Advection-diffusion equations with sign-varying diffusion for fluid flows

Dmitry Pelinovsky

Department of Mathematics, McMaster University, Canada

Joint work with Marina Chugunova (University of Toronto)

Reference: J. Math. Analysis and Applications, published online University at SUNY Buffalo, February 14, 2008

The problem

FIGURE 1. Formulation of the problem: film in a rotating cylinder with horizontal axis.

Reference: Benilov, O'Brien and Sazonov, J. Fluid Mech. 497, 201-224 (2003)

- A thin film of liquid on the inside surface of a cylinder rotating around its axis
- $h(\theta, t)$ is a thickness of the film in the limit $h \ll R$
- $\epsilon = \|h\|^4 / R^4$ is a small parameter.

The Cauchy problem

Linear disturbances of a stationary flow satisfy

 $h_t + h_\theta + \epsilon \left(\sin \theta h_\theta\right)_\theta = 0.$

The Cauchy problem for the advection–diffusion equation:

$$\begin{cases} \dot{h} = Lh, \quad L = -\partial_{\theta} - \epsilon \partial_{\theta} \sin \theta \partial_{\theta}, \\ h(0) = h_0, \end{cases}$$

subject to the periodic boundary conditions on $[-\pi, \pi]$.

We should expect heuristically that the Cauchy problem is ill-posed because of the backward heat equation on $(0, \pi)$ (for $\epsilon > 0$).

Example of ill-posedness

A standard example of the backward heat equation,

can be solved with the Fourier series

$$h(t) = \sum_{n \in \mathbb{Z}} c_n e^{\epsilon n^2 t} e^{in(x-t)}, \quad t \ge 0$$

for any $h_0 \in H^1_{per}([-\pi, \pi])$.

If $\epsilon > 0$ and c_n decays algebraically as $|n| \to \infty$, the solution h(t) blows up for any t > 0. If c_n decays as $e^{-\alpha n^2}$ as $n \to \infty$, the solution blows up at the finite time $t = t_0 = \frac{\alpha}{\epsilon}$.

Previous claims on the spectrum of L

Let us consider the associated linear operator

$$L = -\epsilon \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) - \frac{\partial}{\partial \theta}$$

acting on smooth periodic functions $f(\theta)$ on $[-\pi, \pi]$.

- 1. All eigenvalues are simple and purely imaginary.
- 2. The series of eigenfunctions, even if it converges at t = 0, may diverge for some $t \ge t_0 > 0$.
- 3. The level set of $(\lambda L)^{-1}$ form divergent curves to the left and right half-planes.
 - Benilov (2004): an explicit example confirms (2).
 - Trefethen (2005): the pseudospectral method confirms (3).

Level sets of the resolvent

From Benilov et al. (2003):

Main results

Our goal is to analyze the relation between the spectral properties of the operator L and ill-posedness of the advection-diffusion equation.

- The operator L is closed in $L^2_{\text{per}}([-\pi,\pi])$ with a domain in $H^1_{\text{per}}([-\pi,\pi])$ for $0 < \epsilon < 2$.
- The spectrum of *L* consists of an infinite sequence of isolated eigenvalues. All eigenvalues are purely imaginary.
- The set of eigenfunctions is complete but does not form a basis in $L^2_{per}([-\pi,\pi])$.

Unexpected developments

- E.B. Davies (2007): same results from difference equations
- J. Weir (2008): rigorous proof that all eigenvalues of L are purely imaginary
- L. Boulton, M. Levitin, M. Marletta (2008): generalization of the ODE approach for a class of operators *L* which admit a purely imaginary spectrum
- M. Chugunova, V. Strauss (2008): factorization of *L* in Krein spaces
- M. Chugunova, I. Karabash (2008): characterization of the domain of *L*

Closure and domain of *L*

Lemma: The operator *L* is closed in $L^2_{per}([-\pi, \pi])$ with a domain in $H^1_{per}([-\pi, \pi])$ for $0 < \epsilon < 2$.

