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1. Gross–Pitaevskii equation

Gross-Pitaevskii equation

Density waves in cigar–shaped Bose–Einstein condensates with repulsive

inter-atomic interactions placed in a magnetic trap are modeled by the

Gross-Pitaevskii equation with the harmonic potential and steady rotation:

i ε ut = − ε2(∂2
x + ∂2

y )u + (x2 + y2 + |u|2)u + iΩ(x∂y − y∂x)u,

where Ω is the rotation frequency and ε is related to the chemical potential.

The associated energy of the Gross–Pitaevskii equation:

E(u) =

∫ ∫

R2

[

ε2 |∇u|2 + |x |2|u|2 +
1

2
|u|4 − iΩu(x∂y − y∂x)ū

]

dxdy .

Steadily rotating vortices are critical points of the energy E(u) subject to the

fixed mass

Q(u) =

∫ ∫

R2

|u|2dxdy .
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1. Gross–Pitaevskii equation

Ground (vortex-free) state

If Ω = 0 (no rotation), there exists ground state for every Q > 0:

E = inf
{

u ∈ H1(R2) ∩ L2,1(R2) : Q(u) = Q
}

.

The ground state is given by the real, positive, radially symmetric solution ηε
of the stationary equation:

µηε = − ε2 ∇2
xηε + |x |2ηε + η3

ε , x ∈ R
2,

where µ > 0 is the Lagrange multiplier.

In the semi-classical limit ε→ 0, the ground state decays to zero as |x | → ∞
faster than any exponential function

0 < ηε(x) ≤ C ε1/3 exp

(

µ− |x |2

4 ε2/3

)

, for all |x | ≥ µ1/2

and is ε1/3 close to the Thomas–Fermi approximation

η0(x) :=

{

(µ− |x |2)1/2, for |x | < µ1/2,
0, for |x | > µ1/2,

C.Gallo–D.P., Asymptotic Analysis 73, 53-96 (2011)
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1. Gross–Pitaevskii equation

Vortex states

If Ω = 0 (no rotation), the vortex state uε is a complex-valued solution of the

stationary equation,

µuε = − ε2 ∇2
xuε + |x |2uε + |uε|

2uε, x ∈ R
2.

In the semi-classical limit ε→ 0, the vortex state uε is well approximated by

the product representation

uε(x) = ηε(x)vε(x),

where vε satisfies the stationary equation

ε2 ∇x

(

η2
ε∇xv

)

+ η4
ε(1 − |v |2)v = 0,

subject to the boundary conditions lim|x|→∞ |vε(x)| = 1.

Symmetric vortex of charge m ∈ N corresponds to the choice vε = ψε(r)e
imθ,

where (r , θ) are polar coordinates on R
2 and ψε(r) → 1 as r → ∞.
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2. Rotating vortices

Experimental studies of vortices

Absorption images of a BEC stirred with a laser beam of increasing frequency.

From Madison et al., 2000.
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2. Rotating vortices

Experimental studies of vortex precession

Vortex precession in a trapped two-component BEC.

From Anderson et al., 2000.
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2. Rotating vortices

Theoretical studies of vortices

Castin & Dum (1999) - rotating vortices can become local minimizers of

energy for larger frequencies Ω

Fetter & Svidzinsky (2001), Möttönnen et al. (2005) - computations of

effective energy for vortex configurations

Aftalion & Du (2001), Ignat & Millot (2006) - variational proofs that a

vortex of charge one is a global minimizer for larger frequencies

Seiringer (2003) - proof that a multi-vortex configuration with charge m is

energetically preferrable to that with charge m − 1 for Ω > Ωm, m ∈ N

Middlecamp et al. (2010), Kollar & Pego (2012) - numerical computations

of eigenvalues for vortex configurations
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2. Rotating vortices

Spectral stability of charge-one vortices
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Left: ground state ηε. Right: vortex of charge m = 1

D.P.–P.Kevrekidis, Nonlinearity 24, 1271–1289 (2011)
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2. Rotating vortices

Bifurcation of vortices

If Ω = 0 (no rotation), spectrum of the vortex with charge m = 1 consists of

neutrally stable eigenvalues with the lowest frequency ω1. As ε→ 0, it is given

asymptotically by

ω1 = 2 ε | log(ε)|+O(ε).

