$$B = \sqrt{D^+} Q_+^T Q_- + Q_+^T Q_- \sqrt{D^-}$$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 16 of 42

Go Back

Full Screen

Close

$$B\mathbf{a} = \mathbf{g}$$

- $\mathbf{a} = (a_1, a_2, ..., a_{2N})^T$ is the vector of reflection wave coefficients
- $\mathbf{b} = (b_1, b_2, ..., b_{2N})^T$ is the vector of transmitted wave coefficients
- $\mathbf{c} = (c_1, c_2, ..., c_{2N})^T$ is the vector of incident wave coefficients

$$B = \sqrt{D^{+}}Q_{+}^{T}Q_{-} + Q_{+}^{T}Q_{-}\sqrt{D^{-}}$$

$$E = Q_+^T Q_-$$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 16 of 42

Go Back

Full Screen

Close

$$B\mathbf{a} = \mathbf{g}$$

- $\mathbf{a} = (a_1, a_2, ..., a_{2N})^T$ is the vector of reflection wave coefficients
- $\mathbf{b} = (b_1, b_2, ..., b_{2N})^T$ is the vector of transmitted wave coefficients
- $\mathbf{c} = (c_1, c_2, ..., c_{2N})^T$ is the vector of incident wave coefficients

$$B = \sqrt{D^+}Q_+^TQ_- + Q_+^TQ_-\sqrt{D^-}$$

$$E = Q_+^T Q_-$$

$$\mathbf{g} = -\left(\sqrt{D^{+}}Q_{+}^{T}Q_{-} - Q_{+}^{T}Q_{-}\sqrt{D^{-}}\right)\mathbf{c}$$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 16 of 42

Go Back

Full Screen

Close

$$B\mathbf{a} = \mathbf{g}$$

- $\mathbf{a} = (a_1, a_2, ..., a_{2N})^T$ is the vector of reflection wave coefficients
- $\mathbf{b} = (b_1, b_2, ..., b_{2N})^T$ is the vector of transmitted wave coefficients
- $\mathbf{c} = (c_1, c_2, ..., c_{2N})^T$ is the vector of incident wave coefficients

$$B = \sqrt{D^+} Q_+^T Q_- + Q_+^T Q_- \sqrt{D^-}$$

$$E = Q_+^T Q_-$$

$$\mathbf{g} = -\left(\sqrt{D^{+}}Q_{+}^{T}Q_{-} - Q_{+}^{T}Q_{-}\sqrt{D^{-}}\right)\mathbf{c}$$

If B is nonsingular:

$$\mathbf{a} = B^{-1}\mathbf{g}$$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

$$B\mathbf{a} = \mathbf{g}$$

- $\mathbf{a} = (a_1, a_2, ..., a_{2N})^T$ is the vector of reflection wave coefficients
- $\mathbf{b} = (b_1, b_2, ..., b_{2N})^T$ is the vector of transmitted wave coefficients
- $\mathbf{c} = (c_1, c_2, ..., c_{2N})^T$ is the vector of incident wave coefficients

$$B = \sqrt{D^+} Q_+^T Q_- + Q_+^T Q_- \sqrt{D^-}$$

$$E = Q_+^T Q_-$$

$$\mathbf{g} = -\left(\sqrt{D^{+}}Q_{+}^{T}Q_{-} - Q_{+}^{T}Q_{-}\sqrt{D^{-}}\right)\mathbf{c}$$

If B is nonsingular:

$$\mathbf{a} = B^{-1}\mathbf{g}$$

$$\downarrow \downarrow$$

$$\mathbf{b} = E(\mathbf{a} + \mathbf{c})$$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

In matrix-vector form

$$B\mathbf{a} = \mathbf{g}$$

- $\mathbf{a} = (a_1, a_2, ..., a_{2N})^T$ is the vector of reflection wave coefficients
- $\mathbf{b} = (b_1, b_2, ..., b_{2N})^T$ is the vector of transmitted wave coefficients
- $\mathbf{c} = (c_1, c_2, ..., c_{2N})^T$ is the vector of incident wave coefficients

$$B = \sqrt{D^{+}}Q_{+}^{T}Q_{-} + Q_{+}^{T}Q_{-}\sqrt{D^{-}}$$

$$E = Q_+^T Q_-$$

$$\mathbf{g} = -\left(\sqrt{D^{+}}Q_{+}^{T}Q_{-} - Q_{+}^{T}Q_{-}\sqrt{D^{-}}\right)\mathbf{c}$$

If B is nonsingular:

$$\mathbf{a} = B^{-1}\mathbf{g}$$

$$\downarrow \downarrow$$

$$\mathbf{b} = E(\mathbf{a} + \mathbf{c})$$

$$\downarrow \downarrow$$

Recover numerical solutions for $\Psi^-(z)$ and $\Psi^+(z)$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 16 of 42

Go Back

Full Screen

Close

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Full Screen

Go Back

Close

$$C = \int_{-\infty}^{\infty} (S_{0,z}) dx \sim \int_{-\infty}^{\infty} \left(i\Psi \frac{\partial \overline{\Psi}}{\partial z} - i \frac{\partial \Psi}{\partial z} \overline{\Psi} \right) dx$$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 17 of 42

Go Back

Full Screen

Close

$$C = \int_{-\infty}^{\infty} (S_{0,z}) dx \sim \int_{-\infty}^{\infty} \left(i\Psi \frac{\partial \overline{\Psi}}{\partial z} - i \frac{\partial \Psi}{\partial z} \overline{\Psi} \right) dx$$

Left of the interface: z < 0

Formalism of . . . Periodic Boundary . . . Absorbing Layers Summary Title Page Page 17 of 42 Go Back Full Screen Close Quit

$$C = \int_{-\infty}^{\infty} (S_{0,z}) dx \sim \int_{-\infty}^{\infty} \left(i\Psi \frac{\partial \overline{\Psi}}{\partial z} - i \frac{\partial \Psi}{\partial z} \overline{\Psi} \right) dx$$

Left of the interface: z < 0

$$\int_{-\infty}^{\infty} S_{0,z} dx \approx 2 \sum_{\substack{k=1\\\lambda_k^->0}}^{2N} \beta_k^-(|c_k|^2 - |a_k|^2) = \mathbf{I}_{in} - \mathbf{I}_{ref} = C^-$$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

4

Page 17 of 42

Go Back

Full Screen

Close

$$C = \int_{-\infty}^{\infty} (S_{0,z}) dx \sim \int_{-\infty}^{\infty} \left(i\Psi \frac{\partial \overline{\Psi}}{\partial z} - i \frac{\partial \Psi}{\partial z} \overline{\Psi} \right) dx$$

Left of the interface: z < 0

$$\int_{-\infty}^{\infty} S_{0,z} dx \approx 2 \sum_{\substack{k=1\\\lambda_k^->0}}^{2N} \beta_k^-(|c_k|^2 - |a_k|^2) = \mathbf{I}_{in} - \mathbf{I}_{ref} = C^-$$