Proof: $\lambda = 0$ is always an eigenvalue with eigenfunction f = 1. We need to show that there exists at least one regular point $\lambda_0 \in \mathbb{C}$ with

 $||(L - \lambda_0 I)f||_{L^2} \ge k_0 ||f||_{L^2}.$

We can use that

$$(f', (L - \lambda_0 I)f) = -\int_{-\pi}^{\pi} (1 + \epsilon \cos \theta) |f'|^2 d\theta$$
$$-\int_{-\pi}^{\pi} \sin \theta \bar{f}' f'' d\theta.$$

Closure and domain of *L*

For any $\lambda_0 \in \mathbb{R}$, we have

$$\operatorname{Re}(f', (L - \lambda_0 I)f)| \ge \left(1 - \frac{\epsilon}{2}\right) \|f'\|_{L^2}^2.$$

Any periodic function is represented by $f_0 + \tilde{f}(\theta)$, where f_0 is the mean value and $\tilde{f}(\theta)$ has zero mean. By the Cauchy-Schwarz inequality and the Poincare inequality, we obtain

$$\|(L - \lambda_0 I)f\|_{L^2}^2 = 2\pi\lambda_0^2 f_0^2 + \|(L - \lambda_0 I)\tilde{f}\|_{L^2}^2$$
$$\geq 2\pi\lambda_0^2 f_0^2 + \left(1 - \frac{\epsilon}{2}\right)^2 \|f'\|_{L^2}^2 \geq \lambda_0^2 \|f\|_{L^2}^2,$$

 $\operatorname{if} \lambda_0 = \frac{1}{2\pi} \left(1 - \frac{\epsilon}{2} \right).$

Purely discrete spectrum of *L*

Lemma: The spectrum of *L* consists of isolated eigenvalues. **Proof:** If L_{\pm} are restrictions of *L* on $(-\pi, 0)$ and $(0, \pi)$, then $\sigma_e(L) = \sigma_e(L_+) \cup \sigma(L_-)$. Consider L_+ and use the transformation

$$\cos \theta = \tanh t, \quad \sin \theta = \operatorname{sech} t, \quad t \in \mathbb{R},$$

such that $f(t) = f(\theta)$ satisfies the spectral problem

$$-\epsilon f''(t) + f'(t) = \lambda \operatorname{sech} t f(t).$$

Using $f(t) = e^{t/2\epsilon}g(t)$, we rewrite it in the form

$$-\epsilon g''(t) + \frac{1}{4\epsilon}g(t) = \lambda \operatorname{sech} t g(t),$$

which has empty essential spectrum by a theorem from the book by I. Glazman (1965).

Eigenvalues of *L*

Lemma: Let λ be a isolated eigenvalue of $Lf = \lambda f$ with an eigenfunction $f \in H^1_{per}([-\pi, \pi])$. Then,

- $-\lambda$, $\overline{\lambda}$ and $-\overline{\lambda}$ are also eigenvalues of $Lf = \lambda f$ with the eigenfunctions $f(-\theta)$, $\overline{f}(\theta)$ and $\overline{f}(-\theta)$.
- $\operatorname{Re}\lambda = \epsilon(f', \sin\theta f')/(f, f)$ and $i\operatorname{Im}\lambda = (f', f)/(f, f) \neq 0$.

Lemma: Let $\{\lambda_n\}_{n \in \mathbb{N}}$ be a set of eigenvalues with $\text{Im}\lambda_n > 0$, ordered in the ascending order of $|\lambda_n|$. There exists a $N \ge 1$, such that $\lambda_n \in i\mathbb{R}$ for all $n \ge N$ and

$$|\lambda_n| = Cn^2 + o(n^2)$$
 as $n \to \infty$,

for some C > 0.

Eigenvalues of *L*

Using the same transformation on $0 < \pm \theta < \pi$,

 $\cos \theta = \tanh t, \quad \sin \theta = \pm \operatorname{sech} t, \quad t \in \mathbb{R},$

we find two uncoupled problems for $f_{\pm}(t) = f(\theta)$ on $0 < \pm \theta < \pi$:

 $-\epsilon f_{\pm}''(t) + f_{\pm}'(t) = \pm \lambda \operatorname{sech} t f_{\pm}(t).$

Then, using the WKB transformation $f_{\pm}(t) = e^{\int_{\infty}^{t} S_{\pm}(t')dt'}$, we obtain

$$S_{\pm}(t) = \frac{1 - \sqrt{1 \mp 4\epsilon \lambda \operatorname{sech} t - 4\epsilon^2 R_{\pm}}}{2\epsilon}, \qquad R_{\pm} = S_{\pm}'(t),$$

where $R_{\pm} = O(\sqrt{|\lambda|})$ as $|\lambda| \to \infty$ uniformly on $t \in \mathbb{R}$.

