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Introduction

Consider a 1D NLS equation,
iUy = —Uyx + V(X)u — [u|*u, for (t,x) € R x R.

where V : R — R is a trapping potential and p > 0 is the nonlinearity power.

Assume existence of solitons u(x,t) = ¢, (x)e~'“!~'¢ with some w € R and
arbitrary 8 € R.
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Introduction

Consider a 1D NLS equation,
iUy = —Uyx + V(X)u — [u|*u, for (t,x) € R x R.

where V : R — R is a trapping potential and p > 0 is the nonlinearity power.

Assume existence of solitons u(x,t) = ¢, (x)e~'“!~'¢ with some w € R and
arbitrary 8 € R.

Main questions:

@ Orbital stability in HX(R): for any € > 0 there is a §(€) > 0, such that if
lU(0) — dullnr < d(€) then

inf lut) —e Pl <e foral t>O0.

@ Asymptotic stability in L°°(R) (scattering to solitons): there is ws, nNear w
such that

lim inf [ju(t) —e™'? w = 0.
t_)oogeRH (t) Duos lIL
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Previous literature

Orbital stability is well understood since the 1980s [Cazenave and Lions,
1982; Shatah and Strauss, 1985; Weinstein, 1986; Grillakis, Shatah and
Strauss, 1987, 1990]. Regarding asymptotic stability,

@ Buslaev and Sulem (2003) proved asymptotic stability of solitary waves in
1D NLS for the case p > 4 using dispersive decay estimates from
Buslaev and Perelman (1993).

@ Cuccagna (2008) and Mizumachi (2008) improved the results with
Stritcharz analysis for the case p > 2.

@ No results are available for p = 1 even if V(x) = 0 (integrable case).

The difficulty comes from the slow decay of solutions in the L°° norm which
makes it difficult to control convergence of modulation parameters.
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Scattering near zero

More results are available on asymptotic stability of zero solution for

iUy + Uxx + [u[?u = 0.
@ For p > 1, scattering near zero follows from the dispersive decay

o2
[ t>0.

S t1/27

because |ju(t, -)||f‘;, is absolutely integrable for p > 1 (Ginibre & Velo,
1985; Ozawa, 1991; Cazenave & Weissler, 1992).

® Hayashi & Naumkin proved scattering forp = 1 (1998) and p = 1/2
(2008). In particular, for p = 1, they showed that if ug € H(R) and
xu € L%(R), then

lut,)llu: < Ce, Jlu(t, )l < Ce(L+t])7H%, t R,
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The cubic (integrable) NLS equation
Cubic NLS equation

We shall consider the cubic NLS equation,

iUy + Uyxx +2/uf?u =0 for(t,x) ER x R. (NLS)

@ (NLS) is an integrable Hamiltonian system and has infinitely many
conservation laws (Zakharov and Shabat, 1972):

N fult e B o= (e = Ju(t )

@ (NLS) is locally well-posed in L? (Tsutsumi, 1987). Thanks to L?
conservation, it is globally well-posed in L2.

@ (NLS) is also well-posed in H¥ for any k € N (Ginibre & Velo, 1984;
Kato, 1987).
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The cubic (integrable) NLS equation
Soliton solutions

@ (NLS) has a 4-parameter family of 1-solitons
Qk,v (t + tO, X + XO) — Qk (X _ Vt) eivx/2+i(|<2_\/2/4)t ,
where

Qk(x) =k sech(kx), k >0,v €R,xp €R, top € R.

@ Qy is a minimizer of E| A4, where
M = {u € H'(R), lulliz = IQ«l=},
hence, it is orbitally stable (Cazenave and Lions, 1982).

@ Perturbations near solitons in H® for 0 < s < 1 may grow at most
polynomially in time (Colliander-Keel-Staffilani-Takaoka-Tao, 2003).
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The cubic (integrable) NLS equation
Soliton solutions

Main Questions:
@ Is 1-soliton orbitally stable in L2?
@ Is 1-soliton asymptotically stable in H® or L2?

We aim to show the Lyapunov stability of 1-solitons in L2.

We use the Backlund transformation to define an isomorphism which maps
solutions in an L2-neighborhood of the zero solution to those in an
L2-neighborhood of a 1-soliton.

A Backlund transformation is a mapping between two solutions of the same
(or different) equations. It was originally found for the sine-Gordon equation by
Bianchi (1879) and Béacklund (1882) but was extended to KdV, KP,
Benjamin-Ono, Toda, and other integrable equations in 1970s.
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The Backlund transformation of (NLS)

Backlund transformation of (NLS)

For (NLS), consider the Lax operator system,

(ii) - (-ﬁ —qn) (i;) ) (Lax1)

P1 2 + 191> 8xq+2nq \ (Y1
= _ - Lax2
(w) @m—&m-&#—MF w) 2
where 7 is the spectral parameter.