• C^- is a constant in z

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 17 of 42

Go Back

Full Screen

Close

$$C = \int_{-\infty}^{\infty} (S_{0,z}) dx \sim \int_{-\infty}^{\infty} \left(i\Psi \frac{\partial \overline{\Psi}}{\partial z} - i \frac{\partial \Psi}{\partial z} \overline{\Psi} \right) dx$$

Left of the interface: z < 0

$$\int_{-\infty}^{\infty} S_{0,z} dx \approx 2 \sum_{\substack{k=1\\\lambda_k^->0}}^{2N} \beta_k^-(|c_k|^2 - |a_k|^2) = \mathbf{I}_{in} - \mathbf{I}_{ref} = C^-$$

- C^- is a constant in z
- $\mathbf{I}_{in} = \sum_{k=1}^{2N} 2\beta_k^- |c_k|^2$ is the energy for the incident wave

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 17 of 42

Go Back

Full Screen

Close

$$C = \int_{-\infty}^{\infty} (S_{0,z}) dx \sim \int_{-\infty}^{\infty} \left(i\Psi \frac{\partial \overline{\Psi}}{\partial z} - i \frac{\partial \Psi}{\partial z} \overline{\Psi} \right) dx$$

Left of the interface: z < 0

$$\int_{-\infty}^{\infty} S_{0,z} dx \approx 2 \sum_{\substack{k=1\\\lambda_k^->0}}^{2N} \beta_k^-(|c_k|^2 - |a_k|^2) = \mathbf{I}_{in} - \mathbf{I}_{ref} = C^-$$

- C^- is a constant in z
- $\mathbf{I}_{in} = \sum_{k=1}^{2N} 2\beta_k^- |c_k|^2$ is the energy for the incident wave
- $\mathbf{I}_{ref} = \sum_{k=1}^{2N} 2\beta_k^- |a_k|^2$ is the energy for the reflected wave

Formalism of . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 17 of 42

Go Back

Full Screen

Close

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Close

$$\int_{-\infty}^{\infty} S_{0,z} dx \approx 2 \sum_{\substack{k=1\\\lambda_k^+>0}}^{2N} \beta_k^+ |b_k|^2 = \mathbf{I}_{tran} = C^+$$

Formalism of . . .

Periodic Boundary...

Absorbing Layers

Summary

Title Page

Page 18 of 42

Go Back

Full Screen

Close

$$\int_{-\infty}^{\infty} S_{0,z} dx \approx 2 \sum_{\substack{k=1\\\lambda_k^+>0}}^{2N} \beta_k^+ |b_k|^2 = \mathbf{I}_{tran} = C^+$$

• C^+ is a constant in z

Formalism of . . .

Periodic Boundary..

Absorbing Layers

Summary

Go Back

Full Screen

Close

$$\int_{-\infty}^{\infty} S_{0,z} dx \approx 2 \sum_{\substack{k=1\\\lambda_k^+>0}}^{2N} \beta_k^+ |b_k|^2 = \mathbf{I}_{tran} = C^+$$

- C^+ is a constant in z
- $\mathbf{I}_{tran} = \sum_{k=1}^{2N} 2\beta_k^+ |b_k|^2$ is the energy for the transmitted wave

Formalism of . . .

Periodic Boundary..

Absorbing Layers

Summary

Title Page

Page 18 of 42

Go Back

Full Screen

Close

$$\int_{-\infty}^{\infty} S_{0,z} \, dx \approx 2 \sum_{\substack{k=1\\\lambda_k^+ > 0}}^{2N} \beta_k^+ |b_k|^2 = \mathbf{I}_{tran} = C^+$$

- C^+ is a constant in z
- $\mathbf{I}_{tran} = \sum_{k=1}^{2N} 2\beta_k^+ |b_k|^2$ is the energy for the transmitted wave

The Conservation Law: $C^- = C^+$

Formalism of . . .

Periodic Boundary . .

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

$$\int_{-\infty}^{\infty} S_{0,z} \, dx \approx 2 \sum_{\substack{k=1\\\lambda_k^+>0}}^{2N} \beta_k^+ |b_k|^2 = \mathbf{I}_{tran} = C^+$$

- C^+ is a constant in z
- $\mathbf{I}_{tran} = \sum_{\substack{k=1\\\lambda_k^+>0}}^{2N} 2\beta_k^+ |b_k|^2$ is the energy for the transmitted wave

The Conservation Law: $C^- = C^+$

$$\mathbf{I}_{in} = \mathbf{I}_{ref} + \mathbf{I}_{trans}$$

Formalism of . . .

Periodic Boundary . .

Absorbing Layers

Summary

Title Page

Page 18 of 42

Go Back

Full Screen

Close

$$\int_{-\infty}^{\infty} S_{0,z} \, dx \approx 2 \sum_{\substack{k=1\\\lambda_k^+>0}}^{2N} \beta_k^+ |b_k|^2 = \mathbf{I}_{tran} = C^+$$

- C^+ is a constant in z
- $\mathbf{I}_{tran} = \sum_{\substack{k=1\\\lambda_k^+>0}}^{2N} 2\beta_k^+ |b_k|^2$ is the energy for the transmitted wave

The Conservation Law: $C^- = C^+$

$$\mathbf{I}_{in} = \mathbf{I}_{ref} + \mathbf{I}_{trans} \Rightarrow 1 = R + T \text{ (balance equation)}$$

Formalism of . . .

Periodic Boundary . .

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

$$\int_{-\infty}^{\infty} S_{0,z} \, dx \approx 2 \sum_{\substack{k=1\\\lambda_k^+ > 0}}^{2N} \beta_k^+ |b_k|^2 = \mathbf{I}_{tran} = C^+$$

- C^+ is a constant in z
- $\mathbf{I}_{tran} = \sum_{k=1}^{2N} 2\beta_k^+ |b_k|^2$ is the energy for the transmitted wave

The Conservation Law: $C^- = C^+$

$$\mathbf{I}_{in} = \mathbf{I}_{ref} + \mathbf{I}_{trans} \Rightarrow 1 = R + T \text{ (balance equation)}$$

- $R = \frac{\mathbf{I}_{ref}}{\mathbf{I}_{in}}$
- $T = \frac{\mathbf{I}_{trans}}{\mathbf{I}_{in}}$

Formalism of . . .

Periodic Boundary . .