The eigenmode corresponds to the periodic precession of the vortex around

the origin (0,0) ∈ R
2 with an infinitesimally small displacement from the origin.

At Ω = ω1, a bifurcation occurs in the vortex solutions of the stationary

equation:

µu = − ε2(∂2
x + ∂2

y )u + (x2 + y2 + |u|2)u + iΩ(x∂y − y∂x)u.

In addition to the symmetric vortex uε of charge m = 1, which exists for every

Ω and sufficiently large µ, there exists another asymmetric vortex of charge

m = 1 displaced from the origin at a small but finite distance.

D.P.–P.Kevrekidis, AMRE 2013, 127–164 (2013)
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2. Rotating vortices

Main results from AMRE (2013)

Let ε = 1 and consider

µu = −(∂2
x + ∂2

y )u + (x2 + y2 + |u|2)u + iΩ(x∂y − y∂x)u.

For every µ and Ω such that µ+Ω > 4, there exists a unique symmetric
vortex u = ψ(r)eiθ:

It is a saddle point of the energy E(u) for Ω < ω1

with one double negative eigenvalue.

It is a local minimizer of energy for Ω > ω1.

For Ω > ω1, there exists an additional asymmetric vortex with the center

placed on the circle of radius |a| centered at the origin (0,0) ∈ R
2 at an

arbitrary angle α such that |a| ≤ C
√

ǫ(Ω− ω1) for some C > 0.

The asymmetric vortex is a saddle point of the energy E(u)
with one simple negative eigenvalue.
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2. Rotating vortices

Asymmetric vortex of charge one
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Spatial contour plots of the amplitude (left) and phase (right) of the

asymmetric charge-one vortex.
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2. Rotating vortices

Stability theorem from AMRE (2013)

The energy space of the Gross–Pitaevskii equation

X =
{

u ∈ H1(R2) : |x |u ∈ L2(R2)
}

.

Theorem

For Ω & ω1, the symmetric vortex of charge one is orbitally stable in the

following sense: for any ǫ > 0 there is a δ > 0, such that if

‖u(x ,0)− ψ(r)eiθ‖X ≤ δ, then

inf
β∈R

‖eiβu(x , t)− ψ(r)eiθ‖X ≤ ǫ, t ∈ R+,

For Ω & ω1, the asymmetric vortex is also orbitally stable in the following

sense: for any ǫ > 0 there is a δ > 0, such that if ‖u(x ,0)− uα(x)‖X ≤ δ, then

inf
(α,β)∈R2

‖eiβu(x , t)− uα(x)‖X ≤ ǫ, t ∈ R+.
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2. Rotating vortices

Spectral stability of rotating charge-one vortices
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Left: eigenvalues of the spectral stability problem for the symmetric vortex.

Right: eigenvalues of the spectral stability problem for the asymmetric vortex.
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3. Bifurcation of multi-vortex configurations

Spectrum of a harmonic oscillator

Consider the Schrödinger operator for the quantum harmonic oscillator

L := −∆(r ,θ) + r2 : H2(R2) ∩ L2,2(R2) → L2(R2),

The spectrum of L is purely discrete and equidistant. The eigenvectors are

fm,n(r , θ) = em,n(r)e
imθ, m ∈ Z, n ∈ N0

and the eigenvalues are

λm,n = 2(|m|+ 2n + 1), m ∈ Z, n ∈ N0.

Index m counts the angular momentum and index n counts zeros of em,n.

Eigenvalue λ = 2ℓ with ℓ ∈ N has multiplicity ℓ.

For each m ∈ Z, the spacing between eigenvalues is 4.

D.Pelinovsky (McMaster University) Bifurcations of multi-vortex configurations 15 / 32



3. Bifurcation of multi-vortex configurations

Primary branches of symmetric vortices

Consider the stationary Gross–Pitaevskii equation

µu = −∆(r ,θ)u + r2u + |u|2u + iΩ∂θu.

Radially symmetric vortex of charge m0 ∈ N is

u(r , θ) = eim0θψm0
(r), ω = µ+ m0Ω,

where (ψm0
, ω) is a root of the nonlinear operator

f (u, ω) : H2
r (R

+) ∩ L
2,2
r (R+)× R → L2

r (R
+), (1)

given by f (u, ω) := −∆m0
u + r2u + u3 − ωu.