(Lax1) and (Lax2) are compatible if iqy + gxx + 2|q|?q = 0.
Let q(t, x) be a solution of (NLS) and (1, ¥2) be a solution of (Lax1)—(Lax2)
for n € R. Define

Anp1ipz
[h1]? + |1b2]?
Then Q(t, x) is a solution of (NLS). (Chen’74, Konno and Wadati '75)

Qi=—q-
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The Backlund transformation of (NLS)

Backlund transformation 0 — 1 soliton

® Letn = % and g = 0. Then,
py = eCHN/2 0 4y, = _e~(HD/2 o g = el sech(x).
¥y P1

- = andV¥, = ———"—
1912 + |22 27 [l + |9l
the Lax operator system:

r(w)= (% 5)). e

v\ _ (27°+ Q> a&Q +277Q> <‘U1) :
& (%) = (axQ—ZnQ o —jop) \w,) - &2

o letW¥; = Then (W, W,) satisfy

@ IfQ = et sech(x), thenn = % is an eigenvalue of (Lax’1) with

v, = —e(P+/2gech(x), W, =e+/2gech(x).
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The Backlund transformation of (NLS)

Applications of Backlund transformation

We show Lyapunov stability of 1-solitons in the L? class.

Q(0,x) —— Q(t,x) 1Q(0, -) — Qu[|. is small,

o7 | [or

NLS la()ll.z = lla(0)|| 2 is small.
do(x) — q(t,x)

@ Merle and Vega (2003) used the Miura transformation to prove
asymptotic stability of KdV solitons in L2,

@ Mizumachi and Tzvetkov (2011) applied the same transformation to prove
L2-stability of line solitons in the KP-1I equation under periodic transverse
perturbations.

@ Mizumachi and Pego (2008) used Backlund transformation to prove
asymptotic stability of Toda lattice solitons.

@ Hoffman and Wayne (2009) extended this result to two and N Toda lattice
solitons.
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Main result

Theorem

(Mizumachi, P, 2012) Fix kg > 0. Let u(t,x) be a solution of (NLS) in the
class
u € C(R;L%(R)) N L3 _(R;L*(R)).

loc

There exist C, e > 0 such that if [|u(0, -) — Qy,||.2 < &, then there existk, v,
to, Xo such that

SUP [|u(t-+to, -+X0) = Qv [luz [k =Kol +{V|+]to[+[xo] < CJlu(0;)=Quol2 -
te

V.

Remark: In KdV, perturbations of 1-solitons can cause logarithmic growth of
the phase shift due to collisions with small solitary waves (Martel and Merle,
2005). For the cubic NLS, a solution remains in the neighborhood of a
1-soliton for all the time.
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Outline of the proof

For the sake of simplicity, we consider ko = 1 (n = %).

Q(0,x) —= Q(t,x) 1Q(0, -) — Qu[|. is small,

- Tor

Gox) - qt,x) la(t)llz = [la(0)]|.z is small.

@ Step 1: From a nearly 1-soliton to a nearly zero solution att = 0.
@ Step 2: Time evolution of the nearly zero solution fort € R.
@ Step 3: From the nearly zero solution to the nearly 1-soliton fort € R.

@ Step 4: Approximation arguments in H3(RR) to control modulations of
parameters of 1-solitons for allt € R.
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Main result

Step 1: From 1-soliton to O-soliton att = 0.

Att =0, Q is close to Q; = sech(x) and n is close to %

IfQ=Q;andn = % then the Lax operator

o (Y1) = ([ Q\ (W1
X wz _Q —?7 wz b
has two linearly independent solutions
—e*/? eX 4+ 2(1+x)e*)ex/?
[ ox/2 } sech(x), [( (e_x(_ZXeg)e_z/z sech(x).

Define _
An¥, VW,

(W12 + W2
Then q = 0 follows from the first (decaying) solution and
2xe? 4 (4x2 4+ 4x — 1) — 2x(1 + x)e~*

cosh(3x) + 4(1 + x + x2) cosh(x)
follows from the second (growing) solution.

q:=-0Q1—

a(x) = — sech(x)
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Step 1

By perturbation theory (Lyapunov—Schmidt reduction method), we prove:

@ If ||Q — Qu]|.2 is small, then there exists n = (k +iv)/2 and W € H(R)

such that
k — 1]+ |v|+ [|W — W]y < C||Q — Q1| (2.
o If -
q = 2kW W,
' |W1[2 + W, 27
then g € L?(R) and
e <I1Q — Qullis + [[Qu 4 — 2 ¥1¥2
JollLz < 1|2 1 |W1|2 + W, ]2 L

SIQ — Quaffie.

@ Moreover, if Q € H3(R), then g € H3(R).
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Main result

Step 2: Time evolution near 0-soliton fort € R.

If (0, -) € H3(R) and ||q(0, -)||.2 is small, then g € C(R,H*(R)) and

lla(ts )z = Nla (0, -)|l.

remains small for allt € R.

This result completes step 2 for the NLS equation.
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Main result

Step 3: From 0-soliton to 1-soliton fort € R.