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

Formalism of...
Periodic Boundary...
Absorbing Layers

Summary

Title Page

Geometric Configuration:

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Close

Geometric Configuration:

- $D = \{(x, z) : -30 \le x \le 30, -30 \le z \le 30\}$
- $h = \frac{3}{10}$
- $\rho^- = 1$ and $\rho^+ = 2$
- $q_{\infty}^{\pm} = 1$
- $q_0^- = 2$ and $q_0^+ = 2 \to 10$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 19 of 42

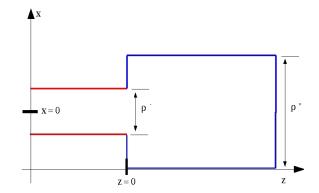
Go Back

Full Screen

Close

Geometric Configuration:

- $D = \{(x, z) : -30 \le x \le 30, -30 \le z \le 30\}$
- $h = \frac{3}{10}$
- $\rho^- = 1$ and $\rho^+ = 2$
- $q_{\infty}^{\pm} = 1$
- $q_0^- = 2$ and $q_0^+ = 2 \to 10$



Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

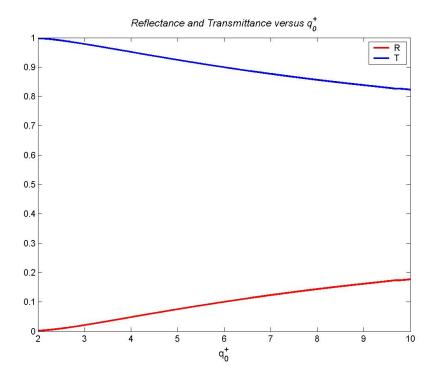
Title Page

Page 19 of 42

Go Back

Full Screen

Close



Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

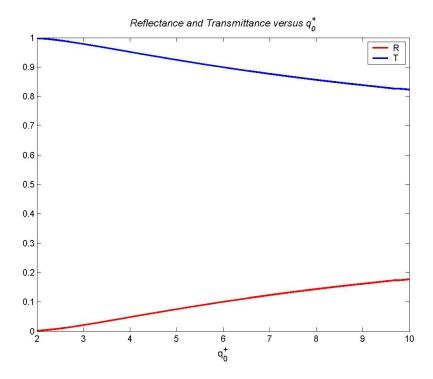
Title Page

Page 20 of 42

Go Back

Full Screen

Close



• At each q_0^+ : R + T = 1 (balance equation)

Formalism of . . .

Periodic Boundary . .

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

Fix $q_0^+ = 4$:

Formalism of . . .

Periodic Boundary . .

Absorbing Layers

Summary

Title Page

44

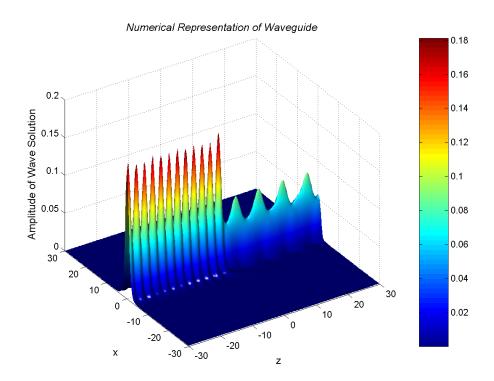
Page 21 of 42

Go Back

Full Screen

Close

Fix $q_0^+ = 4$:



Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

4

Page 21 of 42

Go Back

Full Screen

Close

Energy Spectrum Left of the Interface

Formalism of...
Periodic Boundary...
Absorbing Layers

Summary

Full Screen

Close

Energy Spectrum Left of the Interface

Waveguide mode: $\lambda_1^- = 1.4794$

Incident Energy = 2.4326, Reflected Energy = 0.1091

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

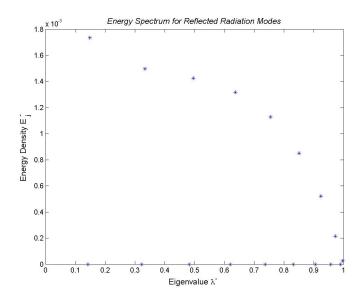
Close

Energy Spectrum Left of the Interface

Waveguide mode: $\lambda_1^- = 1.4794$

Incident Energy = 2.4326, Reflected Energy = 0.1091

Radiation Modes:



Formalism of ...
Periodic Boundary ...
Absorbing Layers

Summary

Title Page

44

Page 22 of 42

Go Back

Full Screen

Close

Energy Spectrum Right of the Interface

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

44

Energy Spectrum Right of the Interface

Waveguide modes: $\lambda_1^+ = 3.6238$, $\lambda_2^+ = 2.5544$, $\lambda_3^+ = 1.1270$

Transmitted Energies: 2.2698, 0, 0.0268

Formalism of...
Periodic Boundary...
Absorbing Layers
Summary

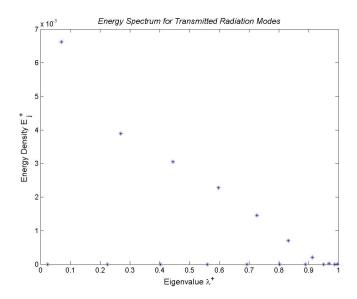
Close

Energy Spectrum Right of the Interface

Waveguide modes: $\lambda_1^+ = 3.6238$, $\lambda_2^+ = 2.5544$, $\lambda_3^+ = 1.1270$

Transmitted Energies: 2.2698, 0, 0.0268

Radiation Modes:



Formalism of . . .

Periodic Boundary...

Absorbing Layers

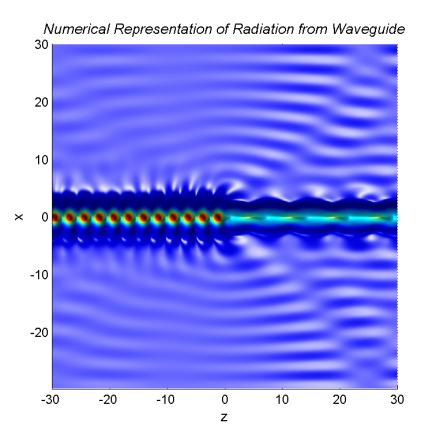
Summary

Title Page

Go Back

Full Screen

Close



Formalism of . . .
Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

The Method of Complexified Space



The Method of Complexified Space

 \bullet x is complex-valued

Formalism of . . .

Periodic Boundary . . . Absorbing Layers Summary Title Page Page 25 of 42 Go Back Full Screen Close Quit

The Method of Complexified Space

- \bullet x is complex-valued
- $\operatorname{Re}(x) = \xi, \, \xi \in \mathbb{R}$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Close

The Method of Complexified Space

- \bullet x is complex-valued
- $\operatorname{Re}(x) = \xi, \, \xi \in \mathbb{R}$
- $\operatorname{Im}(x) = \Delta(\xi)$

Formalism of ...

Periodic Boundary ...

