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Nonlinear Schrödinger equation on metric graphs
Nonlinear Schrödinger equation is considered on a graph Γ:

iΨt = −∆Ψ− (p + 1)|Ψ|2pΨ, x ∈ Γ, (1)

where ∆ is the graph Laplacian and Ψ(t, x) is defined componentwise on
edges subject to boundary conditions at vertices.

 



A metric graph Γ is given by a set
of edges and vertices, with a met-
ric structure on each edge. Proper
boundary conditions are needed on
the vertices to ensure that ∆ is self-
adjoint in L2(Γ).

Graph models are widely used in the modeling of quantum dynamics of thin
graph-like structures (quantum wires, nanotechnology, large molecules,
periodic arrays in solids, photonic crystals...).



Metric Graphs

Graphs are one-dimensional ap-
proximations for constrained dy-
namics in which transverse dimen-
sions are small with respect to lon-
gitudinal ones.

I G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs
(AMS, Providence, 2013).

I P. Exner and H. Kovarı́k, Quantum Waveguides (Springer, 2015).
I P. Joly and A. Semin C.R. Math. Acad. Sci. Paris 349 (2011),

1047–1051
I G. Beck, S. Imperiale, and P. Joly, DCDS S 8 (2015), 521–546.
I Z.A. Sobirov, D. Babajanov, and D. Matrasulov, arXiv:1703.09534.



Example: a star graph
A star graph is the union of N half-lines (edges) connected at a vertex. For
N = 2, the graph is the line R. For N = 3, the graph is a Y-junction.
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Kirchhoff boundary conditions:
I Components are continuous across the vertex.
I The sum of fluxes (signed derivatives of functions) is zero at the vertex.

Adami–Cacciapuoti–Finco–Noja (2012, 2014, 2016).



Graph Laplacian on the star graph
The Laplacian operator on the star graph Γ is defined by

∆Ψ = (ψ′′1 , ψ
′′
2 , · · · , ψ′′N)

acting on functions in L2(Γ) = ⊕N
j=1L2(R+).

Weak formulation of ∆ on Γ is in

H1
Γ := {Ψ ∈ H1(Γ) : ψ1(0) = ψ2(0) = · · · = ψN(0)},

Strong formulation of ∆ on Γ is in

H2
Γ :=

Ψ ∈ H2(Γ) : ψ1(0) = ψ2(0) = · · · = ψN(0),

N∑
j=1

ψ′j (0) = 0

 .



Lemma
The graph Laplacian ∆ : H2

Γ → L2(Γ) is self-adjoint.

The Kirchhoff boundary conditions are symmetric:

〈Φ,∆Ψ〉 − 〈∆Φ,Ψ〉 =

N∑
j=1

φ′j(0)ψj(0)− φj(0)ψ′j (0)

= 0,

if Kirchhoff boundary conditions are satisfied by Φ,Ψ ∈ H2
Γ.

The graph Laplacian ∆ : H̃2
Γ → L2(Γ) is self-adjoint under generalized

Kirchhoff boundary conditions in H̃2
Γ:{

α1ψ1(0) = α2ψ2(0) = · · · = αNψN(0)

α−1
1 ψ′1(0) + α−1

2 ψ′2(0) + · · ·+ α−1
N ψ′N(0) = 0,

where (α1, α2, . . . , αN) are arbitrary nonzero parameters.
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NLS on the Y junction graph
Consider the cubic NLS on the Y junction graph:

i∂tψ0 + ∂2
xψ0 + 2|ψ0|2ψ0 = 0, x < 0,

i∂tψ± + ∂2
xψ± + 2|ψ±|2ψ± = 0, x > 0,

subject to the Kirchhoff boundary conditions at x = 0.

The mass functional

Q =

∫ 0

−∞
|ψ0|2dx +

∫ +∞

0
|ψ+|2dx +

∫ +∞

0
|ψ−|2dx

is constant in time t (related to the gauge symmetry).

The energy functional

E =

∫ 0

−∞

(
|∂xψ0|2 − |ψ0|4

)
dx + similar terms for ψ±,

is constant in time t (related to the time translation symmetry).



Momentum conservation
The momentum functional

P = i
∫ 0

−∞

(
ψ̄0∂xψ0 − ψ0∂xψ̄0

)
dx + similar terms for ψ±,

is no longer constant in time t because the spatial translation is broken.

