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The problem

Reference: Benilov, O’'Brien and Sazonov, J. Fluid Mech. 497,
201-224 (2003)

* A thin film of liquid on the inside surface of a cylinder rotady
around its axis

* h(0,t) is athickness of the film in the limit < R
* ¢ = ||h||*/R*is a small parameter.



The Cauchy problem

Linear disturbances of a stationary flow satisfy

hy + hg + € (Sin th)e = 0.

The Cauchy problem for the advection—diffusion equation:

f.L — Lh, = —(99 — 6(99 sin 95’9,
h(0) = hy,
subject to the periodic boundary conditions|emr, 7|.

We should expect heuristically that the Cauchy problem-isaked
because of the backward heat equatiori@mr) (for € > 0).



Example of ill-posedness

A standard example of the backward heat equation,

h:—hg—eh(g@, t >0
h(0) = hy

can be solved with the Fourier series

h(t) _ Z Cneen2tez'n(aﬁ—t)7 t>0

nez

foranyhy € H! ([—7,x]).

per

If ¢ > 0 andc,, decays algebraically as| — oo, the solutionh ()

blows up for anyt > 0. If ¢, decays as— " asn — oo, the
solution blows up at the finite time= ¢, = <.



Previous claims on the spectrum of.

Let us consider the associated linear operator

o (. ,0 0
L = —6% (Sln9@> — %

acting on smooth periodic functionfgd) on |—, 7|.

1. All eigenvalues are simple and purely imaginary.

2. The series of eigenfunctions, even if it convergess-at), may
diverge for some > ¢, > 0.

3. The level set of A — L)' form divergent curves to the left and
right half-planes.

* Benilov(2004): an explicit example confirms (2).
* Trefethen(2005): the pseudospectral method confirms (3).



Level sets of the resolvent

From Benilov et al. (2003):




Main results

IS to analyze the relation between the spectral properfies
the operator. and ill-posedness of the advection—diffusion
equation.

* The operatol. is closed inL’ . ([—=,7]) with a domain in
H! ([-m,x])for0<e< 2.

per

* The spectrum of. consists of an infinite sequence of isolated
eigenvalues. All eigenvalues are purely imaginary.

* The set of eigenfunctions is complete but does not form abas
in LZ_ ([—m, 7).

per



Unexpected developments

=.B. Davieg(2007): same results from difference equations

J. Weir(2008): rigorous proof that all eigenvaluesiofire
purely imaginary

L. Boulton, M. Levitin, M. Marletta(2008): generalization of
the ODE approach for a class of operatérg’hich admit a
purely imaginary spectrum

M. Chugunova, V. Strauq2008): factorization of_ in Krein
spaces

M. Chugunova, |. Karabagq2008): characterization of the
domain ofL



Closure and domain of L

The operatod. is closed inL: . ([—, 7]) with a domain in
H! ([-m,7])for0 < e < 2.

per

A = 0 Is always an eigenvalue with eigenfunctipr= 1. We
need to show that there exists at least one regular pgiat C with

(L — XoD) fllr2 > Kol| f]] z2-

We can use that

T

(f'5 (L= Xol)f) = —/ (1 + ecosf) | f'|*do

— 17T

_ / sin @ f' d0.

—Tr



Closure and domain of L

For any)\, € R, we have
/ S /
Re(f', (L= XD)f) = (1= 5) IF7=

Any periodic function is represented by + f(6), wheref, is the

mean value and () has zero mean. By the Cauchy-Schwarz
Inequality and the Poincare inequality, we obtain

(L = XoD) flIZ2 = 20X5f5 + II(L = Xo) F1Z2
> 9\ f3+ (1= 5) 112 = X171




Purely discrete spectrum ofL

The spectrum of. consists of isolated eigenvalues.
If L. are restrictions of. on (—=,0) and(0, 7), then
o.(L)=0.(L,)Uoc(L_). ConsiderL, and use the transformation

cos = tanht, sinf = secht, t e R,
such thatf(¢) = f(0) satisfies the spectral problem
—ef"(t) + f'(t) = Asecht f(t).

Using f(t) = e'/?¢g(t), we rewrite it in the form

1
—eg"(t) + -9(t) = Asecht g(t),

which has empty essential spectrum by a theorem from the bgpok
|. Glazman(1965).



Eigenvalues ofL

Let A be a isolated eigenvalue aff = A\ f with an
eigenfunctionf € H_ .([—m,7]). Then,

* —), A and—) are also eigenvalues @ff = \f with the
eigenfunctionsf (—6), f(0) and f(—0).

* ReA = e(f',sin0f')/(f, f) andilmh = (f', £)/(f, f) # 0.

Let {\, }.en be a set of eigenvalues witin\,, > 0,
ordered in the ascending order|of,|. There exists & > 1, such
that\,, € :R foralln > N and

M| = Cn? +o(n?) as n — oo,

for someC' > 0.



Eigenvalues ofL

Using the same transformation on< +60 < ,
cos) = tanht, sinf = +secht, t € R,
we find two uncoupled problems fgi.(¢) = f(0) on0 < £60 < =
—efi(t) + fL(t) = £Asecht fi(t).

Then, using the WKB transformatiofy. (£) = e/ 514" e
obtain

1= \/1 T 4edsecht — 4e? R,

S (t) € ’

Ry = SL(t),

whereR. = O(\/|\|) as|\| — oo uniformly ont € R.



Eigenvalues ofL

The boundary conditiong(w) = f(—m) or
thﬁn f-(t)= lim f.(¢) imply that) is a root of

t——0o0

1 0
Gn(\) = —— {\/l + 4eXsecht — 4e2R_(t)

Amre |

@)

—+/1 — 4esecht — 4€2R+(t)} dt —mn, neN.