Absorbing Layers

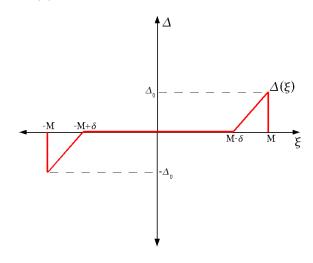
Summary

Full Screen

Close

The Method of Complexified Space

- \bullet x is complex-valued
- $\operatorname{Re}(x) = \xi, \, \xi \in \mathbb{R}$
- $\operatorname{Im}(x) = \Delta(\xi)$



Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Go Back

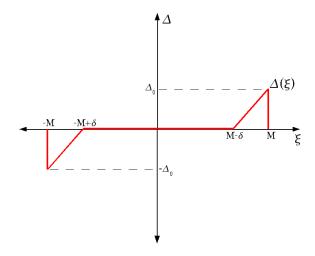
Full Screen

Close

3. Absorbing Layers

The Method of Complexified Space

- \bullet x is complex-valued
- $\operatorname{Re}(x) = \xi, \, \xi \in \mathbb{R}$
- $\operatorname{Im}(x) = \Delta(\xi)$



• $\Delta(\xi)$ with $\Delta_0 > 0$ introduces an effective damping for radiation modes of the wave from artificial boundary-reflected waveguides

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

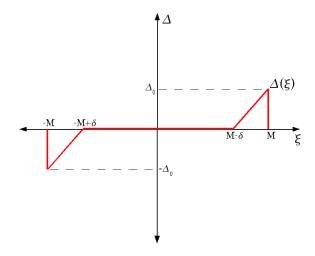
Title Page

Close

3. Absorbing Layers

The Method of Complexified Space

- \bullet x is complex-valued
- $\operatorname{Re}(x) = \xi, \, \xi \in \mathbb{R}$
- $\operatorname{Im}(x) = \Delta(\xi)$



• $\Delta(\xi)$ with $\Delta_0 > 0$ introduces an effective damping for radiation modes of the wave from artificial boundary-reflected waveguides

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Close

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Go Back

Full Screen

Close

$$\left[\frac{1}{C(\xi)}\frac{d^2}{d\xi^2} + q(\xi)\right]\Phi(\xi) = \lambda\Phi(\xi), \quad \lambda \in \mathbb{C}, \xi \in \mathbb{R}$$

Dirichlet BC: $\Phi(\pm M) = 0$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 26 of 42

Go Back

Full Screen

Close

$$\left[\frac{1}{C(\xi)}\frac{d^2}{d\xi^2} + q(\xi)\right]\Phi(\xi) = \lambda\Phi(\xi), \quad \lambda \in \mathbb{C}, \xi \in \mathbb{R}$$

Dirichlet BC: $\Phi(\pm M) = 0$

•
$$C(\xi) = 1 + i\frac{d\Delta}{d\xi} = \begin{cases} 1, & \text{for } -M + \delta < \xi < M - \delta \\ 1 + i\frac{\Delta_0}{\delta}, & \text{otherwise} \end{cases}$$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

$$\left[\frac{1}{C(\xi)}\frac{d^2}{d\xi^2} + q(\xi)\right]\Phi(\xi) = \lambda\Phi(\xi), \quad \lambda \in \mathbb{C}, \xi \in \mathbb{R}$$

Dirichlet BC: $\Phi(\pm M) = 0$

•
$$C(\xi) = 1 + i\frac{d\Delta}{d\xi} = \begin{cases} 1, & \text{for } -M + \delta < \xi < M - \delta \\ 1 + i\frac{\Delta_0}{\delta}, & \text{otherwise} \end{cases}$$

The Spectral Deformation:

$$\operatorname{Im}(\lambda_n) = \frac{\Delta_0}{\delta}(q_{\infty} - \operatorname{Re}(\lambda_n))$$

Formalism of . . .

 $Periodic\ Boundary \dots$

Absorbing Layers

Summary

Title Page

Page 26 of 42

Go Back

Full Screen

Close

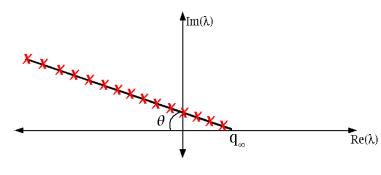
$$\left[\frac{1}{C(\xi)}\frac{d^2}{d\xi^2} + q(\xi)\right]\Phi(\xi) = \lambda\Phi(\xi), \quad \lambda \in \mathbb{C}, \xi \in \mathbb{R}$$

Dirichlet BC: $\Phi(\pm M) = 0$

•
$$C(\xi) = 1 + i\frac{d\Delta}{d\xi} = \begin{cases} 1, & \text{for } -M + \delta < \xi < M - \delta \\ 1 + i\frac{\Delta_0}{\delta}, & \text{otherwise} \end{cases}$$

The Spectral Deformation:

$$\operatorname{Im}(\lambda_n) = \frac{\Delta_0}{\delta}(q_{\infty} - \operatorname{Re}(\lambda_n))$$



 $\theta = -\frac{\Delta_0}{\delta}$

Formalism of . . .

Periodic Boundary..

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 27 of 42

Go Back

Full Screen

Close

$$A\mathbf{\Phi} = \lambda h^2 \mathbf{\Phi}$$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

$$A\mathbf{\Phi} = \lambda h^2 \mathbf{\Phi}$$

$$A = \begin{pmatrix} Q_1 & \frac{1}{C_1} & 0 & & \dots & 0 \\ \frac{1}{C_2} & Q_2 & \frac{1}{C_2} & 0 & \dots & 0 \\ 0 & \frac{1}{C_3} & Q_3 & \frac{1}{C_3} & 0 \dots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & & \dots & \frac{1}{C_{2N-2}} & Q_{2N-2} & \frac{1}{C_{2N-2}} \\ 0 & 0 & \dots & 0 & \frac{1}{C_{2N-1}} & Q_{2N-1} \end{pmatrix}, \boldsymbol{\Phi} = \begin{pmatrix} \Phi_1 \\ \Phi_2 \\ \vdots \\ \Phi_{2N-1} \end{pmatrix}$$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

- ugc 27 07 12

Go Back

Full Screen

Close

$$A\mathbf{\Phi} = \lambda h^2 \mathbf{\Phi}$$

$$A = \begin{pmatrix} Q_1 & \frac{1}{C_1} & 0 & & \dots & 0 \\ \frac{1}{C_2} & Q_2 & \frac{1}{C_2} & 0 & \dots & 0 \\ 0 & \frac{1}{C_3} & Q_3 & \frac{1}{C_3} & 0 \dots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & & \dots & \frac{1}{C_{2N-2}} & Q_{2N-2} & \frac{1}{C_{2N-2}} \\ 0 & 0 & \dots & 0 & \frac{1}{C_{2N-1}} & Q_{2N-1} \end{pmatrix}, \mathbf{\Phi} = \begin{pmatrix} \Phi_1 \\ \Phi_2 \\ \vdots \\ \Phi_{2N-1} \end{pmatrix}$$

•
$$Q_n = h^2 q_n - \frac{2}{C_n}$$
, $h = \frac{M}{N}$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 27 of 42

