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The problem

Reference: Benilov, O’Brien and Sazonov, J. Fluid Mech. 497,
201-224 (2003)

• A thin film of liquid on the inside surface of a cylinder rotating
around its axis

• h(θ, t) is a thickness of the film in the limith ≪ R

• ǫ = ‖h‖4/R4 is a small parameter.
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The Cauchy problem

Linear disturbances of a stationary flow satisfy

ht + hθ + ǫ (sin θhθ)θ = 0.

The Cauchy problem for the advection–diffusion equation:
{

ḣ = Lh, L = −∂θ − ǫ∂θ sin θ∂θ,

h(0) = h0,

subject to the periodic boundary conditions on[−π, π].

We should expect heuristically that the Cauchy problem is ill-posed
because of the backward heat equation on(0, π) (for ǫ > 0).
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Example of ill-posedness

A standard example of the backward heat equation,
{

ḣ = −hθ − ǫhθθ, t > 0

h(0) = h0

can be solved with the Fourier series

h(t) =
∑

n∈Z

cne
ǫn2tein(x−t), t ≥ 0

for anyh0 ∈ H1
per([−π, π]).

If ǫ > 0 andcn decays algebraically as|n| → ∞, the solutionh(t)

blows up for anyt > 0. If cn decays ase−αn2

asn → ∞, the
solution blows up at the finite timet = t0 = α

ǫ
.
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Previous claims on the spectrum ofL

Let us consider the associated linear operator

L = −ǫ
∂

∂θ

(

sin θ
∂

∂θ

)

− ∂

∂θ

acting on smooth periodic functionsf(θ) on [−π, π].

1. All eigenvalues are simple and purely imaginary.

2. The series of eigenfunctions, even if it converges att = 0, may
diverge for somet ≥ t0 > 0.

3. The level set of(λ − L)−1 form divergent curves to the left and
right half-planes.

• Benilov (2004): an explicit example confirms (2).
• Trefethen(2005): the pseudospectral method confirms (3).
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Level sets of the resolvent
From Benilov et al. (2003):
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Main results
Our goal is to analyze the relation between the spectral properties of
the operatorL and ill-posedness of the advection–diffusion
equation.

• The operatorL is closed inL2
per([−π, π]) with a domain in

H1
per([−π, π]) for 0 < ǫ < 2.

• The spectrum ofL consists of an infinite sequence of isolated
eigenvalues. All eigenvalues are purely imaginary.

• The set of eigenfunctions is complete but does not form a basis
in L2

per([−π, π]).

Advection-diffusion equations with sign-varying diffusion for fluid flows – p. 7/26



Unexpected developments
• E.B. Davies(2007): same results from difference equations

• J. Weir(2008): rigorous proof that all eigenvalues ofL are
purely imaginary

• L. Boulton, M. Levitin, M. Marletta(2008): generalization of
the ODE approach for a class of operatorsL which admit a
purely imaginary spectrum

• M. Chugunova, V. Strauss(2008): factorization ofL in Krein
spaces

• M. Chugunova, I. Karabash(2008): characterization of the
domain ofL
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Closure and domain ofL

Lemma: The operatorL is closed inL2
per([−π, π]) with a domain in

H1
per([−π, π]) for 0 < ǫ < 2.

Proof: λ = 0 is always an eigenvalue with eigenfunctionf = 1. We
need to show that there exists at least one regular pointλ0 ∈ C with

‖(L − λ0I)f‖L2 ≥ k0‖f‖L2 .

We can use that

(f ′, (L − λ0I)f) = −
∫ π

−π

(1 + ǫ cos θ) |f ′|2dθ

−
∫ π

−π

sin θf̄ ′f ′′dθ.
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Closure and domain ofL
For anyλ0 ∈ R, we have

|Re(f ′, (L − λ0I)f)| ≥
(

1 − ǫ

2

)

‖f ′‖2
L2 .

Any periodic function is represented byf0 + f̃(θ), wheref0 is the
mean value and̃f(θ) has zero mean. By the Cauchy-Schwarz
inequality and the Poincare inequality, we obtain

‖(L − λ0I)f‖2
L2 = 2πλ2

0f
2
0 + ‖(L − λ0I)f̃‖2

L2

≥ 2πλ2
0f

2
0 +

(

1 − ǫ

2

)2

‖f ′‖2
L2 ≥ λ2

0‖f‖2
L2 ,

if λ0 = 1
2π

(

1 − ǫ
2

)

.
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Purely discrete spectrum ofL

Lemma: The spectrum ofL consists of isolated eigenvalues.
Proof: If L± are restrictions ofL on (−π, 0) and(0, π), then
σe(L) = σe(L+) ∪ σ(L−). ConsiderL+ and use the transformation

cos θ = tanh t, sin θ = secht, t ∈ R,

such thatf(t) = f(θ) satisfies the spectral problem

−ǫf ′′(t) + f ′(t) = λsecht f(t).