By local bifurcation theory (A. Contreras & C. Garcia–Azpeitia, 2016),

there exists a unique smooth family:

ψm0
(r ;a) = aem0,0(r) +OH1

r
(a3)

with

ωm0
(a) = 2(m0 + 1) + a2‖em0,0‖

4
L4

r
+O(a4),

where a is the amplitude parameter.
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3. Bifurcation of multi-vortex configurations

Bifurcation results - analytical picture

C. Garcia–Azpeitia–D.P., arXiv:1701.01494 (2017):

(i) For Ω = 0 and small a, the vortices are degenerate saddle points of the

energy E with 2N(m0) negative eigenvalues, a simple zero eigenvalue,

and 2Z (m0) small eigenvalues of order O(a2), where

N(m0) =
1

2
m0(m0 + 1) and Z (m0) = m0.

(ii) 1 + B(m0) global bifurcations occur when the parameter Ω is increased in

the interval [a2Dm0
,2 − a2Cm0

] with some Cm0
,Dm0

> 0, where

B(m0) =
1

2
m0(m0 − 1).

The vortex family losses two negative eigenvalues past each bifurcation

and has 2(m0 − 1) negative eigenvalues for Ω & 2 − a2Cm0
.

(iii) A new smooth family of multi-vortex configurations is connected to the

family of radially symmetric vortices on one side of each non-resonant

bifurcation point (of the pitchfork type).
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3. Bifurcation of multi-vortex configurations

Bifurcation results - graphical picture

Ω

a

2

Dm0
a2

Ωm1,n1
Ωm2,n2

Ωm3,n3

Ωm0+1,0

Cm0
a2

B(m0)

Figure: A schematic illustration of the bifurcation curves in the parameter plane (Ω, a),
where a defines ω. The bifurcating solutions form surfaces parameterized by (Ω, a)
close to the curves Ωm,n.
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3. Bifurcation of multi-vortex configurations

Energy of the symmetric vortex

The radially symmetric vortex u = eim0θψm0
(r) is a critical point of

Eµ(u) := E(u)− µQ(u), where Q(u) = ‖u‖2
L2 . Then,

Eµ(U + v)− Eµ(U) = 〈Hv,v〉L2 +O(‖v‖3
H1∩L2,1), (2)

where v = [v , v̄ ]T and

H =

[

−∆(r ,θ) + r2 + iΩ∂θ − µ+ 2ψ2
m0

ψ2
m0

e2im0θ

ψ2
m0

e−2im0θ −∆(r ,θ) + r2 − iΩ∂θ − µ+ 2ψ2
m0

]

.

By using the Fourier series

v =
∑

m∈Z

Vmeimθ, v̄ =
∑

m∈Z

Wmeimθ,

the operator H is diagonalized into blocks Hm, m ∈ Z given by

Hm(a,Ω) = Km(a)− Ω(m − m0)σ3,

which act on [Vm,Wm−2m0
]T with ω = µ+ m0Ω = ωm0

(a).
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3. Bifurcation of multi-vortex configurations

Secondary branches of vortex configurations

In Hm(a,Ω) = Km(a)− Ω(m − m0)σ3, we have

Km(a) =

[

−∆m + r2 − ωm0
(a) + 2ψ2

m0
ψ2

m0

ψ2
m0

−∆m−2m0
+ r2 − ωm0

(a) + 2ψ2
m0

]

For a given small a, we say that Ω is the secondary bifurcation point if

Ker(Km(a)− Ω(m − m0)σ3) is nonempty.

The bifurcation problem in Ω coincides with the stability problem in the case of

no rotation, where the eigenvalue of the stability problem is Ω(m − m0).

The secondary branch of vortex configuration is given by

u = eim0θψm0
(r) + v(r , θ), where v is a root of the nonlinear operator

g(v ;a,Ω) : H2(R2) ∩ L2,2(R2)× R× R → L2(R2),

given by

g(v ;a,Ω) = −∆(r ,θ)v + r2v + iΩ(∂θv − im0v) + 2ψ2
m0

v + e2im0θψ2
m0

v̄

+ e−im0θψm0
v2 + 2eim0θψm0

|v |2 + |v |2v − ωm0
(a)v .
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3. Bifurcation of multi-vortex configurations

Spectral information

In Hm(a,Ω) = Km(a)− Ω(m − m0)σ3, we have

Km(a) =

[

−∆m + r2 − ωm0
(a) + 2ψ2

m0
ψ2

m0

ψ2
m0

−∆m−2m0
+ r2 − ωm0

(a) + 2ψ2
m0

]

At m = m0, Km0
(a) ≥ 0 with a simple zero eigenvalue due to gauge

symmetry.