Go Back

Full Screen

Close

$$A\mathbf{\Phi} = \lambda h^2 \mathbf{\Phi}$$

$$A = \begin{pmatrix} Q_1 & \frac{1}{C_1} & 0 & & \dots & 0 \\ \frac{1}{C_2} & Q_2 & \frac{1}{C_2} & 0 & \dots & 0 \\ 0 & \frac{1}{C_3} & Q_3 & \frac{1}{C_3} & 0 \dots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & & \dots & \frac{1}{C_{2N-2}} & Q_{2N-2} & \frac{1}{C_{2N-2}} \\ 0 & 0 & \dots & 0 & \frac{1}{C_{2N-1}} & Q_{2N-1} \end{pmatrix}, \mathbf{\Phi} = \begin{pmatrix} \Phi_1 \\ \Phi_2 \\ \vdots \\ \Phi_{2N-1} \end{pmatrix}$$

•
$$Q_n = h^2 q_n - \frac{2}{C_n}, h = \frac{M}{N}$$

• the eigenvalues λ are not real

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

$$A\mathbf{\Phi} = \lambda h^2 \mathbf{\Phi}$$

$$A = \begin{pmatrix} Q_1 & \frac{1}{C_1} & 0 & & \dots & 0 \\ \frac{1}{C_2} & Q_2 & \frac{1}{C_2} & 0 & \dots & 0 \\ 0 & \frac{1}{C_3} & Q_3 & \frac{1}{C_3} & 0 \dots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & & \dots & \frac{1}{C_{2N-2}} & Q_{2N-2} & \frac{1}{C_{2N-2}} \\ 0 & 0 & \dots & 0 & \frac{1}{C_{2N-1}} & Q_{2N-1} \end{pmatrix}, \mathbf{\Phi} = \begin{pmatrix} \Phi_1 \\ \Phi_2 \\ \vdots \\ \Phi_{2N-1} \end{pmatrix}$$

•
$$Q_n = h^2 q_n - \frac{2}{C_n}, h = \frac{M}{N}$$

- the eigenvalues λ are not real
- ullet the eigenvectors $oldsymbol{\Phi}$ are not orthogonal

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 27 of 42

Go Back

Full Screen

Close

$$A\mathbf{\Phi} = \lambda h^2 \mathbf{\Phi}$$

$$A = \begin{pmatrix} Q_1 & \frac{1}{C_1} & 0 & & \dots & 0 \\ \frac{1}{C_2} & Q_2 & \frac{1}{C_2} & 0 & \dots & 0 \\ 0 & \frac{1}{C_3} & Q_3 & \frac{1}{C_3} & 0 \dots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & & \dots & \frac{1}{C_{2N-2}} & Q_{2N-2} & \frac{1}{C_{2N-2}} \\ 0 & 0 & \dots & 0 & \frac{1}{C_{2N-1}} & Q_{2N-1} \end{pmatrix}, \mathbf{\Phi} = \begin{pmatrix} \Phi_1 \\ \Phi_2 \\ \vdots \\ \Phi_{2N-1} \end{pmatrix}$$

•
$$Q_n = h^2 q_n - \frac{2}{C_n}, h = \frac{M}{N}$$

- the eigenvalues λ are not real
- ullet the eigenvectors $oldsymbol{\Phi}$ are not orthogonal
- orthogonal diagonalization and projection operators

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

$$A\mathbf{\Phi} = \lambda h^2 \mathbf{\Phi}$$

$$A = \begin{pmatrix} Q_1 & \frac{1}{C_1} & 0 & & \dots & 0 \\ \frac{1}{C_2} & Q_2 & \frac{1}{C_2} & 0 & \dots & 0 \\ 0 & \frac{1}{C_3} & Q_3 & \frac{1}{C_3} & 0 \dots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & & \dots & \frac{1}{C_{2N-2}} & Q_{2N-2} & \frac{1}{C_{2N-2}} \\ 0 & 0 & \dots & 0 & \frac{1}{C_{2N-1}} & Q_{2N-1} \end{pmatrix}, \mathbf{\Phi} = \begin{pmatrix} \Phi_1 \\ \Phi_2 \\ \vdots \\ \Phi_{2N-1} \end{pmatrix}$$

•
$$Q_n = h^2 q_n - \frac{2}{C_n}, h = \frac{M}{N}$$

- the eigenvalues λ are not real
- ullet the eigenvectors $oldsymbol{\Phi}$ are not orthogonal
- orthogonal diagonalization and projection operators NO NO

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

Formalism of . . . Periodic Boundary . . . Absorbing Layers

Summary

Page 28 of 42

Go Back

Full Screen

Close

$$A^{\pm}\boldsymbol{\Phi}_{\mathbf{j}}^{\pm}=\lambda_{j}^{\pm}h^{2}\boldsymbol{\Phi}_{\mathbf{j}}^{\pm}\quad j=1,2,...2N-1$$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Page 28 of 42

Go Back

Full Screen

Close

$$A^{\pm} \Phi_{\mathbf{j}}^{\pm} = \lambda_{j}^{\pm} h^{2} \Phi_{\mathbf{j}}^{\pm} \quad j = 1, 2, ... 2N - 1$$

- $\{\lambda_j^{\pm}\}_{j=1}^{2N-1} \in \mathbb{C}$ is an eigenvalue of A^{\pm}
- $\{\Phi_{\mathbf{j}}^{\pm}\}_{j=1}^{2N-1} \in \mathbb{C}^{2N-1}$ is the corresponding eigenvector

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

$$A^{\pm} \mathbf{\Phi}_{\mathbf{j}}^{\pm} = \lambda_{j}^{\pm} h^{2} \mathbf{\Phi}_{\mathbf{j}}^{\pm} \quad j = 1, 2, ... 2N - 1$$

- $\{\lambda_j^{\pm}\}_{j=1}^{2N-1} \in \mathbb{C}$ is an eigenvalue of A^{\pm}
- $\{\Phi_{\mathbf{j}}^{\pm}\}_{j=1}^{2N-1} \in \mathbb{C}^{2N-1}$ is the corresponding eigenvector

At the Interface: z = 0

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

44

4

Page 28 of 42

Go Back

Full Screen

Close

$$A^{\pm} \Phi_{\mathbf{j}}^{\pm} = \lambda_{j}^{\pm} h^{2} \Phi_{\mathbf{j}}^{\pm} \quad j = 1, 2, ... 2N - 1$$

- $\{\lambda_j^{\pm}\}_{j=1}^{2N-1} \in \mathbb{C}$ is an eigenvalue of A^{\pm}
- $\{\Phi_{\mathbf{j}}^{\pm}\}_{j=1}^{2N-1} \in \mathbb{C}^{2N-1}$ is the corresponding eigenvector