Let (α0, α+, α−) be defined by the generalized Kirchhoff conditions:{
α0ψ0(0) = α+ψ+(0) = α−ψ−(0)

α−1
0 ∂xψ0(0) = α−1

+ ∂xψ+(0) + α−1
− ∂xψ−(0).

The NLS equation is now modified with the account of (α0, α+, α−):

i∂tψ0 + ∂2
xψ0 + α2

0|ψ0|2ψ0 = 0, x < 0,
i∂tψ± + ∂2

xψ± + α2
±|ψ±|2ψ± = 0, x > 0,

Q and E are still constants of motion in time t.
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Momentum conservation

Lemma
If (α0, α+, α−) satisfy the constraint:

1
α2

0
=

1
α2

+

+
1
α2
−
,

then P is a decreasing function of time t with

dP
dt

= − 2α2
0

α2
+α

2
−
|α+∂xψ+(t, 0)− α−∂xψ−(t, 0)|2 ≤ 0.

If in addition,
α+∂xψ+(t, 0) = α−∂xψ−(t, 0),

is invariant with respect to t, then the momentum P is constant in time.



Reflectionless scattering of solitary waves
In the case of the invariant reduction

α+ψ+(t, x) = α−ψ−(t, x), x ∈ R+,

we can set the following function on the infinite line:

Ψ(t, x) =

{
α0ψ0(t, x), x < 0,
α±ψ±(t, x), x > 0.

The function Ψ satisfies the integrable cubic NLS equation

i∂tΨ + ∂2
x Ψ + |Ψ|2Ψ = 0, x ∈ R,

where the vertex x = 0 does not appear as an obstacle in the time evolution.

D. Matrasulov–K. Sabirov–Z. Sobirov (2012,2016)



Ground state on the unbounded graphs
Ground state is a standing wave of smallest energy E at fixed mass Q,

E = inf{E(u) : u ∈ H1
Γ, Q(u) = µ}.

Euler–Lagrange equation in the cubic case p = 1 is

−∆Φ− 2|Φ|2Φ = −ωΦ Φ ∈ H2
Γ

where ω ∈ R (ω > 0 in the focusing case) defines Ψ(t, x) = Φ(x)eiωt.

Infimum of E(u) exists due to Gagliardo–Nirenberg inequality in 1D.

If G is unbounded and contains at least one half-line, then

min
φ∈H1(R+)

E(u;R+) ≤ E ≤ min
φ∈H1(R)

E(u;R)

Infimum may not be achieved by any of the standing waves Φ.

Adami–Serra–Tilli (2015, 2016)
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Ground state on the unbounded graphs
If G consists of either one half-line or two half-lines and a bounded edge,
then

E < min
φ∈H1(R)

E(u;R)

and the infimum is achieved.

x
y
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If G consists of more than two half-lines and is connective to infinity, then

E = min
φ∈H1(R)

E(u;R)

and the infimum is not achieved. The reason is topological. By the
symmetry rearrangements,

E(u; Γ) > E(û;R) ≥ min
φ∈H1(R)

E(u;R) = E .

At the same time, a sequence of solitary waves escaping to infinity along one
edge yields a sequence of functions that minimize E(u; Γ) until it reaches E .
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Ground state on the Y junction graph: N = 3
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No ground state exists due to the same topological reason.

There exists a half-soliton to the Euler–Lagrange equation:

−∆Φ− 2|Φ|2Φ = −ωΦ φ ∈ D(Γ),

in the form

Φ(x) =

[
φ0(x) =

√
ωsech(

√
ωx), x ∈ (−∞, 0)

φ±(x) =
√
ωsech(

√
ωx), x ∈ (0,∞)

]
.

Half-soliton is a saddle point of energy E at fixed mass Q.
(Adami et al., 2012)



Half-solitons on the star graph with any N ≥ 3
By using the scaling transformation

Φω(x) = ω
1
2p Φ(z), z = ω

1
2 x,

we can consider the Euler–Largrange equation:

−∆Φ + Φ− (p + 1)|Φ|2pΦ = 0, Φ ∈ H2
Γ,

The half-soliton state

Φ(x) = φ(x)


1
1
...
1

 with φ(x) = sech
1
p (px)

is a critical point of the action functional

Λ(Ψ) = E(Ψ) + Q(Ψ).