If g = 0, then {(e*/2,0), (0,e~*/2)} is a fundamental system of (Lax1).
If g = q(0,x) is small in L2, there exist bounded solutions of (Lax1):
e*2@(x) = e*/*(¢1(x), p2(x)), €7*/ZX(x) = e*/?(x1(x), x2(X)),

where
Y1 =qp2, Xi=x1+axz,
¢, = —0p1 — ¢2, X, = —ax1,

lim @i(x) =1, lim x2(x) = —1.
X—00 X ——00

A bounded solution (1, ¢2) satisfies

{ p1(x) =1 — [T a(y)e2y)dy =: Ta(e1, 2)(x),
wa(x) = — |7 e Cg(y)puly)dy =: Ta(p1, 2)(X).

T. Mizumachi and D. Pelinovsky () L2—slabi\ity of NLS solitons




Step 3

@ Note that we are not using here any smallness of ||q||.1, a typical
assumption in inverse scattering to guarantee no solitons in q(t, x).

@ If ||g]|.2 is small, then T = (T4, T) is a contraction mapping on
L°° x (L*° N L?) and

llor — Ll + llp2llLenz < Clla]lz,
IX1llLoeriz + Ix2 + Llte < CllA]lL2-

@ If q(t,x) is an H3(R)-solution of (NLS), then
Sltlp(llsol(t, ) — el + lla(t, ) llzare) < Clla(O, )iz

sup([Ixa(t, Mlezrre + lixa(t, ) + e "/2[|=) < Clla(0,-)llz -
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Step 3

Letq € C(R,H3(R)) is a solution of (NLS) such that ||q (0, -)|| 2 is small.
@ Let

Pi(t,x) = c1&*/2p1(t,X) + o6 ™/ ?x4(t, X)),
Pa(t,x) = c18*/2p,(t, x) + C26 ™/ ?x(t, X) .

with ¢; = ae(¥+10)/2 ¢, = ae—(v+16)/2 and a # 0.
@ Let

2¢1(t’x)¢2(t’x)
|’(/}1(t,X)|2 + |’¢2(t,X)|2 .

Then, Q € C(R, H3(R)) is a solution of (NLS) and

1Q(t,-) — e'™)Qi(- +v) |z < Clla(0, )|z forvt.

Q(t,x) := —q(t,x) —
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Step 4: Proof of L?-stability

Letuno € H3(R) be a sequence such that
lim Jlun,o —u(0,-)[l.= = 0.
n—oo

Let un(t, x) be a solution of (NLS) with u,(0,X) = un,o0(X).
By the previous construction, there is an n-independent C > 0 such that

sup [[un(t+tn, «+Xn) —Qky v, llL2+[Kn =1+ [Vn|+[ta[+]Xn| < C|[un,0—Qul|.2 -
teR

Therefore, there exists k, v, tg, and Xg such that
kn -k, vp, —V, X, —Xg, th—1t a n— oo.
From L2-well-posedness, it then follows that

SUP [|u(t+to, - +x0) = Qv flLe [k =2+ |V]+]to] +[Xo] < ClJu(0,)=QullLz -
te
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Discussions

Discussion: asymptotic stability

Hayashi and Naumkin (1998) proved that if qo € H(R) N L(R) such that
ll9oll2 + lldollL: < € (small),
there exists a unique global solution in H(R) such that
lat)llu: < Ces laCt)lle < Ce(@+ [t Y2, teR.
Note that ||q(-,t)||.2 may grow as |t| — oo.
However, we are not able to prove that if ||Q — Q1]|x: < ||q||n: is small, then
3C>0: [|IQ - Qulf= < CllalLe-,

without assuming that ||q||.: is small.

Asymptotic stability of 1-solitons in (NLS) is still an open problem.
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Discussions

Discussion: Hasimoto transformation

The integrable Landau—Lifshitz (LL) model is
U = u X UX)(, (LL)

where u(t,x) : R x R — S? such that u - u = 1. NLS and LL equations are
connected by the Hasimoto (Miura-type) transformation.

@ L2-orbital stability of 1-solitons of (NLS) is related to H*-orbital stability of
the domain wall solutions of (MTM).

@ Hl-asymptotic stability of 1-solitons of (NLS) is related to H2-asymptotic
stability of domain wall solutions of (MTM)
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Discussions

Discussion: nonlinear Dirac equation

The nonlinear Dirac equations (the massive Thirring model) is

{ i(ur + ux) +v = 2|v|2u, (MTM)

i(vi — Vx) +U = 2|ul?v,
where (u,v) : R x R — C2,
Orbital stability of 0-solution or 1-solitons is a difficult problem because the

energy functional is sign-indefinite. Asymptotic stability approaches (if they
work) give the orbital stability.

@ D.P, RIMS Kokyuroku Bessatsu B 26, 37-50 (2011)
@ D.P. and A. Stefanov, Journal of Mathematical Physics, 2012.
@ N. Boussaid and S. Cuccagna, Communications in PDEs, 2012.
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