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1. Gross—Pitaevskii equation

Gross-Pitaevskii equation

Density waves in cigar—shaped Bose—Einstein condensates with repulsive
inter-atomic interactions placed in a magnetic trap are modeled by the
Gross-Pitaevskii equation with the harmonic potential and steady rotation:

icuy = — (05 + )+ (X% + y2 + |ufP)u + iQ(xdy — you)u,

where Q is the rotation frequency and ¢ is related to the chemical potential.

The associated energy of the Gross—Pitaevskii equation:
E(u) = // [52 |Vul? + |x|?|ul® + %|u|4 — iQu(x8y, — ydx)T| dxdy.
R2

Steadily rotating vortices are critical points of the energy E(u) subject to the

fixed mass
Q(u):// |u|?dxdly.
]RZ
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1. Gross—Pitaevskii equation

Ground (vortex-free) state

If Q@ = 0 (no rotation), there exists ground state for every Q > 0:
£ =inf{ue H'(R)NL2'(R?): Qu)=Q}.

The ground state is given by the real, positive, radially symmetric solution 7.
of the stationary equation:

pne = =2 Vine + Ix*n. + 02, x € R,
where 1 > 0 is the Lagrange multiplier.
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1. Gross—Pitaevskii equation

Ground (vortex-free) state

If Q@ = 0 (no rotation), there exists ground state for every Q > 0:
£ =inf{ue H'(R)NL2'(R?): Qu)=Q}.

The ground state is given by the real, positive, radially symmetric solution 7.
of the stationary equation:

pne = =2 Vine + Ix*n. + 02, x € R,
where 1 > 0 is the Lagrange multiplier.

In the semi-classical limit ¢ — 0, the ground state decays to zero as |x| — oo

faster than any exponential function

= |x?
4£2/3

0<775(X)§Ce1/3exp( >, forall |x| > p'/2

and is '/2 close to the Thomas—Fermi approximation

_f (w—=1x®)VE, for |x| < u'/?
mo(x) = { 0, for |x| > p'/?

)

C.Gallo-D.P, Asymptotic Analysis 73, 53-96 (2011)
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Vortex states

If Q@ = 0 (no rotation), the vortex state u. is a complex-valued solution of the
stationary equation,

pu. = —2V2u, + |x|Pu. + |u-Pu., x e R2

In the semi-classical limit e — 0, the vortex state u. is well approximated by
the product representation

U= (x) = ne(xX)ve(x),
where v, satisfies the stationary equation
&V (EVxv) +nf(1 = [vF)v =0,
subject to the boundary conditions limy o [Vo(X)| = 1.

Symmetric vortex of charge m € N corresponds to the choice v. = . (r)e',
where (r, 0) are polar coordinates on R? and ¢.(r) — 1 as r — oc.
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Experimental studies of vortices
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Absorption images of a BEC stirred with a laser beam of increasing frequency.
From Madison et al., 2000.
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Experimental studies of vortex precession
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Vortex precession in a trapped two-component BEC.
From Anderson et al., 2000.
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Theoretical studies of vortices

@ Castin & Dum (1999) - rotating vortices can become local minimizers of
energy for larger frequencies Q

@ Fetter & Svidzinsky (2001), Métténnen et al. (2005) - computations of
effective energy for vortex configurations

@ Aftalion & Du (2001), Ignat & Millot (2006) - variational proofs that a
vortex of charge one is a global minimizer for larger frequencies

@ Seiringer (2003) - proof that a multi-vortex configuration with charge m is
energetically preferrable to that with charge m—1for Q > Q,,, me N

@ Middlecamp et al. (2010), Kollar & Pego (2012) - numerical computations
of eigenvalues for vortex configurations
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2. Rotating vortices

Spectral stability of charge-one vortices

Left: ground state 7.. Right: vortex of charge m =1

D.P—P.Kevrekidis, Nonlinearity 24, 1271-1289 (2011)
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2. Rotating vortices

Bifurcation of vortices

If Q = 0 (no rotation), spectrum of the vortex with charge m = 1 consists of
neutrally stable eigenvalues with the lowest frequency wi. As e — 0, it is given
asymptotically by

w1 = 2¢|log(e)| + O(e).

The eigenmode corresponds to the periodic precession of the vortex around
the origin (0, 0) € R? with an infinitesimally small displacement from the origin.

At Q = w4, a bifurcation occurs in the vortex solutions of the stationary
equation:

pu = — (0% + 05 u + (X* + y2 + [ufP)u + iQ(xdy, — yox)u.

In addition to the symmetric vortex u. of charge m = 1, which exists for every
Q and sufficiently large u, there exists another asymmetric vortex of charge
m = 1 displaced from the origin at a small but finite distance.