Second variation
Substituting Ψ = Φ + U + iW with real-valued U,W ∈ H1

Γ into Λ(Ψ) yield

Λ(Φ+U+iW) = Λ(Φ)+〈L+U,U〉L2(Γ)+〈L−W,W〉L2(Γ)+o(‖U+iW‖2
H1(Γ)),

where

〈L+U,U〉L2(Γ) :=

∫
Γ

[
(∇U)2 + U2 − (2p + 1)(p + 1)Φ2pU2] dx,

〈L−W,W〉L2(Γ) :=

∫
Γ

[
(∇W)2 + W2 − (p + 1)Φ2pW2] dx,

Theorem (Kairzhan–P, 2017)
For every p ∈ (0, 2), 〈Λ′′(Φ)V,V〉L2(Γ) ≥ 0 for every V ∈ H1

Γ ∩ L2
c , where

L2
c :=

{
V ∈ L2(Γ) : 〈V,Φ〉L2(Γ) = 0

}
.

Moreover, 〈Λ′′(Φ)V,V〉L2(Γ) = 0 if and only if V ∈ ker(L+) of dimension
(N − 1). Consequently, V = 0 is a degenerate minimizer of
〈Λ′′(Φ)V,V〉L2(Γ) in H1

Γ ∩ L2
c .



Spectral information
The second variation is a sum of two quadratic forms:

〈L+U,U〉L2(Γ) :=

∫
Γ

[
(∇U)2 + U2 − (2p + 1)(p + 1)Φ2pU2] dx,

〈L−W,W〉L2(Γ) :=

∫
Γ

[
(∇W)2 + W2 − (p + 1)Φ2pW2] dx,

where L± : H2
Γ → L2(Γ) with σc(L±) ∈ [1,∞).

I L− ≥ 0 and ker(L+) = span{Φ}.
I L+ has one simple negative eigenvalue and

ker(L+) = span{U(1),U(2), . . . ,U(N−1)} with

N = 3 : U(1) = φ′(x)

 1
−1
0

 , U(2) = φ′(x)

 1
1
−2

 .

I L+|L2
c
≥ 0 if p ∈ (0, 2), where

L2
c :=

{
U ∈ L2(Γ) : 〈U,Φ〉L2(Γ) = 0

}
.



Saddle-point geometry

Theorem (Kairzhan–P, 2017)
Consider the orthogonal decomposition in H1

Γ,

Ψ = Φ + c1U(1) + c2U(2) + · · ·+ cN−1U(N−1) + U⊥,

where Xc = span{U(1),U(2), . . . ,U(N−1)} and U⊥ ∈ H1
Γ ∩ L2

c ∩ [Xc]
⊥.

For every p ∈
[ 1

2 , 2
)
, there exists δ > 0 such that for every

c = (c1, c2, . . . , cN−1)T ∈ RN−1 satisfying ‖c‖ ≤ δ, there exists a unique
minimizer U⊥ ∈ H1

Γ ∩ L2
c ∩ [Xc]

⊥ of the variational problem

M(c) := inf
U⊥∈H1

Γ∩L2
c∩[Xc]⊥

[Λ(Ψ)− Λ(Φ)]

such that ‖U⊥‖H1(Γ) ≤ A‖c‖2 for a c-independent constant A > 0.

Moreover, M(c) is sign-indefinite in c. Consequently, Φ is a nonlinear saddle
point of Λ in H1

Γ with respect to perturbations in H1
Γ ∩ L2

c .



Minimization of the remainder term
Expanding for real U ∈ H1

Γ:

Λ(Φ+U) = Λ(Φ)+〈L+U,U〉L2(Γ)−
2
3

p(p+1)(2p+1)〈Φ2p−1U2,U〉L2(Γ)+o(‖U‖3
H1),

Looking at M(c) := infU⊥∈H1
Γ∩L2

c∩[Xc]⊥ [Λ(Φ + U)− Λ(Φ)] with

U = c1U(1) + c2U(2) + · · ·+ cN−1U(N−1) + U⊥,

we obtain F(U⊥, c) = 0 with

F(U⊥, c) : X×RN−1 7→ Y, X := H1
Γ∩L2

c∩[Xc]
⊥, Y := H−1

Γ ∩L2
c∩[Xc]

⊥,

F(U⊥, c) := L+U⊥−p(p+1)(2p+1)ΠcΦ
2p−1

N−1∑
j=1

cjU(j) + U⊥

2

+o(‖U‖2
H1).