Eigenvalues of Km(a) for m > m0 are identical to those for m < m0.

For a = 0, there exist N(m0) negative and Z (m0) zero eigenvalues of

{Km(0)}m>m0
with

N(m0) =
m0(m0 + 1)

2
, Z (m0) = m0.

Example: m0 = 1 m0 = 2














σ(K2) = {−2,2,2,6,6, · · · },
σ(K3) = {0,4,4,8,8, · · · },
σ(K4) = {2,6,6,10,10, · · · },
· · ·















σ(K3) = {−2,2,2,6,6, · · · },
σ(K4) = {−4,0,4,4,8,8, · · · },
σ(K5) = {−2,2,6,6,10,10, · · · },
σ(K6) = {0,4,8,8,12,12, · · · }
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3. Bifurcation of multi-vortex configurations

Count on the number of bifurcations

For a = 0, there exist N(m0) negative and Z (m0) zero eigenvalues of

{Km(0)}m>m0
with N(m0) = m0(m0 + 1)/2 and Z (m0) = m0.

The Z (m0) zero eigenvalues of {Km(0)}m>m0
become positive

eigenvalues of {Km(a)}m>m0
for small a 6= 0.

There exists B(m0) secondary bifurcations of

Hm(a,Ω) = Km(a)−Ω(m − m0)σ3 when Ω is increased from 0 to 2, where

B(m0) = m0(m0 − 1)/2.

There is an additional secondary bifurcation near Ω = 2.

After each bifurcation, the primary branch losses one pair of negative

eigenvalues in Hm(a,Ω). After the last bifurcation, the primary branch has

N(m0)− B(m0)− 1 = m0 − 1 remaining pairs of negative eigenvalues in

Hm(a,Ω).
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3. Bifurcation of multi-vortex configurations

Bifurcation results - graphical picture

Ω
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4. Examples of simplest bifurcations

Example: m0 = 1

The primary branch - the symmetric vortex of charge one:

u = eiθ
[

are− r2

2 +O(a3)
]

,

where a > 0 is a small parameter of the primary branch.

N(1) = 1 and B(1) = 0 - no bifurcations for Ω ∈ (0,2)















σ(K2) = {−2,2,2,6,6, · · · },
σ(K3) = {0,4,4,8,8, · · · },
σ(K4) = {2,6,6,10,10, · · · },
· · ·

The secondary branch for K2 - the asymmetric vortex of charge one near

Ω = 2:

u = are− r2

2 eiθ + ab(1 + r2e2iθ)e− r2

2 +O(a3,ab2)

where b = O(a) is a small parameter of the secondary branch.
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4. Examples of simplest bifurcations

Example: m0 = 2

The primary branch - the symmetric vortex of charge two:

u = e2iθ
[

ar2e− r2

2 +O(a3)
]

,

where a > 0 is a small parameter of the primary branch.

N(1) = 3 and B(1) = 1 - secondary bifurcation for Ω ≈ 2/3






















σ(K3) = {−2,2,2,6,6, · · · },
σ(K4) = {−4,0,4,4,8,8, · · · },
σ(K5) = {−2,2,6,6,10,10, · · · },
σ(K6) = {0,4,8,8,12,12, · · · },
· · ·

The secondary branch for K5 - the polygon of four vortices:

u = ar2e− r2

2 e2iθ + bre−iθe− r2

2 +O(a3,b3)

where b = O(a) is a small parameter of the secondary branch.
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4. Examples of simplest bifurcations

Example: m0 = 2

N(1) = 3 and B(1) = 1 - additional secondary bifurcation for Ω ≈ 2























σ(K3) = {−2,2,2,6,6, · · · },
σ(K4) = {−4,0,4,4,8,8, · · · },
σ(K5) = {−2,2,6,6,10,10, · · · },
σ(K6) = {0,4,8,8,12,12, · · · },
· · ·

The secondary branch for K3 - the pair of vortices:

u = ar2e− r2

2 e2iθ + ab(reiθ + r3e3iθ)e− r2

2 +O(a3,ab2)

where b = O(a) is a small parameter of the secondary branch.