D.P—P.Kevrekidis, AMRE 2013, 127—-164 (2013)
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2. Rotating vortices

Main results from AMRE (2013)

Let ¢ = 1 and consider

= —(02 + 2)u+ (X* + y* + |ul?)u + iQ(xdy, — yox)u.

@ For every 1 and 2 such that pu + Q > 4, there exists a unique symmetric
vortex u = 1(r)e':
o ltis a saddle point of the energy E(u) for Q < ws
with one double negative eigenvalue.
@ ltis a local minimizer of energy for Q > wj.

@ For Q > w1, there exists an additional asymmetric vortex with the center
placed on the circle of radius |a| centered at the origin (0,0) € R? at an
arbitrary angle « such that |a| < C+/¢(2 — wy) for some C > 0.

@ The asymmetric vortex is a saddle point of the energy E(u)
with one simple negative eigenvalue.
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2. Rotating vortices

Asymmetric vortex of charge one
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Spatial contour plots of the amplitude (left) and phase (right) of the
asymmetric charge-one vortex.
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2. Rotating vortices

Stability theorem from AMRE (2013)

The energy space of the Gross—Pitaevskii equation

X={ueH'[R?: |x|ue ’(R?]}.

Theorem

For Q2 2 w1, the symmetric vortex of charge one is orbitally stable in the
following sense: for any € > 0 there is a 6 > 0, such that if
lu(x,0) — (r)e”|[x < 4, then

inf |€Pu(x, t) —p(r)e?|x <e, teR

o le7 s ) — ¢lnjetll = & Te By

For Q 2 w1, the asymmetric vortex is also orbitally stable in the following
sense: for any e > 0 there is a 6 > 0, such that if ||u(x,0) — u,(Xx)||x < 9, then

inf  [[ePu(x,t) — ua(X)||x <€, teR,.
(a”B)e]RzH (x, 1) (X)llx <€ +
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2. Rotating vortices

Spectral stability of rotating charge-one vortices
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Left: eigenvalues of the spectral stability problem for the symmetric vortex.
Right: eigenvalues of the spectral stability problem for the asymmetric vortex.
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3. Bifurcation of multi-vortex configurations

Spectrum of a harmonic oscillator

Consider the Schrddinger operator for the quantum harmonic oscillator
Li=—Aqg +r?: H*(R®)NL23(R?) — L3(R?),
The spectrum of L is purely discrete and equidistant. The eigenvectors are
fnn(r,0) = emn(r)e™, mecZ, neNg
and the eigenvalues are
Amn=2(lm+2n+1), meZ, neN.
Index m counts the angular momentum and index n counts zeros of em,p.

@ Eigenvalue X = 2¢ with ¢ € N has multiplicity ¢.
@ For each m € Z, the spacing between eigenvalues is 4.
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3. Bifurcation of multi-vortex configurations

Primary branches of symmetric vortices

Consider the stationary Gross—Pitaevskii equation

pu = =D gy + r2u+ [ulPu + iQdpu.
Radially symmetric vortex of charge my € N is

u(r,0) = ™%y (r), w=pu+ m,
where (¢¥m,,w) is a root of the nonlinear operator

fu,w):  HZ(RT)NLE#(RY) x R — L2(RY), (1)
given by f(u,w) := —Amu + ru+ u® — wu.
By local bifurcation theory (A. Contreras & C. Garcia—Azpeitia, 2016),
there exists a unique smooth family:
bmy(1; @) = @8mq.0(r) + Opp (&)
with
wmy(8) = 2(mo + 1) + &l emy ol fs + O(a"),

where ais the amplitude parameter.
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3. Bifurcation of multi-vortex configurations

Bifurcation results - analytical picture

C. Garcia—Azpeitia—D.P., arXiv:1701.01494 (2017):
(i) For Q =0 and small a, the vortices are degenerate saddle points of the
energy E with 2N(my) negative eigenvalues, a simple zero eigenvalue,
and 2Z(my) small eigenvalues of order O(a?), where

1
N(moy) = Emo(mo +1) and Z(mp) = mo.

(i) 14 B(myp) global bifurcations occur when the parameter Q is increased in
the interval [@° D, 2 — & Cpy,] With some Cpy, D, > 0, where

B(mo) = %mo(mo — 1)

The vortex family losses two negative eigenvalues past each bifurcation
and has 2(mop — 1) negative eigenvalues for Q > 2 — a@?Cp,.

