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Introduction

We would like to consider asymptotic stability of solitons to 1D NLS equation,

iut = −uxx + V (x)u − |u|2pu, for (t, x) ∈ R × R.

where V : R → R is a trapping potential and p > 0.
Assume existence of solitons u(x, t) = φ(x)e−iωt−iθ with some ω ∈ R and
arbitrary θ ∈ R. Assume that the solitons are orbitally stable in H1(R), that is,
for any ǫ > 0 there is a δ(ǫ) > 0, such that if ‖u(0) − φ‖H1 ≤ δ(ǫ) then

inf
θ∈R

‖u(t) − e−iθφ‖H1 ≤ ǫ,

for all t > 0.

Buslaev and Sulem (2003) proved asymptotic stability for the case p ≥ 4.

Cuccagna (2008) and Mizumachi (2008) improved the results with
Stritcharz analysis for the case p ≥ 2.

No results are available for p = 1 even if V (x) ≡ 0.
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Cubic NLS equation

We shall consider the cubic NLS equation,

iut + uxx + 2|u|2u = 0 for (t, x) ∈ R × R. (NLS)

Properties of the cubic NLS equation:

(NLS) is integrable Hamiltonian system and has infinitely many
conservation laws (Zakharov and Shabat, 1972). First conserved
quantities

N := ‖u(t, ·)‖L2 and E :=
1

2

∫

R

(|ux(t, x)|2 − |u(t, x)|4)dx

do not depend on t if u(t, x) is a solution of (NLS).

(NLS) is locally well-posed in L2 (Tsutsumi, 1987). Thanks to L2

conservation, it is globally well-posed in L2.

(NLS) is also well-posed in Hk for any k ∈ N (Kato, 1987).
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Soliton solutions

(NLS) has a 4-parameter family of 1-solitons

Qk ,v(t + t0, x + x0) = Qk (x − vt) eivx/2+i(k2
−v2/4)t ,

where

Qk (x) = k sech(kx), k > 0 , v ∈ R, x0 ∈ R, t0 ∈ R .

Qk is a minimizer of E|M, where

M = {u ∈ H1(R) , ‖u‖L2 = ‖Qk‖L2},

hence, it is orbitally stable (Cazenave and Lions, 1982).

Colliander-Keel-Staffilani-Takaoka-Tao, 2003 : metastability and
polynomial growth of solutions around solitons in Hs for 0 < s < 1.

Questions: Is 1-soliton orbitally stable in L2?
Is 1-soliton asymptotically stable in H1 or L2?
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Bäcklund transformation of (NLS)

A Bäcklund transformation is a mapping between two solutions of the same
(or different) equations. It was originally found for the sine-Gordon equation by
Bianchi (1879) and Bäcklund (1882) but was extended to KdV, KP,
Benjamin-Ono, Toda, and other integrable equations in 1970s.
For (NLS), let η be a constant and consider the Lax operator system,

∂x

(

ψ1

ψ2

)

=

(

η q
−q̄ −η

) (

ψ1

ψ2

)

, (Lax1)

∂t

(

ψ1

ψ2

)

=

(

2η2 + |q|2 ∂xq + 2ηq
∂x q̄ − 2ηq̄ −2η2 − |q|2

) (

ψ1

ψ2

)

. (Lax2)

(Lax1) and (Lax2) are compatible if iqt + qxx + 2|q|2q = 0.
Let q(t, x) be a solution of (NLS) and (ψ1, ψ2) be a solution of (Lax1)–(Lax2).
Suppose

Q = −q −
4ηψ1ψ̄2

|ψ1|2 + |ψ2|2
.

Then Q(t, x) is a solution of (NLS). (Chen’74, Konno and Wadati ’75)
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Bäcklund transformation 0 → 1 soliton

Let η = 1
2 and q ≡ 0. Then,

ψ1 = e(x+it)/2, ψ2 = −e−(x+it)/2 ⇒ Q = eit sech(x).

Let Ψ1 =
ψ̄2

|ψ1|2 + |ψ2|2
and Ψ2 =

ψ1

|ψ1|2 + |ψ2|2
. Then (Ψ1,Ψ2) satisfy

the Lax operator system:

∂x

(

Ψ1

Ψ2

)

=

(

η Q
−Q̄ −η

) (

Ψ1

Ψ2

)

, (Lax’1)

∂t

(

Ψ1

Ψ2

)

=

(

2η2 + |Q|2 ∂xQ + 2ηQ
∂xQ̄ − 2ηQ̄ −2η2 − |Q|2

) (

Ψ1

Ψ2

)

. (Lax’2)

If Q = eit sech(x), then η = 1
2 is an eigenvalue of (Lax’1) with

Ψ1 = −e(−x+it)/2 sech(x), Ψ2 = e(x+it)/2 sech(x).
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Applications of Bäcklund transformation

We show Lyapunov stability of 1-solitons in the L2 class.