At the Interface: z = 0

$$\sum_{j=1}^{2N-1} c_j \mathbf{\Phi}_{\mathbf{j}}^- + \sum_{j=1}^{2N-1} a_j \mathbf{\Phi}_{\mathbf{j}}^- = \sum_{j=1}^{2N-1} b_j \mathbf{\Phi}_{\mathbf{j}}^+$$

$$\sum_{j=1}^{2N-1} \beta_j^- c_j \mathbf{\Phi}_{\mathbf{j}}^- - \sum_{j=1}^{2N-1} \beta_j^- a_j \mathbf{\Phi}_{\mathbf{j}}^- = \sum_{j=1}^{2N-1} \beta_j^+ b_j \mathbf{\Phi}_{\mathbf{j}}^+$$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 28 of 42

Go Back

Full Screen

Close

$$A^{\pm} \Phi_{\mathbf{j}}^{\pm} = \lambda_{j}^{\pm} h^{2} \Phi_{\mathbf{j}}^{\pm} \quad j = 1, 2, ... 2N - 1$$

- $\{\lambda_j^{\pm}\}_{j=1}^{2N-1} \in \mathbb{C}$ is an eigenvalue of A^{\pm}
- $\{\Phi_{\mathbf{j}}^{\pm}\}_{j=1}^{2N-1} \in \mathbb{C}^{2N-1}$ is the corresponding eigenvector

At the Interface: z = 0

$$\sum_{j=1}^{2N-1} c_j \mathbf{\Phi}_{\mathbf{j}}^- + \sum_{j=1}^{2N-1} a_j \mathbf{\Phi}_{\mathbf{j}}^- = \sum_{j=1}^{2N-1} b_j \mathbf{\Phi}_{\mathbf{j}}^+$$

$$\sum_{j=1}^{2N-1} \beta_j^- c_j \mathbf{\Phi}_{\mathbf{j}}^- - \sum_{j=1}^{2N-1} \beta_j^- a_j \mathbf{\Phi}_{\mathbf{j}}^- = \sum_{j=1}^{2N-1} \beta_j^+ b_j \mathbf{\Phi}_{\mathbf{j}}^+$$

linear system

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 28 of 42

Go Back

Full Screen

Close

$$A^{\pm} \mathbf{\Phi}_{\mathbf{j}}^{\pm} = \lambda_{j}^{\pm} h^{2} \mathbf{\Phi}_{\mathbf{j}}^{\pm} \quad j = 1, 2, ... 2N - 1$$

- $\{\lambda_j^{\pm}\}_{j=1}^{2N-1} \in \mathbb{C}$ is an eigenvalue of A^{\pm}
- $\{\Phi_{\mathbf{j}}^{\pm}\}_{j=1}^{2N-1} \in \mathbb{C}^{2N-1}$ is the corresponding eigenvector

At the Interface: z = 0

$$\sum_{j=1}^{2N-1} c_j \mathbf{\Phi}_{\mathbf{j}}^- + \sum_{j=1}^{2N-1} a_j \mathbf{\Phi}_{\mathbf{j}}^- = \sum_{j=1}^{2N-1} b_j \mathbf{\Phi}_{\mathbf{j}}^+$$

$$\sum_{j=1}^{2N-1} \beta_j^- c_j \mathbf{\Phi}_{\mathbf{j}}^- - \sum_{j=1}^{2N-1} \beta_j^- a_j \mathbf{\Phi}_{\mathbf{j}}^- = \sum_{j=1}^{2N-1} \beta_j^+ b_j \mathbf{\Phi}_{\mathbf{j}}^+$$

linear system

Recover numerical solutions for $\Psi^-(z)$ and $\Psi^+(z)$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 28 of 42

Go Back

Full Screen

Close

Formalism of . . .

Periodic Boundary...

Absorbing Layers

Summary

Title Page

44

Page 29 of 42

Go Back

Full Screen

Close

• the spectral deformation

Full Screen

Close

- the spectral deformation
- the ability to effectively absorb outgoing waves from artificial boundary-reflected waveguides, i.e. radiating waves

Formalism of . . . Periodic Boundary . . . Absorbing Layers Summary Title Page Page 29 of 42 Go Back Full Screen Close Quit

- the spectral deformation
- the ability to effectively absorb outgoing waves from artificial boundary-reflected waveguides, i.e. radiating waves

Numerical Paramters:

Formalism of . . . Periodic Boundary . . . Absorbing Layers Summary Title Page Page 29 of 42 Go Back Full Screen Close Quit

- the spectral deformation
- the ability to effectively absorb outgoing waves from artificial boundary-reflected waveguides, i.e. radiating waves

Numerical Paramters:

- $D = \{(\xi, z) : -30 \le x \le 30, -30 \le z \le 30\}$
- $h = \frac{3}{10}$
- $\rho^- = 1, \, \rho^+ = 2$
- $q_0^- = 2$, $q_0^+ = 4$, $q_\infty^{\pm} = 1$
- $\Delta_0 = 0.1$, $\delta = 15$ (absorbing layer)

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Go Back

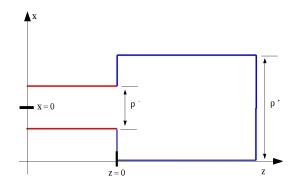
Full Screen

Close

- the spectral deformation
- the ability to effectively absorb outgoing waves from artificial boundary-reflected waveguides, i.e. radiating waves

Numerical Paramters:

- $D = \{(\xi, z) : -30 \le x \le 30, -30 \le z \le 30\}$
- $h = \frac{3}{10}$
- $\rho^- = 1, \, \rho^+ = 2$
- $q_0^- = 2$, $q_0^+ = 4$, $q_\infty^{\pm} = 1$
- $\Delta_0 = 0.1$, $\delta = 15$ (absorbing layer)



Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

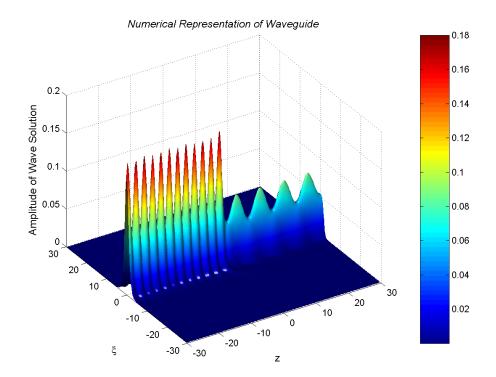
Summary

Title Page

Go Back

Full Screen

Close



Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

4

Page 30 of 42

Go Back

Full Screen

Close

Location of Eigenvalues Left of the Interface

Formalism of...
Periodic Boundary...
Absorbing Layers

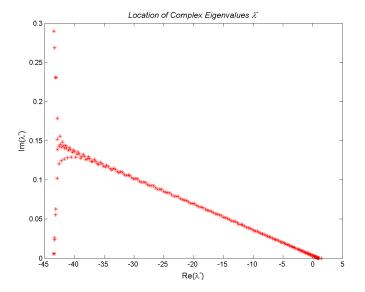
Summary

Go Back

Full Screen

Close

Location of Eigenvalues Left of the Interface



Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

44

Page 31 of 42

Go Back

Full Screen

Close

Location of Eigenvalues Left of the Interface



Waveguide mode:

$$\lambda_1^- = 1.4794$$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 31 of 42

Go Back

Full Screen

Close

Location of Eigenvalues Right of the Interface

Formalism of...

