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Introduction

We would like to consider asymptotic stability of solitons to 1D NLS equation,
iUy = —Uyx + V(X)u — [u|?u, for (t,x) € R x R.

where V : R — R is a trapping potential and p > 0.

Assume existence of solitons u(x,t) = ¢(x)e~'“!'~'¢ with some w € R and
arbitrary @ € R. Assume that the solitons are orbitally stable in H(R), that is,
for any € > O there is a §(€) > 0, such that if ||u(0) — ¢||n: < d(€) then

Jnf flu(t) — e ¢l < e,

forallt > O.

@ Buslaev and Sulem (2003) proved asymptotic stability for the case p > 4.

@ Cuccagna (2008) and Mizumachi (2008) improved the results with
Stritcharz analysis for the case p > 2.

@ No results are available forp = 1 evenif V(x) = 0.
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Cubic NLS equation

We shall consider the cubic NLS equation,
iUg + Uyxx +2/ul?u =0 for(t,x) ER x R. (NLS)

Properties of the cubic NLS equation:

@ (NLS) is integrable Hamiltonian system and has infinitely many
conservation laws (Zakharov and Shabat, 1972). First conserved
quantities

1
N := [lu(t,)||.: and E := 5/(|ux(t,x)|2 ~ Jut,x)|)dx
R

do not depend on t if u(t, x) is a solution of (NLS).

@ (NLS) is locally well-posed in L? (Tsutsumi, 1987). Thanks to L?
conservation, it is globally well-posed in L2.

@ (NLS) is also well-posed in H* for any k € N (Kato, 1987).
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Soliton solutions

@ (NLS) has a 4-parameter family of 1-solitons
Qv (t + to, X + Xo) = Qu(x — vt) eiVx/2Hi (P —v? /4y
where
Qk(x) = k sech(kx), k >0,v €R,xg €R, tg € R.
@ Qy is a minimizer of E| a4, where
M = {u € H'(R), lulliz = lIQcll=},

hence, it is orbitally stable (Cazenave and Lions, 1982).

@ Colliander-Keel-Staffilani-Takaoka-Tao, 2003 : metastability and
polynomial growth of solutions around solitons in H® for0 < s < 1.

@ Questions: Is 1-soliton orbitally stable in L2?
Is 1-soliton asymptotically stable in H* or L2?
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Backlund transformation of (NLS)

A Béacklund transformation is a mapping between two solutions of the same
(or different) equations. It was originally found for the sine-Gordon equation by
Bianchi (1879) and Backlund (1882) but was extended to KdV, KP,
Benjamin-Ono, Toda, and other integrable equations in 1970s.

For (NLS), let n be a constant and consider the Lax operator system,

@D_<4-1>@3’ (Lax1)

P 2n” +19>  8xa +2nq \ (1
= _ _ . Lax2
(’/’2) (5’x0| —2nd —21° —|ql*) \%»2 (Lax2)
(Lax1) and (Lax2) are compatible if iqy + gxx + 2|q|?q = 0.

Let q(t,x) be a solution of (NLS) and (41, 1) be a solution of (Lax1)—(Lax2).
Suppose

Anprao
[1h1]? + |42
Then Q(t, x) is a solution of (NLS). (Chen’74, Konno and Wadati '75)

Q=-q-
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Backlund transformation 0 — 1 soliton

® Letn =} and g = 0. Then,
py = eCHN/2 0 4y, = _e~(HD/2 o g = el sech(x).
¥y P1

- = andV¥, = ———"—
1912 + |22 27 [l + |9l
the Lax operator system:

r(w)= (% 5)). e

v\ _ (27°+ Q> a&Q +277Q> <‘U1) :
& (%) = (axQ—ZnQ o —jop) \w,) - &2

o letW¥; = Then (W, W,) satisfy

@ IfQ = et sech(x), thenn = % is an eigenvalue of (Lax’1) with

v, = —e(P+/2gech(x), W, =e+/2gech(x).
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Applications of Backlund transformation

We show Lyapunov stability of 1-solitons in the L? class.

Q(0,x) —= Q(t,x) 1Q(0, -) — Qu|l.z is small,

ol Jor

go(x) _NLS | a(t,x) la(®)ll.z = lla(0)|| 2 is small.

@ Merle and Vega (2003) used the Miura transformation to prove
asymptotic stability of KdV solitons in L2,

@ Mizumachi and Tzvetkov (2011) applied the same transformation to prove
L2-stability of line solitons in the KP-1I equation under periodic transverse
perturbations.

@ Mizumachi and Pego (2008) used Backlund transformation to prove
asymptotic stability of Toda lattice solitons.

@ Hoffman and Wayne (2009) extended this result to two and N solitons.
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Main result

Theorem

Fix ko > 0. Let u(t, x) be a solution of (NLS) in the class

u € C(R; L%(R)) N LE (R;L*(R)).

loc

There exist C, e > 0 such that if ||u(0, -) — Qy,||.2 < &, then there existk, v,
to, Xo such that

SUP [|u(t-+to, -+X0) = Qv [luz+[k =Kol +{V|+]to[+[xo] < C[[u(0;)=Quolv2 -
te

W

@ In KdV, perturbations of 1-solitons can cause logarithmic growth of the
phase shift due to collisions with small solitary waves (Martel and Merle,
2005). For the cubic NLS, a solution remains in the neighborhood of a
1-soliton for all the time.
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Outline of the proof

For the sake of simplicity, we consider ko = 1 (n = %).