Q(0, x)
NLS

−−−→ Q(t, x)

BT





y

x




BT

q0(x)
NLS

−−−→ q(t, x)

‖Q(0, ·) − Q1‖L2 is small,

‖q(t)‖L2 = ‖q(0)‖L2 is small.

Merle and Vega (2003) used the Miura transformation to prove
asymptotic stability of KdV solitons in L2.

Mizumachi and Tzvetkov (2011) applied the same transformation to prove
L2-stability of line solitons in the KP-II equation under periodic transverse
perturbations.

Mizumachi and Pego (2008) used Backlund transformation to prove
asymptotic stability of Toda lattice solitons.

Hoffman and Wayne (2009) extended this result to two and N solitons.
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Main result

Theorem

Fix k0 > 0. Let u(t, x) be a solution of (NLS) in the class

u ∈ C(R; L2(R)) ∩ L8
loc(R; L4(R)).

There exist C, ε > 0 such that if ‖u(0, ·) − Qk0‖L2 < ε, then there exist k , v ,
t0, x0 such that

sup
t∈R

‖u(t+t0, ·+x0)−Qk ,v‖L2+|k−k0|+|v |+|t0|+|x0| ≤ C‖u(0, ·)−Qk0‖L2 .

In KdV, perturbations of 1-solitons can cause logarithmic growth of the
phase shift due to collisions with small solitary waves (Martel and Merle,
2005). For the cubic NLS, a solution remains in the neighborhood of a
1-soliton for all the time.
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Outline of the proof

For the sake of simplicity, we consider k0 = 1 (η = 1
2 ).

Q(0, x)
NLS

−−−→ Q(t, x)

BT





y

x




BT

q0(x)
NLS

−−−→ q(t, x)

‖Q(0, ·) − Q1‖L2 is small,

‖q(t)‖L2 = ‖q(0)‖L2 is small.

Step 1: From a nearly 1-soliton to a nearly zero solution at t = 0.

Step 2: Time evolution of the nearly zero solution for t ∈ R.

Step 3: From the nearly zero solution to the nearly 1-soliton for t ∈ R.

Step 4: Approximation arguments in H3(R) to control modulations of
parameters of 1-solitons for all t ∈ R.
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Step 1

At t = 0, Q is close to Q1 = sech(x) and η is close to 1
2 . If Q = Q1 and

η = 1
2 , then the Lax operator

∂x

(

Ψ1

Ψ2

)

=

(

η Q
−Q̄ −η

) (

Ψ1

Ψ2

)

,

has two linearly independent solutions
[

−e−x/2

ex/2

]

sech(x) ,

[

(ex + 2(1 + x)e−x)ex/2

(e−x − 2xex)e−x/2

]

sech(x) .

If

q := −Q1 +
−4ηΨ1Ψ2

|Ψ1|2 + |Ψ2|2
,

then q = 0 follows from the first solution and

q(x) =
2xe2x + (4x2 + 4x − 1) − 2x(1 + x)e−2x

cosh(3x) + 4(1 + x + x2) cosh(x)
− sech(x)

follows from the second solution.
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Step 1

If ‖Q − Q1‖L2 is small, then there exists η = (k + iv)/2 and Ψ ∈ H1(R)
such that

|k − 1| + |v | + ‖Ψ − Ψ1‖H1 ≤ C‖Q − Q1‖L2 .

If

q := −Q −
2kΨ1Ψ̄2

|Ψ1|2 + |Ψ2|2
,

then q ∈ L2(R) and

‖q0‖L2 ≤‖Q − Q1‖L2 +

∥

∥

∥

∥

∥

Q1 +
2kΨ1Ψ2

|Ψ1|2 + |Ψ2|2

∥

∥

∥

∥

∥

L2

.‖Q − Q1‖L2 .

Moreover, if Q ∈ H3(R), then q ∈ H3(R).
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Steps 2 and 3

If q(0, ·) ∈ H3(R) and ‖q(0, ·)‖L2 is small, then q ∈ C(R,H3(R)) and
‖q(t, ·)‖L2 remains small for all t ∈ R.

