Rogue waves arising on the standing periodic
waves of the Ablowitz—Ladik equation

Dmitry E. Pelinovsky

Department of Mathematics, McMaster University, Canada

http://dmpeli.math.mcmaster.ca

D.Pelinovsky (McMaster University) Rogue waves in the AL equation 1/25



Rogue waves on the standing periodic waves

J. Chen, D. Pelinovsky, Proceedings A 474 (2018) 20170814
J. Chen, D. Pelinovsky, R. White, Physica D 405 (2020) 132378
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1. Periodic waves and rogue waves

Other examples of integrable Hamiltonian systems

@ Modified Korteweg—de Vries equation
us + 6U2Ux + Upx =0

Dnoidal periodic waves are modulationally stable (no rogue waves).
Cnoidal periodic waves are modulationally unstable (rogue waves).
J. Chen & D. Pelinovsky, Nonlinearity 31 (2018) 1955—-1980

@ Sine—Gordon equation
Ut — Uxx +sin(u) =0

Same conclusion.
D. Pelinovsky & R. White, Proceedings A 476 (2020) 20200490

@ Derivative NLS equation
it + Yxx + /(|1/)|21/1)x =0.

There exist modulationally stable periodic waves (no rogue waves).
J. Chen, D. Pelinovsky, & J. Upsal, J. Nonlinear Science 31 (2021) 58
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1. Periodic waves and rogue waves

Method of constructing the rogue waves

@ Algebraic characterization of the periodic waves and the associate Lax
spectrum (the so-called nonlinearization method).

@ Relation between the squared periodic eigenfunctions at the end points
of the Lax spectrum and the standing periodic waves.

@ Analytical construction of the second (linearly growing) solutions of the
Lax equations as integrals of the squared periodic eigenfunctions.

@ Darboux transformation with the second (linearly growing) solutions to
construct new solutions of the nonlinear PDE.
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2. Algebraic methods for the Ablowitz—Ladik equation

The Ablowitz—Ladik equation

The Ablowitz—Ladik (AL) equation as an integrable semi-discretization of NLS:

i+ (14 |Un|®)(Upp1 + Up—1) =0, neZ

In the continuum limit, long standing waves of small amplitudes,
un(t) = eu(en, 2t)e?,
satisfy the continuous NLS equation
iur +uxx + 2u/Pu =0,
where u = u(X, T) with X := enand T := £t, and ¢ is small parameter.
Two standing periodic waves of the trivial phase exist
u = dn(X; K)e'@ )Ty = ken(X; k)@ DT ke (0,1),

as well as standing periodic waves of the nontrivial phase.
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2. Algebraic methods for the Ablowitz—Ladik equation
Lax equations

The AL equation is a compatibility condition of the linear Lax system

B 1 < A Un )
Pn+1 = 7%1 m |Un|2 — i, A1 ®n
and

i 3 (V¥ H X2+ Unlp1 + OpUn—1) AUp — AU
SDn 7)\Un—1 + )\71 Dn 715 ()\2 + )\72 + UnDn_1 + anUn_1)

There exists a simpler Lax system representation:
. A Up
Pnt1 = _Un A_1 ®n

P I- 1§ ()\2 + )\_2) + u”Unf‘] )\Un - )\_1 Unf‘]
o= Nl AT =L (A R) — Ty )

and

However, the second Lax system does not characterize the stability spectrum
for the standing periodic waves or the squared eigenfunction relation.
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The standing periodic waves

If un(t) = U,e21, then U, satisfies
(1+|Unl?)(Uns1 + Un—1) = 2wU,, nez *)
associated with two conserved quantities:
Fo := i(UyUp_1 — UnUp_+)
and

F1 = W(UnUnf1 + UnUnf1) - |Un|2 - |Un71 |2 - |Un|2|Unf1 |2

Non-trivial twist: We have previously obtained real solutions of (*) with Fp =0
in J. Chen, D. Pelinovsky, Physica D 445 (2023) 133652
by using an algebraic nonlinearization method for the discrete mKdV equation

U=+ UE)(Un+1 — Up—1).
A similar nonlinearization method for the AL equation does not produce (*).
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2. Algebraic methods for the Ablowitz—Ladik equation

Dnoidal and cnoidal periodic waves

Dnoidal solutions have the form

_sn(a; k)
"7 cen(a; k)

_ _dn(a; k)
dn(an; k), w= (oK)’

where o € (0, K(k)) and k € (0, 1) are arbitrary parameters.

Cnoidal solutions have the form

_ ksn(a; k)

_cn(a; k)
Un = dn(c; k)

Cn(CYn; k), = m,

where a € (0,2K(k)) and k € (0, 1) are arbitrary parameters.