Eigenvalues of *L*

The boundary conditions $f(\pi) = f(-\pi)$ or $\lim_{t \to -\infty} f_{-}(t) = \lim_{t \to -\infty} f_{+}(t) \text{ imply that } \lambda \text{ is a root of}$

$$G_n(\lambda) = \frac{1}{4\pi i\epsilon} \int_{-\infty}^{\infty} \left[\sqrt{1 + 4\epsilon\lambda \operatorname{sech} t - 4\epsilon^2 R_-(t)} -\sqrt{1 - 4\epsilon\lambda \operatorname{sech} t - 4\epsilon^2 R_+(t)} \right] dt - n, \quad n \in \mathbb{N}.$$

- $G_n(0) = -n$
- $G_n(i\omega)$ is real-valued for $\omega \in \mathbb{R}$.
- As $\omega \to \infty$

$$G_n(i\omega) = \frac{\sqrt{\omega}}{\sqrt{2\epsilon\pi}} \int_{-\infty}^{\infty} \frac{dt}{\sqrt{\cosh t}} + o\left(\sqrt{\omega}\right) - n$$

Completeness of eigenfunctions

Definition: The set of functions $\{f_n\}_{n\in\mathbb{Z}}$ is said to be complete in Banach space X if any function $f \in X$ can be approximated by a finite linear combination $f_N(\theta) = \sum_{n=-N}^N c_n f_n(\theta)$ in the following sense: for any fixed $\varepsilon > 0$, there exists $N \ge 1$ and $\{c_n\}_{-N \le n \le N}$, such that $||f - f_N||_X < \epsilon$ holds.

Theorem: Let $\{f_n(\theta)\}_{n\in\mathbb{Z}}$ be the set of eigenfunctions of L corresponding to the set of eigenvalues $\{\lambda_n\}_{n\in\mathbb{Z}}$. The set of eigenfunctions is complete in $L^2_{\text{per}}([-\pi,\pi])$.

Completeness of eigenfunctions follows from Lidskii's Theorem in the book by I. Gohbert, S. Goldberg, M. Kaashoek (1990) since the two sufficient conditions are satisfied: (1) eigenvalues of L are purely imaginary and (2) $|\lambda_n| = O(n^2)$ as $n \to \infty$.

Basis of eigenfunctions

Definition: The set of functions $\{f_n\}_{n\in\mathbb{Z}}$ is said to form a Schauder basis in Banach space X if, for every $f \in X$, there exists a unique representation $f(\theta) = \sum_{n\in\mathbb{Z}} c_n f_n(\theta)$ with some coefficients $\{c_n\}_{n\in\mathbb{Z}}$ such that $\lim_{N\to\infty} ||f - f_N||_X = 0$.

Theorem: Let $\{f_n\}_{n\in\mathbb{Z}}$ be a complete set of eigenfunctions of L. It forms a basis in Hilbert space $L^2_{\text{per}}([-\pi,\pi])$ if and only if $\lim_{n\to\infty} \cos(\widehat{f_n, f_{n+1}}) < 1$ or $\lim_{n\to\infty} \|P_n\| < \infty$, where

$$\cos(\widehat{f_n, f_{n+1}}) = \frac{|(f_n, f_{n+1})|}{\|f_n\| \|f_{n+1}\|}, \quad \|P_n\| = \frac{\|f_n\| \|f_n^*\|}{|(f_n, f_n^*)|}.$$

See J.Marti (1969); E.B. Davies (1995) and other sources.

Numerical shooting method

By the ODE theory near regular singular points, $f(\theta)$ is spanned by

$$f_1 = 1 + \sum_{n \in \mathbb{N}} c_n \theta^n, \quad f_2 = \theta^{-1/\epsilon} \left(1 + \sum_{n \in \mathbb{N}} d_n \theta^n \right)$$

near $\theta = 0$ and

$$f_1^{\pm} = 1 + \sum_{n \in \mathbb{N}} a_n^{\pm} (\pi \mp \theta)^n, \quad f_2^{\pm} = (\pi \mp \theta)^{1/\epsilon} \left(1 + \sum_{n \in \mathbb{N}} b_n^{\pm} (\pi \mp \theta)^n \right)$$

near $\theta = \pm \pi$. If $f \in H^1_{\text{per}}([-\pi, \pi])$, then

 $f = Cf_1(\theta) = A_{\pm}f_1^{\pm}(\theta) + B_{\pm}f_2^{\pm}(\theta)$

for some constants C, A_{\pm}, B_{\pm} with $A_{+} = A_{-}$.

Results of the shooting method

An analogue of the Evans function:

- $F(\lambda) = A_+ A_-$ is analytic in $\lambda \in \mathbb{C}$
- If $\lambda \in i\mathbb{R}$, then $f(\theta) = \overline{f}(-\theta)$ and $F(\lambda) = 2i \operatorname{Im}(A_+)$.