(i) F is a C2 map from X × RN−1 to Y;
(ii) F(0, 0) = 0;

(iii) DU⊥F(0, 0) = ΠcL+Πc : X 7→ Y is invertible with a bounded inverse
from Y to X;

(iv) ΠcL+Πc is strictly positive;
(v) DcF(0, 0) = 0.



Normal form argument
By the minimization problem, we obtain

M(c) = inf
U⊥∈H1

Γ∩L2
c∩[Xc]⊥

[Λ(Φ + U)− Λ(Φ)]

= M0(c) + o(‖c‖3),

where

M0(c) := −2
3

p(p + 1)(2p + 1)

N−1∑
i=1

N−1∑
j=1

N−1∑
k=1

cicjck〈Φ2p−1U(i)U(j),U(k)〉L2(Γ).

M0(c), and hence M(c), is sign-indefinite near c = 0:

N = 3 : M0(c) = 2p2(c2
1 − c2

2)c2.



Nonlinear instability

Theorem (Kairzhan–P, 2017)
For every p ∈

[ 1
2 , 2
)
, there exists ε > 0 such that for every δ > 0 (sufficiently

small) there exists V ∈ H1
Γ with ‖V‖H1

Γ
≤ δ such that the unique global

solution Ψ(t) ∈ C(R,H1
Γ) ∩ C1(R,H−1

Γ ) to the NLS equation starting with
the initial datum Ψ(0) = Φ + V satisfies

inf
θ∈R
‖e−iθΨ(t0)− Φ‖H1(Γ) > ε for some t0 > 0.

Consequently, the orbit {Φeiθ}θ∈R is unstable in the time evolution of the
NLS equation in H1

Γ.

Nonlinear instability of saddle points of action functionals does not hold
generally for Hamiltonian systems.
Example: negative Krein signature of stable eigenvalues.



Expansion of the action functional
Expanding for real U,W ∈ H1

Γ ∩ L2
c :

∆(t) := E(Φω(t) + U(t) + iW(t))− E(Φ)

+ ω(t)
[
Q(Φω(t) + U(t) + iW(t))− Q(Φ)

]
= D(ω) + 〈L+(ω)U,U〉L2(Γ) + 〈L−(ω)W,W〉L2(Γ) + Nω(U,W),

where

D(ω) := E(Φω)− E(Φ) + ω [Q(Φω)− Q(Φ)]

= (ω − 1)2〈Φ, ∂ωΦω|ω=1〉L2(Ω) +O(|ω − 1|3)

and

∆(t) = ∆(0) + (ω(t)− 1) [Q(Φ + U(0) + iW(0))− Q(Φ)] ,

If ‖U(0) + iW(0)‖H1
Γ
≤ δ, then

|∆(0)|+ |Q(Φ + U0 + iW0)− Q(Φ)| ≤ Aδ2.



Secondary decomposition
Expand U,W ∈ H1

Γ ∩ L2
c as

U(t) =

N−1∑
j=1

cj(t)U(j)
ω(t) + U⊥(t), W(t) =

N−1∑
j=1

bj(t)W(j)
ω(t) + W⊥(t),

and

〈U⊥(t),W(j)
ω(t)〉L2(Γ) = 〈W⊥(t),U(j)

ω(t)〉L2(Γ) = 0, 1 ≤ j ≤ N − 1,

where L+(ω)U(j)
ω = 0 and L−(ω)W(j)

ω = U(j)
ω .

The action functional is further expanded as follows:

∆ = D(ω) + 〈L+(ω)U⊥,U⊥〉L2(Γ) + 〈L−(ω)W⊥,W⊥〉L2(Γ)

+

N−1∑
j=1

〈W(j)
ω ,U

(j)
ω 〉L2(Γ)b

2
j + M0(c) + ∆̃(c, b,U⊥,W⊥),

where ∆̃ is a remainder term (of higher order).



Truncated Hamiltonian system
At the leading order, {cj, bj}N−1

j=1 satisfy
ċj = bj,

ḃj =
N−1∑
k=1

N−1∑
n=1

〈Φ2p−1U(k)U(n),U(j)〉L2(Γ)

〈W(j),U(j)〉L2(Γ)

ckcn,

which is Hamiltonian system with the conserved energy

H0(c, b) :=

N−1∑
j=1

〈W(j),U(j)〉L2(Γ)b
2
j + M0(c).