(iii) A new smooth family of multi-vortex configurations is connected to the
family of radially symmetric vortices on one side of each non-resonant
bifurcation point (of the pitchfork type).
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3. Bifurcation of multi-vortex configurations

Bifurcation results - graphical picture
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Figure: A schematic illustration of the bifurcation curves in the parameter plane (2, a),
where a defines w. The bifurcating solutions form surfaces parameterized by (£2, a)
close to the curves Qm,p.
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3. Bifurcation of multi-vortex configurations

Energy of the symmetric vortex

The radially symmetric vortex u = ™%, (r) is a critical point of
E,(u) := E(u) — pQ(u), where Q(u) = |ul[%,. Then,

E.(U+ v) — Eu(U) = (HV,V) 2 + O(V[[3112.); (@)
where v = [v, ¥]T and
b [ By + 90 — i+ 202, Uiy €7
2 g-2imo D (rgy + 17— Qg — p+ 2932,

By using the Fourier series

V=Y Vne™, V=Y Wye™,
mez

meZ

the operator H is diagonalized into blocks Hp,, m € Z given by
Hm(a,Q) = Kn(a) — Q(m — mg)os,

which act on [V, Wi_om,]T With w = 11 + meQ = wpm,(a).
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3. Bifurcation of multi-vortex configurations

Secondary branches of vortex configurations

In Hn(a, ) = Kn(a) — Q(m — my)os, we have

—Apm+ 12— wm (@) + 202 F
K _ m mg mg Mo
m(a) 2m0 _Am72mo + re — Wmo(a) + 21/1!2770

For a given small a, we say that Q is the secondary bifurcation point if
Ker(Km(a) — Q(m — mp)os) is nonempty.

The bifurcation problem in Q coincides with the stability problem in the case of
no rotation, where the eigenvalue of the stability problem is Q(m — my).

The secondary branch of vortex configuration is given by
u = em% (r)+ v(r,0), where v is a root of the nonlinear operator

g(v;a,9Q): H?(R?)NL>2(R?) x R x R — L3(R?),
given by
9(v;a, Q) = —Dgg)V + rPv +iQ(dgv — imov) + 205, v + ¥™0yZ v

+ @7 Mby v2 4 204 V|2 + V2V — wy () V.
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3. Bifurcation of multi-vortex configurations

Spectral information

In Hn(a, ) = Kn(a) — Q(m — my)os, we have

Kn(a) = | ~Bm T r? — wm,(@) + 295, ¢2
" Vo, —Dpm2my + 1° Wmo( a) + 2y%,
@ At m= my, Kn,(a) > 0 with a simple zero eigenvalue due to gauge
symmetry.

@ Eigenvalues of Ki,(a) for m > myq are identical to those for m < my.

@ For a =0, there exist N(mgp) negative and Z(my) zero eigenvalues of
{Km(0)}m>m, with
mo(mo + 1
N(mg) = Tl 1),
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3. Bifurcation of multi-vortex configurations

Count on the number of bifurcations

For a = 0, there exist N(mg) negative and Z(my) zero eigenvalues of
{Km(0)}m>m, With N(mg) = mo(mo +1)/2 and Z(mg) = my.

@ The Z(my) zero eigenvalues of {Kn(0)}m>m, become positive
eigenvalues of {Ki,(a)}m>m, for small a # 0.

@ There exists B(myg) secondary bifurcations of

Hm(a, Q) = Kn(a) — Q(m — mo)os when Q is increased from 0 to 2, where
B(mg) = mo(mo —1)/2.

@ There is an additional secondary bifurcation near Q = 2.

After each bifurcation, the primary branch losses one pair of negative
eigenvalues in Hp(a, Q2). After the last bifurcation, the primary branch has

N(mg) — B(mp) — 1 = mp — 1 remaining pairs of negative eigenvalues in
Hmn(a, Q).
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3. Bifurcation of multi-vortex configurations

Bifurcation results - graphical picture
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4. Examples of simplest bifurcations
Example: mp =1

@ The primary branch - the symmetric vortex of charge one:
u=e"’ [are‘é + O(as)} 7
where a > 0 is a small parameter of the primary branch.
@ N(1) =1 and B(1) = 0 - no bifurcations for 2 € (0,2)

U(KZ) - {_2a272a676a T }7
0(K3) = {0743478a87 te },
J(K4) = {276367 103 107 o }7

@ The secondary branch for K> - the asymmetric vortex of charge one near
Q=2:
2 . 2
u=are ze’ + ab(1+ rPe?®)e =z + O(a, ab?)

where b = O(a) is a small parameter of the secondary branch.
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4. Examples of simplest bifurcations

Example: my =2

@ The primary branch - the symmetric vortex of charge two:
. 2
u=¢e*" {arze‘? + O(as)] ,
where a > 0 is a small parameter of the primary branch.