If q ≡ 0, then {(ex/2, 0) , (0, e−x/2)} is a fundamental system of (Lax1).
If q = q(0, x) is small in L2, there exist bounded solutions
ex/2~ϕ(x) = ex/2(ϕ1(x), ϕ2(x)) and e−x/2~χ(x) = e−x/2(χ1(x), χ2(x)) of
(Lax1), where

{

ϕ′
1 = qϕ2 ,

ϕ′
2 = −q̄ϕ1 − ϕ2 ,

,

{

χ′
1 = χ1 + qχ2 ,

χ′
2 = −q̄χ1 ,

lim
x→∞

ϕ1(x) = 1 , lim
x→−∞

χ2(x) = −1 .

A bounded solution (ϕ1, ϕ2) satisfies

{

ϕ1(x) = 1 −
∫ ∞

x q(y)ϕ2(y)dy =: T1(ϕ1, ϕ2)(x),

ϕ2(x) = −
∫ x

−∞
e−(x−y)q(y)ϕ1(y)dy =: T2(ϕ1, ϕ2)(x).
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Step 3

If ‖q‖L2 is small, then T = (T1, T2) is a contraction mapping on
L∞ × (L∞ ∩ L2) and

‖ϕ1 − 1‖L∞ + ‖ϕ2‖L∞∩L2 ≤ C‖q‖L2 ,

‖χ1‖L∞∩L2 + ‖χ2 + 1‖L∞ ≤ C‖q‖L2 .

If q(t, x) is an H3(R)-solution of (NLS), then

sup
t

(‖ϕ1(t, ·) − eit/2‖L∞ + ‖ϕ2(t, ·)‖L2∩L∞) ≤ C‖q(0, ·)‖L2 ,

sup
t

(‖χ1(t, ·)‖L2∩L∞ + ‖χ2(t, ·) + e−it/2‖L∞) ≤ C‖q(0, ·)‖L2 .
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Step 3

Let q ∈ C(R,H3(R)) is a solution of (NLS) such that ‖q(0, ·)‖L2 is small.

Let

ψ1(t, x) = c1ex/2ϕ1(t, x) + c2e−x/2χ1(t, x) ,

ψ2(t, x) = c1ex/2ϕ2(t, x) + c2e−x/2χ2(t, x) .

with c1 = ae(γ+iθ)/2, c2 = ae−(γ+iθ)/2, and a 6= 0.

Let

Q(t, x) := −q(t, x) −
2ψ1(t, x)ψ2(t, x)

|ψ1(t, x)|2 + |ψ2(t, x)|2
.

Then, Q ∈ C(R,H3(R)) is a solution of (NLS) and

‖Q(t, ·) − ei(t+θ)Q1(· + γ)‖L2 ≤ C‖q(0, ·)‖L2 for ∀ t .
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Step 4: Proof of L2-stability

Let un,0 ∈ H3(R) be a sequence such that

lim
n→∞

‖un,0 − u(0, ·)‖L2 = 0.

Let un(t, x) be a solution of (NLS) with un(0, x) = un,0(x).
By the previous construction, there is an n-independent C > 0 such that

sup
t∈R

‖un(t+tn, ·+xn)−Qkn,vn‖L2+|kn−1|+|vn|+|tn|+|xn| ≤ C‖un,0−Q1‖L2 .

Therefore, there exists k , v , t0, and x0 such that

kn → k , vn → v , xn → x0, tn → t0 as n → ∞.

From L2-well-posedness, it then follows that

sup
t∈R

‖u(t+t0, ·+x0)−Qk ,v‖L2 +|k −1|+|v |+|t0|+|x0| ≤ C‖u(0, ·)−Q1‖L2 .
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Discussion

Hayashi and Naumkin (1998) proved that if q0 ∈ H1(R) ∩ L2
1(R) such that

‖q0‖H1 + ‖ < x > q0‖L2 ≤ ǫ (small),

there exists a unique global solution in H1(R) ∩ L2
1(R) such that

‖q(·, t)‖H1 ≤ Cǫ, ‖q(·, t)‖L∞ ≤ Cǫ(1 + |t|)−1/2, t ∈ R.

Note that ‖ < x > q(·, t)‖L2 and hence ‖q(·, t)‖L1 may grow as |t| → ∞.

However, we are not able to prove that if ‖Q − Q1‖H1 ≤ ‖q‖H1 is small, then

∃C > 0 : ‖Q − Q1‖L∞ ≤ C‖q‖L∞ ,

without assuming that ‖q‖L1 is small.

Therefore, asymptotic stability of 1-solitons in the cubic NLS equation is still
an open problem.
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