Periodic Boundary...

Absorbing Layers

Summary

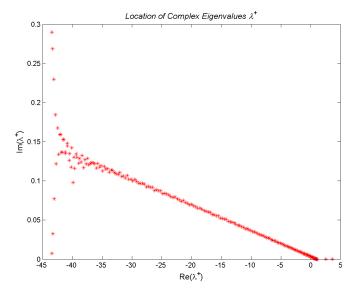
Title Page

Page 32 of 42

Go Back
Full Screen

Close

Location of Eigenvalues Right of the Interface



Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

•

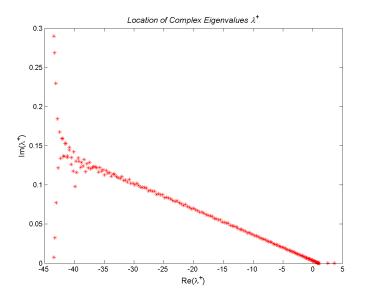
Page 32 of 42

Go Back

Full Screen

Close

Location of Eigenvalues Right of the Interface



Waveguide modes:

 $\lambda_1^+ = 3.6238$

 $\lambda_2^+ = 2.5544$

 $\lambda_3^+ = 1.1270$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 32 of 42

Go Back

Full Screen

Close

Energy Spectrum Left of the Interface

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 33 of 42

Go Back

Full Screen

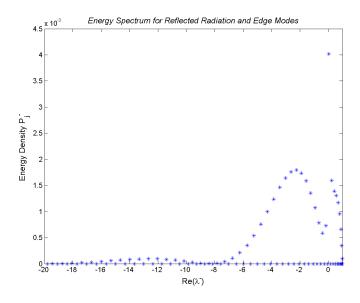
Close

Energy Spectrum Left of the Interface

Waveguide mode: $\lambda_1^- = 1.4794$

Reflected Energy = 0.1088

Radiation Modes:



$$P_j^- = 2\sqrt{|\lambda^-|}|a_j|^2$$

Formalism of . . .
Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 33 of 42

Go Back

Full Screen

Close

Energy Spectrum Right of the Interface

Formalism of...
Periodic Boundary...
Absorbing Layers
Summary

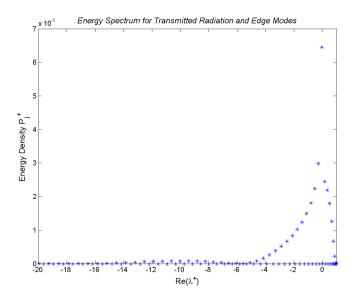
Close

Energy Spectrum Right of the Interface

Waveguide modes: $\lambda_1^+ = 3.6238$, $\lambda_2^+ = 2.5544$, $\lambda_3^+ = 1.1270$

Transmitted Energies: 2.2690, 0, 0.0342

Radiation Modes:



$$P_j^+ = 2\sqrt{|\lambda^+|}|b_j|^2$$

Formalism of...

Periodic Boundary...

Absorbing Layers

Summary

Title Page

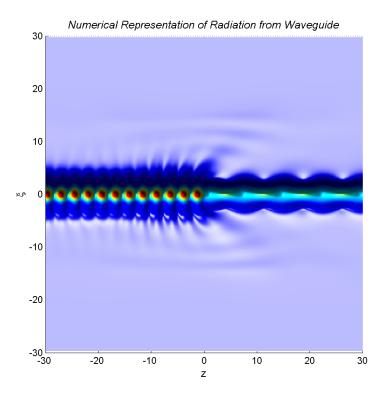
1

Page 34 of 42

Go Back

Full Screen

Close



Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

Formalism of...

Periodic Boundary...

Absorbing Layers

Summary

Title Page

Page 36 of 42

Go Back

Full Screen

Close

• the absorbing layer does not change the location of eigenvalues of the discrete spectrum

Formalism of . . . Periodic Boundary . . . Absorbing Layers Summary Title Page Page 36 of 42 Go Back Full Screen Close Quit

- the absorbing layer does not change the location of eigenvalues of the discrete spectrum
- the deformation of the continuous spectrum is a clockwise rotation about q_{∞}^{\pm} in the complex plane

Formalism of . . .

Periodic Boundary . . . Absorbing Layers Summary Title Page Page 36 of 42 Go Back Full Screen Close Quit

- the absorbing layer does not change the location of eigenvalues of the discrete spectrum
- the deformation of the continuous spectrum is a clockwise rotation about q_{∞}^{\pm} in the complex plane
- the absorbing layer induces splitting of the continuous spectrum into 2 branches

Formalism of ...

Periodic Boundary ...

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

The Splitting Phenomena

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

44

Close

The Splitting Phenomena

Simplifications:

• $q(\xi) = q_{\infty} \equiv \text{const for } -M < \xi < M \text{ (no waveguide)}$

Formalism of...

Periodic Boundary...

Absorbing Layers

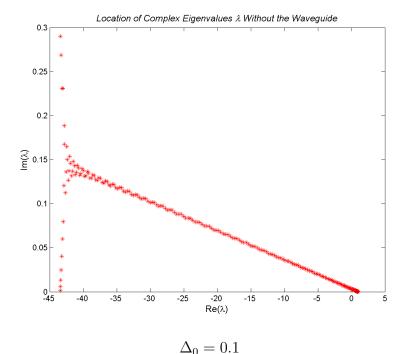
Summary

Close

The Splitting Phenomena

Simplifications:

• $q(\xi) = q_{\infty} \equiv \text{const for } -M < \xi < M \text{ (no waveguide)}$



Formalism of . . . Periodic Boundary . . . Absorbing Layers Summary

Full Screen

Close

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

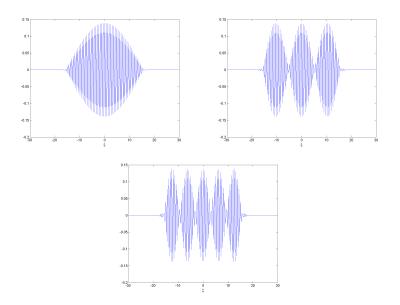
Title Page

Page 38 of 42

Go Back

Full Screen

Close



Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

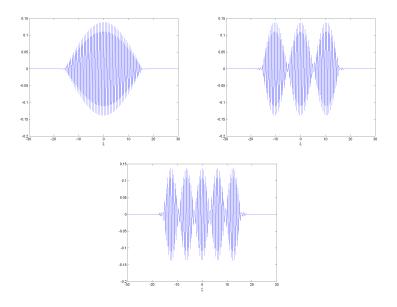
Title Page

Page 38 of 42

Go Back

Full Screen

Close



• $\Phi_{\mathbf{j}}$ are localized in the gap of the absorbing layer: $|\xi| < M - \delta = 15$