For N = 3, {
‖φ‖2

L2(R+)c̈1 = −4c1c2,

3‖φ‖2
L2(R+)c̈2 = −2(c2

1 − 3c2
2).

c1 = 0 is an invariant reduction. Zero solution is nonlinearly unstable.



Closing the energy estimates
Consider the region where nonlinear instability is developed in the
Hamiltonian system:

‖c(t)‖ ≤ Aε, ‖b(t)‖ ≤ Aε3/2, t ∈ [0, t0], t0 ≤ Aε−1/2,

By energy estimates, we have:

|ω(t)− 1|+ ‖U⊥(t) + iW⊥(t)‖H1(Γ) ≤ A
(
δ + ε3/2

)
, t ∈ [0, t0].

which is much smaller than the leading-order term if δ = O(ε3/2).

Solutions of the system for {cj, bj}N−1
j=1 remain close to the (unstable)

solutions of the truncated Hamiltonian system. Hence, there exists
t0 = O(ε−1/2) such that

‖U(t0) + iW(t0)‖H1(Γ) > ε.



NLS under generalized Kirchhoff conditions
Let (α0, α+, α−) be defined by the generalized Kirchhoff conditions:{

α0ψ0(0) = α+ψ+(0) = α−ψ−(0)

α−1
0 ∂xψ0(0) = α−1

+ ∂xψ+(0) + α−1
− ∂xψ−(0),

and the cubic NLS equation

i∂tψ0 + ∂2
xψ0 + α2

0|ψ0|2ψ0 = 0, x < 0,
i∂tψ± + ∂2

xψ± + α2
±|ψ±|2ψ± = 0, x > 0.

If (α0, α+, α−) satisfy the constraint:

1
α2

0
=

1
α2

+

+
1
α2
−
,

then there exists an invariant reduction

α+ψ+(t, x) = α−ψ−(t, x), x ∈ R+,

to the integrable cubic NLS equation

i∂tΨ + ∂2
x Ψ + |Ψ|2Ψ = 0, x ∈ R.



Translated stationary state
The half-soliton can now be translated along the graph Γ:

Φ(x) =

 φ0(x) = α−1
0 sech(x− a), x ∈ (−∞, 0),

φ+(x) = α−1
+ sech(x− a), x ∈ (0,∞),

φ−(x) = α−1
− sech(x− a), x ∈ (0,∞),

 ,
where a ∈ R is arbitrary parameter.

When a = 0, L+ : H2
Γ → L2(Γ) has one simple negative eigenvalue and

ker(L+) = span{U(1),U(2)} with

U(1) =

φ′0(x)
φ′+(x)
φ′−(x)

 , U(2) =

 0
α+φ

′
+(x)

−α−φ′−(x)

 .

The first mode is due to the translational invariance of the invariant
reduction. The second mode breaks the invariant reduction.

Half-soliton is still a nonlinear saddle point of the action functional.
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The half-soliton can now be translated along the graph Γ:

Φ(x) =

 φ0(x) = α−1
0 sech(x− a), x ∈ (−∞, 0),

φ+(x) = α−1
+ sech(x− a), x ∈ (0,∞),

φ−(x) = α−1
− sech(x− a), x ∈ (0,∞),

 ,
where a ∈ R is arbitrary parameter.

When a = 0, L+ : H2
Γ → L2(Γ) has one simple negative eigenvalue and

ker(L+) = span{U(1),U(2)} with

U(1) =

φ′0(x)
φ′+(x)
φ′−(x)

 , U(2) =

 0
α+φ

′
+(x)

−α−φ′−(x)

 .

The first mode is due to the translational invariance of the invariant
reduction. The second mode breaks the invariant reduction.

Half-soliton is still a nonlinear saddle point of the action functional.



Summary

I For the star graphs with Kirchhoff boundary conditions, we proved that
the saddle points of action functional are nonlinearly unstable.

I For the star graphs with reflectionless boundary conditions, we proved
that the half-solitons are still nonlinearly unstable due to
symmetry-breaking perturbations.

I In the latter case, half-solitons are continued as shifted states along the
parameter a and the shifted solitons with a > 0 are orbitally stable
because they are local constrained minimizers of the action functional.
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