The mode with m = 4 is unstable for the primary branch and hence does

not bifurcate. The secondary branches inherit this instability for small a.
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4. Examples of simplest bifurcations

Example: m0 = 2

Bifurcations near Ω = 2/3 and near Ω = 2
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4. Examples of simplest bifurcations

The method of analysis

Recall the bifurcation problem:

g(v ;a,Ω) : H2(R2) ∩ L2,2(R2)× R× R → L2(R2),

given by

g(v ;a,Ω) = −∆(r ,θ)v + r2v + iΩ(∂θv − im0v) + 2ψ2
m0

v + e2im0θψ2
m0

v̄

+ e−im0θψm0
v2 + 2eim0θψm0

|v |2 + |v |2v − ωm0
(a)v .

The operator g is equivariant under the action of the group O(2) = S1 ∪ κS1

given by by

ρ(ϕ)v(r , θ) = e−im0ϕv(r , θ + ϕ), ρ(κ)v(r , θ) = v̄(r ,−θ). (3)

The subspace (Vm,Wm−2m0
) after the Fourier transform has as isotropy group

Dm−m0
generated by the elements ϕ = 2π/(m − m0) and κ.
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4. Examples of simplest bifurcations

For a fixed value of m ∈ Z, the action of ρ(ϕ) is given by

ρ(ϕ)(Vj ,Wj−2m0
) = exp

(

2πi
j − m0

m − m0

)

(Vj ,Wj−2m0
), j ∈ Z.

The fixed point space

Fix(Dm−m0
) = {(v ,w) ∈ L2(R2) : ρ(γ)(v ,w) = (v ,w) for γ ∈ Dm−m0

}

is composed of functions with real components (Vj ,Wj−2m0
) such that j − m0

is a multiple of m − m0. If (v , v̄) ∈ Fix(Dm−m0
), then v can be characterized by

v(r , θ) =
∑

j∈m0+(m−m0)Z

Vj(r)e
ijθ = eim0θ

∑

j∈(m−m0)Z

Vm0+j(r)e
ijθ,

where all functions {Vj(r)}j∈m0+(m−m0)Z are real-valued.

In Fix(Dm−m0
), the block Hm0

does not have zero eigenvalue and the double

zero eigenvalues in the blocks Hj−m0
and H2m0−j become simple zero

eigenvalues.

D.Pelinovsky (McMaster University) Bifurcations of multi-vortex configurations 29 / 32



4. Examples of simplest bifurcations

Schematic representation of the vortex bifurcations

Trivial solution O(2)× O(2) u = 0

↓ ↓ ↓
Vortex of charge m0 O(2) u = eim0θψm0

(r)
↓ ↓ ↓

(m − m0)-polygons of vortices Dm−m0
u = eim0θψm0

(r) + v(r , θ)
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4. Examples of simplest bifurcations

More recent references

Faou, Germain, & Hani (2016); Germain, Hani, & Thomann (2016) -

resonant normal form for Ω = 0

Biasi, Bizon, Craps, & Evnin (2007) - Lowest Landau Level for Ω = 2

The leading-order decomposition

ψ =

∞
∑

n=0

αn(t)χn(z), χn(z) = zne− 1
2
|z|2 , z = x + iy

yields

iψ̇ = Π(|ψ|2ψ), Π(ψ)(z ′) = e− 1
2
|z′|2

∫

C

ez̄z′− 1
2
|z|2ψ(z)dz.

The resonant normal form picks up the main bifurcation equations and

truncates the unimportant terms.
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4. Examples of simplest bifurcations

Conclusion

We have described bifurcation results for multi-vortex configurations in

the small-amplitude limit.

For m0 = 1, symmetric vortices of charge one are local minimizers of

energy and asymmetric vortices of charge one are saddle points of the

energy. Nevertheless, both vortices are orbitally stable with respect to the

time-dependent perturbations.

For m0 = 2, asymmetric pair of two vortices of charge one bifurcate but is

unstable under the time-dependent perturbations.

Open questions:

Can these results be extended in the semi-classical limit?

Can we characterize minimizers of energy for two, three, and many

vortices of charge one?
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