There must exist periodic waves with a nontrivial phase, if Fy # 0, but we did
not consider such solutions.
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3. Linear stability of the standing periodic waves

Stability spectrum for the standing periodic waves

Decomposition u,(t) = €*“![U, + vi(t)] yields the linearized AL equation:

iV — 2wV + (1 + |Unl®) (Var1 + V1) + (Uns1 + Un_1)(UnVn 4+ Upvi) = 0
Separation of variables with v,(t) = V,eM and ¥,(t) = V,e’ gives the
spectral stability problem:

NV, — 2wV + (1 + [UnlP) (Vi1 4+ Viae1) + (Unpt + Un_1)(Up Vi + Up Vi) =
_i/\\N/n - 2UJ\N/n + (1 + |Un‘2)(\7n+1 + \7n—1) + (Un+1 + Un—1)(DnVn + Un‘N/n) -

7

0
0

The stability spectrum is obtained from the Lax spectrum:
Deconinck—Segal, 2017 (NLS); Deconinck—Upsal, 2020 (AKNS).
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3. Linear stability of the standing periodic waves

Relation to squared eigenfunctions of Lax system

Using ¢n = [pn(t)e™!, gn(t)e~1]T for eigenfunctions of the Lax system yields
the linear system:

<pn+1>: 1 < A Un)(pn)
1 T+ [Up2 \ —Un A7 a )’

ﬁ pn _ i _ Wn — W _ )\Un - )\71 Unf‘] pn
dat \ an —AUn—1 + A1 U w— W, an )’

where W, := 3 (N2 + X2+ UpUp—1 + UsUp—1).

and

We have obtained the squared eigenfunction relation by brutal computations:
Vo = AP — A~ + Un(PnGhn + PnGn)-
If pa(t) = Pre®, gn(t) = Q,e with spectral parameter €, then
Vo= AP2 + UpPaQn, Vo= —XTQ2 + UpPyQn, A =2Q

is a solution of the spectral stability problem.
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3. Linear stability of the standing periodic waves

Polynomial for the standing periodic waves

After the separation of variables, the time-evolution problem is

Q Pn :[ _Wn_w _ )\Un_>\_1Un71 PI'I
Qn _>\Un—1 + A_1 Un w — Wn Qn ’
Nonzero solutions exists if and only if

' Wo—w+iQ  AUp=A""Uns | _ g

NUp 1+ XU, iQtw— W,

which yields the relation Q2 + P()\) = 0 with

1 : 1
PO = 7 (B +272)° —w (0 +A7%) +u? + éFo (\2-22) - SR F.

For the discrete mKdV, P() is obtained from the nonlinearization method as
the separation of variables does not work. For the AL, the separation of
variables works, but the nonlinearization method is not applicable.
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3. Linear stability of the standing periodic waves

Stability of the dnoidal periodic waves

Dnoidal solutions have the form

sn(a; k)

Un = cn(a; k)

dn(an; k), W= C(:lz((aoj;l;)).

The Lax and stability spectra for k = 0.8 and o = K(k)/20:
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3. Linear stability of the standing periodic waves

Lax spectrum for dnoidal waves

The spectrum is found numerically for « = K(k)/M with U, opm = Up:

V 1+ U%Pn+1 + \/1 + U,27_1Pn—1 - (Un - Un—1)Qn = ZPn,
(Un = Un—1)Pr+ /14 U3 Qnyt + 1+ U,27_1Qn71 = ZQn,
where z:= XA+ X' and
P, = Py(0)e”", Q= Qu(0)6”", Priom(0) = Pn(6), Qniam(6) = Qu(0),
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3. Linear stability of the standing periodic waves

Stability of the cnoidal periodic waves

Cnoidal solutions have the form

Un—

_ ksn(a; k)
dn(c; k)

cn(an; k), w=

cn(a; k)
dn?(a; k)’

The Lax and stability spectra for k = 0.8 and o = K(k)/20:

|
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3. Linear stability of the standing periodic waves

Stability of the cnoidal periodic waves

Cnoidal solutions have the form

Up = ksn(ai k) cn(an; k), w= en(a; k)

dn(a; k) dn?(a; k)’
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4. Periodic and nonperiodic solutions for end points

Polynomial for the standing periodic waves

Recall the polynomial from Q2 + P(\) = 0, where
P(\) == 5 [N® = 4w)® +2(1 + 202 — 2F)A* — 4wA? +1].

@ For the dnoidal waves, the roots are ordered by {£A1, A7, )2, £2; '}
@ For the cnoidal waves, the roots are ordered by {+\1, +A; ", £Xy, 27"},

Let Ay be any root of P(\). Then there exists a sign of oy = {+1,—1} such
thatw = 3(A2 + A\;?) + o1/F; and

Pﬁ =\U,— )\171 Un_1,
Q2 =\Up 1 — )\1_1Un7

1 _ _
PnQn = 01V/Fr = 5(UnUn-1 + UnUn-1).