Usingf(t) = et/2ǫg(t), we rewrite it in the form

−ǫg′′(t) +
1

4ǫ
g(t) = λsecht g(t),

which has empty essential spectrum by a theorem from the bookby
I. Glazman(1965).
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Eigenvalues ofL

Lemma: Let λ be a isolated eigenvalue ofLf = λf with an
eigenfunctionf ∈ H1

per([−π, π]). Then,

• −λ, λ̄ and−λ̄ are also eigenvalues ofLf = λf with the
eigenfunctionsf(−θ), f̄(θ) andf̄(−θ).

• Reλ = ǫ(f ′, sin θf ′)/(f, f) andiImλ = (f ′, f)/(f, f) 6= 0.

Lemma: Let {λn}n∈N be a set of eigenvalues withImλn > 0,
ordered in the ascending order of|λn|. There exists aN ≥ 1, such
thatλn ∈ iR for all n ≥ N and

|λn| = Cn2 + o(n2) as n → ∞,

for someC > 0.
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Eigenvalues ofL

Using the same transformation on0 < ±θ < π,

cos θ = tanh t, sin θ = ±secht, t ∈ R,

we find two uncoupled problems forf±(t) = f(θ) on0 < ±θ < π:

−ǫf ′′
±(t) + f ′

±(t) = ±λsecht f±(t).

Then, using the WKB transformationf±(t) = e
R

t

∞
S±(t′)dt′, we

obtain

S±(t) =
1 −

√

1 ∓ 4ǫλsecht − 4ǫ2R±

2ǫ
, R± = S′

±(t),

whereR± = O(
√

|λ|) as|λ| → ∞ uniformly ont ∈ R.
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Eigenvalues ofL

The boundary conditionsf(π) = f(−π) or
lim

t→−∞
f−(t) = lim

t→−∞
f+(t) imply thatλ is a root of

Gn(λ) =
1

4πiǫ

∫ ∞

−∞

[

√

1 + 4ǫλsecht − 4ǫ2R−(t)

−
√

1 − 4ǫλsecht − 4ǫ2R+(t)
]

dt − n, n ∈ N.

• Gn(0) = −n

• Gn(iω) is real-valued forω ∈ R.
• As ω → ∞

Gn(iω) =

√
ω√

2ǫπ

∫ ∞

−∞

dt√
cosh t

+ o
(√

ω
)

− n
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Completeness of eigenfunctions

Definition: The set of functions{fn}n∈Z is said to be complete in
Banach spaceX if any functionf ∈ X can be approximated by a

finite linear combinationfN (θ) =
N
∑

n=−N

cnfn(θ) in the following

sense: for any fixedε > 0, there existsN ≥ 1 and{cn}−N≤n≤N ,
such that‖f − fN‖X < ǫ holds.

Theorem: Let {fn(θ)}n∈Z be the set of eigenfunctions ofL
corresponding to the set of eigenvalues{λn}n∈Z. The set of
eigenfunctions is complete inL2

per([−π, π]).

Completeness of eigenfunctions follows from Lidskii’s Theorem in
the book byI. Gohbert, S. Goldberg, M. Kaashoek(1990) since the
two sufficient conditions are satisfied: (1) eigenvalues ofL are
purely imaginary and (2)|λn| = O(n2) asn → ∞.
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Basis of eigenfunctions

Definition: The set of functions{fn}n∈Z is said to form a Schauder
basis in Banach spaceX if, for everyf ∈ X, there exists a unique
representationf(θ) =

∑

n∈Z

cnfn(θ) with some coefficients{cn}n∈Z

such that lim
N→∞

‖f − fN‖X = 0.

Theorem: Let {fn}n∈Z be a complete set of eigenfunctions ofL. It
forms a basis in Hilbert spaceL2

per([−π, π]) if and only if

limn→∞ cos( ̂fn, fn+1) < 1 or limn→∞ ‖Pn‖ < ∞, where

cos( ̂fn, fn+1) =
|(fn, fn+1)|
‖fn‖‖fn+1‖

, ‖Pn‖ =
‖fn‖‖f ∗

n‖
|(fn, f ∗

n)| .