Winding number theory for a contour in the first quadrant:

Results of the shooting method

Purely imaginary eigenvalues:

ϵ	ω_1	ω_2	ω_3	ω_4
0.5	1.167342	2.968852	5.483680	8.715534
1.0	1.449323	4.319645	8.631474	14.382886
1.5	1.757278	5.719671	11.846709	20.138824

and their eigenfunctions:

Spectral projections

Criteria for eigenfunctions to form a basis:

Left - $\cos(f_n, f_{n+1})$, right - $||P_n||$, where

$$\cos(\widehat{f_n, f_{n+1}}) = \frac{|(f_n, f_{n+1})|}{\|f_n\| \|f_{n+1}\|}, \quad \|P_n\| = \frac{\|f_n\| \|f_n^*\|}{|(f_n, f_n^*)|}.$$

Numerical results indicate that the complete set of eigenfunctions does not form a basis in $L^2_{\text{per}}([-\pi,\pi])$.

Further remarks

It might seem that we have obtained two contradictions:

- Spectrum of *L* is on the imaginary axis but the advection-diffusion equation is likely to be ill-posed.
- Finite sums of eigenfunctions approximate an initial data h_0 well but series can not be used for solutions with t > 0.

Hille–Yosida theorem: A densely defined operator L forms a strongly continuous contraction semigroup in Banach space X if and only if for any row in $\lambda \in \mathbb{R}_+$, the operator $\lambda I - L$ has an everywhere defined inverse such that

$$\|(\lambda I - L)^{-1}\|_{X \to X} \le \frac{1}{\lambda}.$$

Numerical results indicate that this condition is not satisfied.

Numerical spectral method

If $f(\theta) \in H^1([-\pi,\pi])$, then

$$f(\theta) = \sum_{n \in \mathbb{Z}} f_n e^{-in\theta}, \quad \sum_{n \in \mathbb{Z}} (1+n^2) |f_n|^2 < \infty.$$

The ODE problem becomes equivalent to the difference problem

$$nf_n + \frac{\epsilon}{2}n\left[(n+1)f_{n+1} - (n-1)f_{n-1}\right] = -i\lambda f_n, \qquad n \in \mathbb{Z},$$

which splits as

 $A\mathbf{f}_{+} = -i\lambda\mathbf{f}_{+}, \qquad A\mathbf{f}_{-} = i\lambda\mathbf{f}_{-}, \qquad \lambda f_{0} = 0,$ for $\mathbf{f}_{\pm} = (f_{\pm 1}, f_{\pm 2}, ...).$

Results of the spectral method

Left - N = 128, right - N = 1024.

Spurious complex eigenvalues occur due to truncation of non-symmetric matrices.

Reduction to a Sturm-Liouville problem

Based on J. Weir (2008): Eigenfunctions of L are represented by

$$f(\theta) = \sum_{n \ge 1} f_n e^{in\theta} = \sum_{n \ge 1} f_n z^n,$$

for $z = e^{i\theta}$. The interval $[-\pi, \pi]$ for θ transforms to a unit circle in \mathbb{C} for z.

Now $u(z) = \sum_{n \ge 1} f_n z^n$ satisfies the second-order ODE

$$z(1-z)(1+z)u''(z) - 2z(z+\frac{1}{\epsilon})u'(z) + \frac{2i\lambda}{\epsilon}u(z) = 0$$

and belong to the Hardy space of square-integrable functions on the unit circle which are analytically continued in the unit disk.

Proof of $\lambda \in i\mathbb{R}$

Now consider solutions u(z) on $\{\operatorname{Re}(z) \in [0, 1], \operatorname{Im}(z) = 0\}$ and apply the singular point analysis:

$$u(x) \to \begin{cases} a + b(1-x)^{-1/\epsilon}, & \text{as } x \to 1\\ c + dx, & \text{as } x \to 0 \end{cases}$$

For a proper eigenfunction, b = 0 and c = 0.

The second-order ODE is written in the self-adjoint form

$$-(p(x)u'(x))' = \mu w(x)u(x), \quad x \in [0,1],$$

where $\mu = 2i\lambda/\epsilon$, $p(x) = (1-x)^{1+1/\epsilon}(1+x)^{1-1/\epsilon}$, and $w(x) = (1+x)^{-1/\epsilon}(1-x)^{1/\epsilon}/x$. The solution belongs to $L^2_w([0,1])$, where $\mu \in \mathbb{R}$.

Other examples

An example of other problems with purely real spectra:

$$H = -\frac{d^2}{dx^2} + ix^3$$

K. Shin (2005)

An example of other problems with a failure of eigenfunctions to form a basis:

$$H = -\frac{d^2}{dx^2} + (1+ia)x^2$$

E.B. Davies (1999)