* G,(0)=—n
* G, (iw) is real-valued fow € R.

°* ASw — 0

G, (iw) =

Vo[ dt
it Byt R



Completeness of eigenfunctions

The set of functiong f,, },.cz is said to be complete in

Banach spac« if any function f € X can be approximated by a
Y

finite linear combinatiorfy(0) = > ¢, f.(8) in the following
n=—N

sense: for any fixed > 0, there existsV > 1 and{c¢,} y<n<n,
such that| f — fnx||x < € holds.

Let{f.(0)}.cz be the set of eigenfunctions &f
corresponding to the set of eigenvalyes, },.cz. The set of
eigenfunctions is complete i .. ([—7, 7]).

Completeness of eigenfunctions follows from Lidskii’s Dinem in
the book byi. Gohbert, S. Goldberg, M. Kaasho@990) since the
two sufficient conditions are satisfied: (1) eigenvalues afe

purely imaginary and (2)\,,| = O(n?) asn — oo.



Basis of eigenfunctions

The set of functiong f,, } .7 Is said to form a Schauder
basis in Banach spack if, for every f € X, there exists a unigue

representatiorf () = > ¢, f.(6) with some coefficient$c, } <z
nez

such tha’gvhm ||f — fNHX = 0.

Let{f,}.cz be a complete set of eigenfunctions/ofit
forms a basis in Hilbert spade; .. ([—x, 7]) if and only if

lim,, o Cos(fml) < lorlim, . |[|P,|| < oo, Wwhere

e fu)] Ll
ny Jn+l) — y Pn = .
s frrn) = 7 i =17 )

Seel.Marti(1969);E.B. Davieg(1995) and other sources.



Numerical shooting method

By the ODE theory near regular singular poinfsg) is spanned by

fl =1+ chena f2 — (9_1/6 (1 + Zdn6n>

neN neN

neard = 0 and

ff=1+) af(xF0)", f5 (W$9)1/6<1+Zbi7ﬂ?9)>

neN neN

nearf = £r. If f € H . ([—m,7]), then

f=Cf0) = AL fi7(0) + B+ fy(0)

for some constantS’, A, B with A, = A_.



Results of the shooting method

An analogue of the Evans function:
* F(\) = A, — A_isanalyticin\ € C

* If A € iR, thenf(d) = f(—0) andF'(\) = 2:Im (A, ).

Winding number theory for a contour in the first quadrant:




Results of the shooting method

Purely imaginary eigenvalues:

€ | wy W9 W3 Wy

0.5 | 1.167342 | 2.968852 | 5.483680 | 8.715534
1.0 | 1.449323 | 4.319645 | 8.631474 | 14.382886
1.5 | 1.757278 | 5.719671 | 11.846709 | 20.138824

and their eigenfunctions:




Spectral projections

Criteria for eigenfunctions to form a basis:

Left - cos(fml), right - | P, ||, where
— (frs frt1)] |l fall
ny Jn+l) — y Pn = .
st fre) = el =0 )

Numerical results indicate that the complete set of eigactfans
does not form a basis ih?_ ([—, 71]).

per



Further remarks

It might seem that we have obtained two contradictions:

* Spectrum ofL Is on the imaginary axis but the
advection-diffusion equation is likely to be ill-posed.

* Finite sums of eigenfunctions approximate an initial data
well but series can not be used for solutions with 0.

A densely defined operatdrforms a
strongly continuous contraction semigroup in Banach spade
and only if for any row in\ € R, the operaton/ — L has an
everywhere defined inverse such that

1
I = L) lxox < 5

Numerical results indicate that this condition is not Sedcs



Numerical spectral method
If f(0) € H*([-m,7]), then

FO) =Y fae™™, D (1 +n0°)|ful’ <.

nez ne’

The ODE problem becomes equivalent to the difference pnoble

€ .
nfn + ok (n+ 1) foy1— (n—1)f1)] = —i)fn, n € 7,
which splits as
Af_|_ — _i)\f+, Af_ — i)\f_7 )\f() — O,

fOffiiZZ(fil,fiQ,u).



Results of the spectral method

Left - N = 128, right - N = 1024.

Spurious complex eigenvalues occur due to truncation of
non-symmetric matrices.



Reduction to a Sturm-Liouville problem

Based onl. \Weir(2008): Eigenfunctions of. are represented by

f(@) — aneme — anzn,

n>1 n>1

for z = €. The interval—r, 7] for § transforms to a unit circle in
C for z.

Now u(z) = > -, f.2" satisfies the second-order ODE

1 21
21— 2)(1+2)u"(2) = 22(z + 2)u'(2) + 2A (z) = 0
€
and belong to the Hardy space of square-integrable fureborthe

unit circle which are analytically continued in the unitklis



Proof of A € 1R

Now consider solutions(z) on{Re(z) € |0,1],Im(z) = 0} and
apply the singular point analysis:

() a+b(l—z)"V as x—1
u(x) —
c+dr, as x — 0

For a proper eigenfunction,= 0 andc = 0.
The second-order ODE is written in the self-adjoint form
— (p()u'(2)) = pw(z)u(z), = €0,1],

wherep = 2i\ /e, p(x) = (1 — ) FV¢(1 + 2)' /¢, and
w(z) = (1 + 2)~¢(1 — 2)'/¢/z. The solution belongs to
L2 (]0,1]), whereu € R.



Other examples

An example of other problems with purely real spectra:

2,
H:—@—l—lﬂﬁ

K. Shin(2005)

An example of other problems with a failure of eigenfunctida

form a basis:
H & + (1 4 ia)z”
= —— 1a)x
dx?

E.B. Davieg1999)
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