SeeJ.Marti (1969);E.B. Davies(1995) and other sources.
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Numerical shooting method

By the ODE theory near regular singular points,f(θ) is spanned by

f1 = 1 +
∑

n∈N

cnθ
n, f2 = θ−1/ǫ

(

1 +
∑

n∈N

dnθ
n

)

nearθ = 0 and

f±
1 = 1+

∑

n∈N

a±
n (π∓θ)n, f±

2 = (π∓θ)1/ǫ

(

1 +
∑

n∈N

b±n (π ∓ θ)n

)

nearθ = ±π. If f ∈ H1
per([−π, π]), then

f = Cf1(θ) = A±f±
1 (θ) + B±f±

2 (θ)

for some constantsC,A±, B± with A+ = A−.
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Results of the shooting method

An analogue of the Evans function:
• F (λ) = A+ − A− is analytic inλ ∈ C

• If λ ∈ iR, thenf(θ) = f̄(−θ) andF (λ) = 2iIm(A+).

Winding number theory for a contour in the first quadrant:
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Results of the shooting method

Purely imaginary eigenvalues:

ǫ ω1 ω2 ω3 ω4

0.5 1.167342 2.968852 5.483680 8.715534

1.0 1.449323 4.319645 8.631474 14.382886

1.5 1.757278 5.719671 11.846709 20.138824

and their eigenfunctions:
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Spectral projections

Criteria for eigenfunctions to form a basis:

Left - cos( ̂fn, fn+1), right - ‖Pn‖, where

cos( ̂fn, fn+1) =
|(fn, fn+1)|
‖fn‖‖fn+1‖

, ‖Pn‖ =
‖fn‖‖f ∗

n‖
|(fn, f ∗

n)| .

Numerical results indicate that the complete set of eigenfunctions
does not form a basis inL2

per([−π, π]).
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Further remarks
It might seem that we have obtained two contradictions:

• Spectrum ofL is on the imaginary axis but the
advection-diffusion equation is likely to be ill-posed.

• Finite sums of eigenfunctions approximate an initial datah0

well but series can not be used for solutions witht > 0.

Hille–Yosida theorem: A densely defined operatorL forms a
strongly continuous contraction semigroup in Banach spaceX if
and only if for any row inλ ∈ R+, the operatorλI − L has an
everywhere defined inverse such that

‖(λI − L)−1‖X→X ≤ 1

λ
.

Numerical results indicate that this condition is not satisfied.
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Numerical spectral method

If f(θ) ∈ H1([−π, π]), then

f(θ) =
∑

n∈Z

fne
−inθ,

∑

n∈Z

(1 + n2)|fn|2 < ∞.

The ODE problem becomes equivalent to the difference problem

nfn +
ǫ

2
n [(n + 1)fn+1 − (n − 1)fn−1)] = −iλfn, n ∈ Z,

which splits as

Af+ = −iλf+, Af− = iλf−, λf0 = 0,

for f± = (f±1, f±2, ...).
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Results of the spectral method
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Left - N = 128, right - N = 1024.

Spurious complex eigenvalues occur due to truncation of
non-symmetric matrices.
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Reduction to a Sturm-Liouville problem

Based onJ. Weir(2008): Eigenfunctions ofL are represented by

f(θ) =
∑

n≥1

fneinθ =
∑

n≥1

fnz
n,

for z = eiθ. The interval[−π, π] for θ transforms to a unit circle in
C for z.

Now u(z) =
∑

n≥1 fnz
n satisfies the second-order ODE

z(1 − z)(1 + z)u′′(z) − 2z(z +
1

ǫ
)u′(z) +

2iλ

ǫ
u(z) = 0

and belong to the Hardy space of square-integrable functions on the
unit circle which are analytically continued in the unit disk.
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Proof of λ ∈ iR

Now consider solutionsu(z) on{Re(z) ∈ [0, 1], Im(z) = 0} and
apply the singular point analysis:

u(x) →
{

a + b(1 − x)−1/ǫ, as x → 1

c + dx, as x → 0

For a proper eigenfunction,b = 0 andc = 0.

The second-order ODE is written in the self-adjoint form

− (p(x)u′(x))
′
= µw(x)u(x), x ∈ [0, 1],

whereµ = 2iλ/ǫ, p(x) = (1 − x)1+1/ǫ(1 + x)1−1/ǫ, and
w(x) = (1 + x)−1/ǫ(1 − x)1/ǫ/x. The solution belongs to
L2

w([0, 1]), whereµ ∈ R.
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Other examples

An example of other problems with purely real spectra:

H = − d2

dx2
+ ix3

K. Shin(2005)

An example of other problems with a failure of eigenfunctions to
form a basis:

H = − d2

dx2
+ (1 + ia)x2

E.B. Davies(1999)
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