The corresponding squared eigenfunctions are periodic with the period of U,.
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4. Periodic and nonperiodic solutions for end points

Nonperodic eigenfunctions for the same eigenvalue )\

Such solutions can be constructed for any A\ € C:

- Qn(t)
[Po(t)? + 1Qn(D)2°

where 0,(t) is a solution of the linear equations

(M = 1) UPZ — MU Q2 — (1 + [M[2)PaQn)

. B
Pl + 10O

Po(t) = Pa(t)0,(t) Qn(t) = Qu(1)0n(1)

Inet == (P2 + [QuP) B
and
PR (L))
|A112(Pal? + |Qn[?)?
where

Dp = M4 Paf? +1Qnl2 + M B UnP(IPaf? + |Qnl?)
+ (M2 = DX UnPrQn + M UnPaQy),
o= MU+ MUnc )PP+ (M Un + MU 1) Q2 — (1 + M 72)(03 = X2)PaQn.
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4. Periodic and nonperiodic solutions for end points

Nonperodic eigenfunctions for the same eigenvalue )\

If A1 is a root of the polynomial P(\) and the squared eigenfunction relations
are used, then 0,(t) = ©, + it and {©,} ez is a time-independent solution of

(M + A7) (Un2 = 01VF)
(M = A7) (Fi 4 2(1 + w)|Unl2 + [Un]4)

9n+1 —0h =

or

(M2 = AT + X7 Unl? + V(M = [M]72)
T ’

9n+1 —0h =
for the dnoidal and cnoidal periodic waves respectively, where

P = [Unl? ([ + M7+ 21Up 1 2 = 2 Un2) + 21U 2

+ (M2 + M |*2)<|U,7|4 — Fi = MM Un Ut — M U,,U,H).
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5. Rogue waves on the standing periodic waves

1-fold Darboux transformation

The 1-fold DT was found by brutal computations:

0 — A(|pnl® + |>\1|2|C7n|2)u A(1 = M[*)pnGn
n— T T n N
A1([A1121onl2 + 1anl?) A2(IA1[2]pnl? + 1gnl?)

where ¢, = (Pn, gn)7 is a solution of Lax equations for a given A = Ay € C.

Similar computations for the semi-discrete equations can be found in:
Tao Xu, D. Pelinovsky, Phys Lett A 383 (2019) 125948
J. Chen, D. Pelinovsky, Physica D 445 (2023) 133652

All constraints of the Darboux equations have been checked.
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5. Rogue waves on the standing periodic waves

1-fold DT with periodic eigenfunctions

Let A1 be a root of the polynomial P()) and the squared eigenfunction relation
are used. Then,

O e P R v Ve
! 22| P2 + | Qnl? ! A2 Pnl? + |Qn[?
70—1\/?62/(41[
Un
sn(a k)
cn(a k) dn(an k)
_ Sn(a k) 2/w1
= —0y cn( ) dn(an+ K(k); k)e
= —o1up(an+ K(k))

2iwt

2iwt

for the dnoidal waves. This a half-period translation and a possible sign-flip.

Similarly, the cnoidal waves are translated in space by a quarter-period and
multiplied by a complex phase factor.
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5. Rogue waves on the standing periodic waves

Rogue waves on the dnoidal standing waves
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5. Rogue waves on the standing periodic waves

Rogue waves on the cnoidal standing waves
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Two rogue waves exist for dnoidal waves and one rogue wave exists for
cnoidal waves because of the Lax spectrum:
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5. Rogue waves on the standing periodic waves

Magnification factor for the dnoidal rogue waves

To compute the magnification factor, we use

N én(t) A _ Pn(t)
Frl) = P00 (015 (gt O = PO 1B gy

and -
g MUPP PRI | (=) PoQ
A1 ([A1[2[Pal? + | Qnl?) A (M [21Pal? + [ Qnl?)
with 6,(t) = ©, + it. The maximal amplitude is attained at (n, t) = (0, 0),
where 6,(0) = 0. This yields

sn(a; k)(1 4 dn(o; k) — o4V 1 — k2)
en(a; kK)dn(a; k) '

00(0) =
Since Up(0) = sn(«; k) /en(a; k), the magnification factor is exact:

_ /1 — k2
Mdn(a,k)—1—|—W—>2—a1\/1—k2 as a — 0.

D.Pelinovsky (McMaster University) Rogue waves in the AL equation 23/25



5. Rogue waves on the standing periodic waves

Magnification factor for the cnoidal rogue waves

The maximal amplitude is attained close to (n, ) = (0, 0) but not exactly at
(0,0). As an approximation, we still compute it at (n, ) = (0,0):

0 (0) — ksn(c; k)(dn(o; K) + 1)(en(e; k) + iv1 — k2sn(a; k))
b(0) = dn(a; K)[k2cn2(a; k) + (1 — Kk2)] ’

which yields

Since Uyp(0) = ksn(«; k)/dn(e; k), the magnification factor is

Me(o, k) =1+ —2 a a—0.

1
dn(a; k)
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6. Summary
Summary

@ Stability of the standing periodic waves in the AL lattice is obtained from
the non-standard Lax pair.

@ The polynomial P()\) characterizing end points of the spectral bands is
obtained from the separation of variables in the time-dependent Lax pair.

@ Spectral bands of the Lax spectrum are computed numerically and are
connected to the stability spectrum. Both dnoidal and cnoidal waves are
modulationally unstable.

@ Two basic rogue waves exist on the background of dnoidal waves. A
single rogue wave exists on the background of cnoidal waves. Rogue
waves are obtained fully analytically.

Many thanks for your attention!
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