Q(0,x) —= Q(t,x) 1Q(0, -) — Qu[|. is small,

- Tor

Gox) - qt,x) la(t)llz = [la(0)]|.z is small.

@ Step 1: From a nearly 1-soliton to a nearly zero solution att = 0.
@ Step 2: Time evolution of the nearly zero solution fort € R.
@ Step 3: From the nearly zero solution to the nearly 1-soliton fort € R.

@ Step 4: Approximation arguments in H3(RR) to control modulations of
parameters of 1-solitons for allt € R.
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Att =0, Q is close to Q; = sech(x) and n is close to % IfQ = Q; and
n = %, then the Lax operator

a v\ _(n Q v,
X ‘UZ - _Q —n wz 9
has two linearly independent solutions

—ex/2 e* +2(1 + x)e*)ex/?
[ ox/2 }sech(x), [( (e—x(—2xe2)e—3/2 sech(x).

—47’)le2
W12 + W2
then g = O follows from the first solution and

g:=-Q1+

2xeZ* + (4x2 4+ 4x — 1) — 2x (1 + x)e ™%

A0 = = ooh(3x) + 4(L + x + x7) cosh(x)

— sech(x)

follows from the second solution.
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@ If ||Q — Qu]|L2 is small, then there exists n = (k +iv)/2 and W € H(R)

such that
kK =1+ |v|+ [¥ — W]l < C|IQ — Qulc2.
o If _
2k, W,
4= Q= e
|W1]? + |Wy]

then g € L?(R) and

2k W, W,

llgolliz <NIQ — Qulliz + HQl M2

L2

SIQ — Qe

@ Moreover, if Q € H3(R), then g € H3(R).
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Steps 2 and 3

If g(0,-) € H3(R) and ||q(0, -)|| 2 is small, then g € C(R,H3(R)) and
llq(t,-)||.> remains small for allt € R.

If g = 0, then {(e*/2,0), (0,e*/2)} is a fundamental system of (Lax1).

If @ = q(0,x) is small in L2, there exist bounded solutions

e*/23(x) = e/%(p1(x), p2(x)) and e */2%(x) = e/2(x1(x), x2(x)) of
(Lax1), where

Y] =02, X1 =x1+Adxz2,
¢y =—Gp1—w2, | xz=—Gx1,
lim (pl(X) =1, lim Xz(X) =-1.
X— 00 X — — 00

A bounded solution (1, ¢2) satisfies

{ p1(x) =1 —Xfxoo a(y)w2(y)dy =: Ti(e1, p2)(X),
a(x) = — [T e Mq(y)er(y)dy =: To(e1, ¢2)(X)-
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@ If ||q]|.2 is small, then T = (T, T2) is a contraction mapping on
L*® x (L*° N L2) and

Clialle;
Cliqll.e-

1 = Llee + llpzllLeent2

<
Ix1llLoomz + lIxz + 1L <

@ If q(t,x) is an H3(R)-solution of (NLS), then
S?p(llwl(t» ) — el + lla(t, ) llizare) < Clla(0, )llez

Sltjp(llxl(t? Mizace + lIxa(t, ) +e7"2|le) < Clla(0,-)lIez -
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Letq € C(R,H3(R)) is a solution of (NLS) such that ||q (0, -)|| 2 is small.
@ Let

Pi(t,x) = c1&*/2p1(t,X) + o6 ™/ ?x4(t, X)),
Pa(t,x) = c18*/2p,(t, x) + C26 ™/ ?x(t, X) .

with ¢; = ae(¥+10)/2 ¢, = ae—(v+16)/2 and a # 0.
@ Let

2¢1(t’x)¢2(t’x)
|’(/}1(t,X)|2 + |’¢2(t,X)|2 .

Then, Q € C(R, H3(R)) is a solution of (NLS) and

1Q(t,-) — e'™)Qi(- +v) |z < Clla(0, )|z forvt.

Q(t,x) := —q(t,x) —
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Step 4: Proof of L?-stability

Letuno € H3(R) be a sequence such that
lim Jlun,o —u(0,-)[l.= = 0.
n—oo

Let un(t, x) be a solution of (NLS) with u,(0,X) = un,o0(X).
By the previous construction, there is an n-independent C > 0 such that

sup [[un(t+tn, «+Xn) —Qky v, llL2+[Kn =1+ [Vn|+[ta[+]Xn| < C|[un,0—Qul|.2 -
teR

Therefore, there exists k, v, tg, and Xg such that
kn -k, vp, —V, X, —Xg, th—1t a n— oo.
From L2-well-posedness, it then follows that

SUP [|u(t+to, - +x0) = Qv flLe [k =2+ |V]+]to] +[Xo] < ClJu(0,)=QullLz -
te
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Discussion

Hayashi and Naumkin (1998) proved that if o € H*(R) N L#(R) such that
ol + Il <x > dollz < e (small),
there exists a unique global solution in H1(R) N L2(R) such that
19 (sl < Cey lla(-st)lle < Ce(L+ t)~Y2, t € R.
Note that || < X > q(-,t)]||.= and hence ||q(-,t)]||.: may grow as |t| — oo.
However, we are not able to prove that if ||Q — Q1|1 < ||q||n: is small, then
3C>0: [IQ = Qillte < CllalLee,

without assuming that ||q ||.: is small.

Therefore, asymptotic stability of 1-solitons in the cubic NLS equation is still
an open problem.
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