@ N(1) =3 and B(1) = 1 - secondary bifurcation for Q ~ 2/3
o(K3) ={-2,2,2,6,6,- }

J(K4):{ 4’074a488 }
o(Ks) = {~2,2,6,6,10, 10.. Y
):{Oa478785 2 127};

O'(KG

@ The secondary branch for Ks - the polygon of four vortices:
U= arfe 26?4 bre e % + o(a, b?)

where b = O(a) is a small parameter of the secondary branch.
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4. Examples of simplest bifurcations

Example: my =2

@ N(1) =3 and B(1) = 1 - additional secondary bifurcation for Q ~ 2

J(KS) = { 2’ 272’ 6’67 }7
o(Ks) ={-4,0,4,4,8,8,--},
o(Ks) = {-2,2,6,6,10,10,--- },
o(Ks) = {0,4,8,8,12,12,- - },

@ The secondary branch for K3 - the pair of vortices:
2 . . 2

u=arfe ze*" + ab(re" + r*e’)e"z + 0(&%, ab®)

where b = O(a) is a small parameter of the secondary branch.

@ The mode with m = 4 is unstable for the primary branch and hence does
not bifurcate. The secondary branches inherit this instability for small a.
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4. Examples of simplest bifurcations

Example: my =2

Bifurcations near Q = 2/3 and near Q =2
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The method of analysis

Recall the bifurcation problem:
g(v;a,Q): H?(R?)NL>2(R?) x R x R — L3(R?),
given by

9(via,Q) = =gV + rPv +iQ(9ev — imov) + 205 v + €™0yZ, v
+ e*i’"of’wmo V2 + 26im°91/1mo | V|2 + |V|2V - ("Jmo(a) v.

The operator g is equivariant under the action of the group O(2) = S' U kS’
given by by

p(o)V(r,0) = e ™Pv(r,0 +¢),  p(r)V(r,0) = V(r,—0). (3)

The subspace ( Vi, Wm_2m,) after the Fourier transform has as isotropy group
Dm_m, generated by the elements ¢ = 27/(m — mp) and .
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4. Examples of simplest bifurcations

For a fixed value of m € Z, the action of p(y) is given by

. j—m, .
p(2)(V), Wi_2m,) = exp (2771/77 n;’()) Vs, Wi_om,), J€LZ.

The fixed point space
Fix(Dm-m,) = {(v,w) € L3(R?) . p(y)(v,w) = (v, w) for v € Dp_m, }

is composed of functions with real components (V;, W,_om,) such that j — mg
is a multiple of m — mq. If (v, V) € Fix(Dm—m,), then v can be characterized by

v(r,0) = > Vi(re? =™’ N~ Vi (r)e”’,

jEMo+(M—my)Z je(m—mo)Z

where all functions { V;(r)}jemy+(m—m,)z are real-valued.

In Fix(Dm-—m, ), the block Hm, does not have zero eigenvalue and the double
zero eigenvalues in the blocks H;_n,, and Hay,, —; become simple zero
eigenvalues.
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4. Examples of simplest bifurcations

Schematic representation of the vortex bifurcations

Trivial solution 0O(2) x O(2)
\J \J
Vortex of charge mg 0(2)
\ 1
(m — mp)-polygons of vortices Dm—m,
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4. Examples of simplest bifurcations

More recent references

@ Faou, Germain, & Hani (2016); Germain, Hani, & Thomann (2016) -
resonant normal form for Q =0

@ Biasi, Bizon, Craps, & Evnin (2007) - Lowest Landau Level for Q = 2
The leading-order decomposition
v=>an()xn(2), xal2)=2"€21 z=x+1iy
yields
i = N(wPv), Nw)) = e 7 [ & 1 y(z)dz

C

The resonant normal form picks up the main bifurcation equations and
truncates the unimportant terms.
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4. Examples of simplest bifurcations
Conclusion

@ We have described bifurcation results for multi-vortex configurations in
the small-amplitude limit.

@ For mg = 1, symmetric vortices of charge one are local minimizers of
energy and asymmetric vortices of charge one are saddle points of the
energy. Nevertheless, both vortices are orbitally stable with respect to the
time-dependent perturbations.

@ For my = 2, asymmetric pair of two vortices of charge one bifurcate but is
unstable under the time-dependent perturbations.
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4. Examples of simplest bifurcations
Conclusion

@ We have described bifurcation results for multi-vortex configurations in
the small-amplitude limit.

@ For mg = 1, symmetric vortices of charge one are local minimizers of
energy and asymmetric vortices of charge one are saddle points of the
energy. Nevertheless, both vortices are orbitally stable with respect to the
time-dependent perturbations.

@ For my = 2, asymmetric pair of two vortices of charge one bifurcate but is
unstable under the time-dependent perturbations.

Open questions:

@ Can these results be extended in the semi-classical limit?
@ Can we characterize minimizers of energy for two, three, and many
vortices of charge one?
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