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

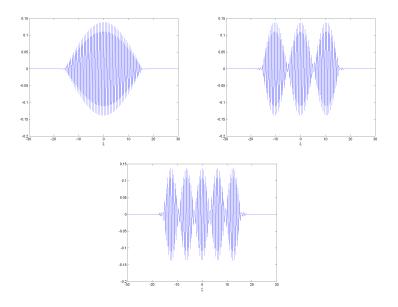
Summary

Title Page

Go Back

Full Screen

Close



- $\Phi_{\mathbf{j}}$ are localized in the gap of the absorbing layer: $|\xi| < M \delta = 15$
- modes on the lower branch represent waves trapped by the absorbing layer

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

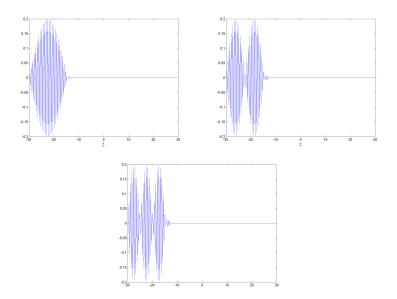
Title Page

Page 38 of 42

Go Back

Full Screen

Close



Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

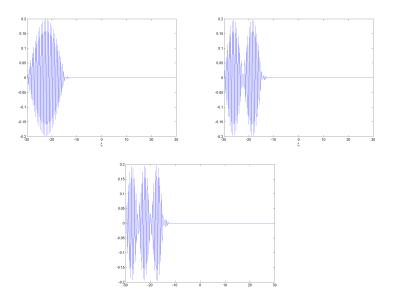
Title Page

Page 39 of 42

Go Back

Full Screen

Close

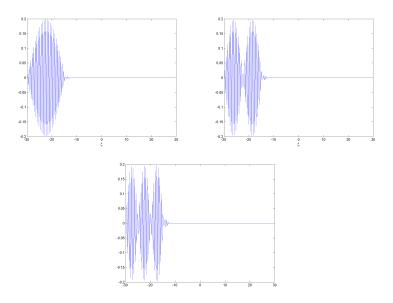


• Φ_i are localized in the absorbing layer: $|\xi| > M - \delta = 15$

Go Back

Full Screen

Close



- $\Phi_{\mathbf{j}}$ are localized in the absorbing layer: $|\xi| > M \delta = 15$
- modes on the upper branch represent waves escaping the absorbing layer

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

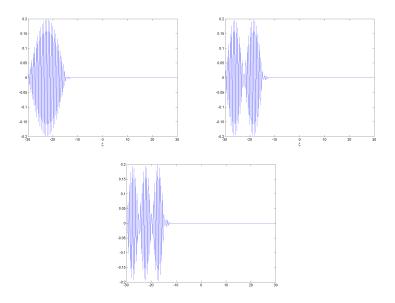
Summary

Title Page

Go Back

Full Screen

Close



- $\Phi_{\mathbf{j}}$ are localized in the absorbing layer: $|\xi| > M \delta = 15$
- modes on the upper branch represent waves escaping the absorbing layer
- modes are not excited since the incident wave is localized in the waveguide

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

44

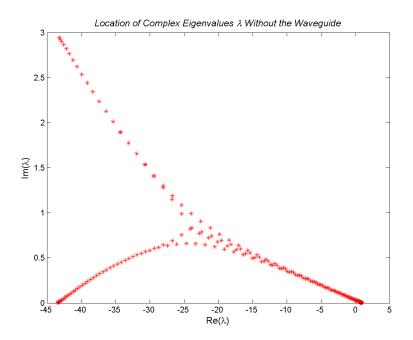
◀ |

Page 40 of 42

Go Back

Full Screen

Close



Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Page 40 of 42

Go Back

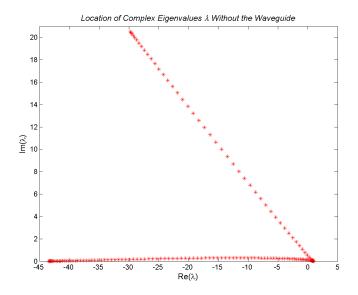
Full Screen

Close

Formalism of ...
Periodic Boundary ...
Absorbing Layers

Summary

Close



Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

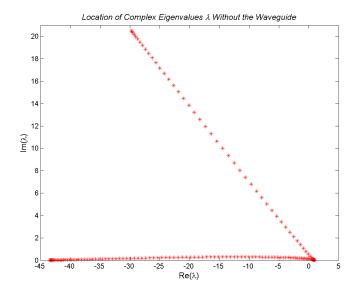
44

Page 41 of 42

Go Back

Full Screen

Close



• eigenvalues on the upper branch increase as Δ_0 /

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

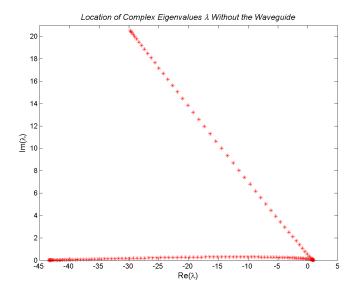
Title Page

Page 41 of 42

Go Back

Full Screen

Close



- eigenvalues on the upper branch increase as Δ_0 /
- eigenvalues on the lower branch decrease as Δ_0 /

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

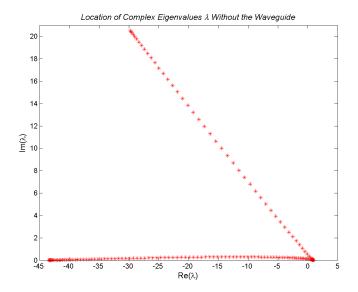
Summary

Title Page

Go Back

Full Screen

Close



- eigenvalues on the upper branch increase as Δ_0 /
- eigenvalues on the lower branch decrease as Δ_0 /

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Title Page

Go Back

Full Screen

Close

4. Summary

Formalism of ...

Periodic Boundary ...

Absorbing Layers

Summary

Title Page

I Page 42 of 42

Go Back

Full Screen

Close

4. Summary

• using the Finite-Difference Frequency-Domain method, we were able to describe a new technique for the simulation of electromagnetic wave propagation at the interface between two planar waveguides

Formalism of . . . Periodic Boundary . . . Absorbing Layers Summary Title Page Page 42 of 42 Go Back Full Screen

Close

4. Summary

- using the Finite-Difference Frequency-Domain method, we were able to describe a new technique for the simulation of electromagnetic wave propagation at the interface between two planar waveguides
- extended our algorithm due to the complexification of transverse space and were successful in absorbing radiating waves from artificial boundary-reflected waveguides

Formalism of . . .

Periodic Boundary . . .

Absorbing Layers

Summary

Page 42 of 42

Go Back

Full Screen

Close