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Nonlinear Schrodinger equation on metric graphs

Nonlinear Schrodinger equation is considered on a graph I':
iU, = —AV — (p+ 1)|¥|*¥, xeT, (1

where A is the graph Laplacian and ¥(#, x) is defined componentwise on
edges subject to boundary conditions at vertices.

A metric graph I is given by a set
of edges and vertices, with a met-
ric structure on each edge. Proper
boundary conditions are needed on
the vertices to ensure that A is self-
adjoint in L*(T").

Graph models are widely used in the modeling of quantum dynamics of thin
graph-like structures (quantum wires, nanotechnology, large molecules,
periodic arrays in solids, photonic crystals...).



Metric Graphs

Graphs are one-dimensional ap- ~.
proximations for constrained dy-

namics in which transverse dimen-

sions are small with respect to lon-

gitudinal ones.
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Example: a star graph

A star graph is the union of N half-lines (edges) connected at a vertex. For
N = 2, the graph is the line R. For N = 3, the graph is a Y-junction.

Kirchhoff boundary conditions:
» Components are continuous across the vertex.

» The sum of fluxes (signed derivatives of functions) is zero at the vertex.

Adami—Cacciapuoti-Finco—Noja (2012, 2014, 2016).



Graph Laplacian on the star graph
The Laplacian operator on the star graph I" is defined by

A\I’:( {/7 g?"' ) I/\;)
acting on functions in L*(T') = &) L*(RT).
Weak formulation of A on I is in

Hp :={V eH'(T): 1(0) =1»(0) ="

Strong formulation of A on I' is in

Hp = qWeH ) : 1(0) =1(0) =-- =¢n(0), >



Lemma
The graph Laplacian A : H: — L*(T') is self-adjoint.

The Kirchhoff boundary conditions are symmetric:

N
(@, A7) — (AR, T) = > (0)1(0) — ¢;(0)%(0)
j=1

)

if Kirchhoff boundary conditions are satisfied by &, ¥ € H%.



Lemma
The graph Laplacian A : H: — L*(T') is self-adjoint.

The Kirchhoff boundary conditions are symmetric:

N
(B, A7) — (AD, T) = Y ¢[(0)¥5(0) — ¢;(0)¢5(0)

j=1

)

if Kirchhoff boundary conditions are satisfied by &, ¥ € H%.

The graph Laplacian A : f]% — L2 ~(F) is self-adjoint under generalized
Kirchhoff boundary conditions in Hz:

a191(0) = ar1p(0) = - -+ = ayhn(0)
a1 (0) + a3 '95(0) + - - + ay Yy (0) = 0,

where (ay, aa, ..., ay) are arbitrary nonzero parameters.



NLS on the Y junction graph

Consider the cubic NLS on the Y junction graph:

i0bo + 0210 + 2|1bol* o =0, x <0,
i)y + 02y + 2|y |*hy =0, x>0,

subject to the Kirchhoff boundary conditions at x = 0.
The mass functional
0 “+o0 +oo
0 =/ |1/J0|2dx+/ |7/)+\2dx+/ v Pdx
oo 0 0
is constant in time ¢ (related to the gauge symmetry).

The energy functional

0
E= / (|0xtbo]* — [t0[*) dx + similar terms for ),

— 00

is constant in time ¢ (related to the time translation symmetry).



Momentum conservation

The momentum functional

0
P=i / (1/_)08,4[)0 — 1/106,4[_)0) dx + similar terms for ¢4,

—0o0

is no longer constant in time ¢ because the spatial translation is broken.



Momentum conservation

The momentum functional

0
P=i / (1/_)08,61110 — 1/)06,4[_)0) dx + similar terms for ¢4,

—0o0

is no longer constant in time ¢ because the spatial translation is broken.
Let (o, a4, a_) be defined by the generalized Kirchhoff conditions:

aotho(0) = a1y (0) = a—v_(0)
ay ' 0ho(0) = a'04 (0) + aZ'0_(0).

The NLS equation is now modified with the account of (v, vy, a_):

i00 + Otbo + oo =0, x <0,
0y + 02y + i [Yx e =0, x>0,

Q and E are still constants of motion in time .



Momentum conservation

Lemma
If (o, g, ) satisfy the constraint:

R

2 +2’

1
2
ay  a o«

then P is a decreasing function of time t with

dP 20
=~ | b (,0) — a- - (1, 0) < 0.
Qo

If in addition,
a+6xz/}+ (t7 O) = Ckfaxwf (f, O),

is invariant with respect to ¢, then the momentum P is constant in time.



Reflectionless scattering of solitary waves

In the case of the invariant reduction

04+1/1+(f7x) = 04—1/’—(%35)7 DS RJF,

we can set the following function on the infinite line:

| aowo(t,x), x<0,
Lt x) = { a(:]td?i(t,x), x> 0.

The function V¥ satisfies the integrable cubic NLS equation
00 + 0%V 4 |U)*T =0, x€cR,

where the vertex x = 0 does not appear as an obstacle in the time evolution.

D. Matrasulov—K. Sabirov—Z. Sobirov (2012,2016)



Ground state on the unbounded graphs

Ground state is a standing wave of smallest energy FE at fixed mass Q,

E=inf{E(u): wucH: Qu)=pu}

Euler-Lagrange equation in the cubic case p = 1 is
~AD - 2|0’d = -wd DecHE

where w € R (w > 0 in the focusing case) defines W(z, x) = ®(x)e'".



Ground state on the unbounded graphs

Ground state is a standing wave of smallest energy FE at fixed mass Q,

E=inf{E(u): wucH: Qu)=pu}

Euler-Lagrange equation in the cubic case p = 1 is
~AD - 2|0’d = -wd DecHE

where w € R (w > 0 in the focusing case) defines W(z, x) = ®(x)e'".
Infimum of E(u) exists due to Gagliardo—Nirenberg inequality in 1D.

If G is unbounded and contains at least one half-line, then

min  E(u;RT) <€ < min E(u;R)
dEeH! (RY) peH' (R)

Infimum may not be achieved by any of the standing waves .

Adami-Serra—Tilli (2015, 2016)



Ground state on the unbounded graphs

If G consists of either one half-line or two half-lines and a bounded edge,
then
£ < min E(u;R)
peH' (R)
and the infimum is achieved.




Ground state on the unbounded graphs

If G consists of either one half-line or two half-lines and a bounded edge,
then
£ < min E(u;R)
peH' (R)
and the infimum is achieved.

If G consists of more than two half-lines and is connective to infinity, then

€= min E(u;R)
$€H' (R)
and the infimum is not achieved. The reason is topological. By the
symmetry rearrangements,
E(u;T) > E(i;R) > min E(u;R) = €&.
(7) > E(R) > min ()

At the same time, a sequence of solitary waves escaping to infinity along one
edge yields a sequence of functions that minimize E(u; I") until it reaches £.



Ground state on the Y junction graph: N = 3

No ground state exists due to the same topological reason.
There exists a half-soliton to the Euler—Lagrange equation:

—AD - 2|0’® = —wd ¢ DT,
in the form

B(x) = | D) = Visseeh(vox),  x € (~00,0)
¢+ (x) = y/wsech(y/wx), x € (0,00)

Half-soliton is a saddle point of energy E at fixed mass Q.
(Adami et al., 2012)



Half-solitons on the star graph with any N > 3

By using the scaling transformation
1
D,(x) =wr»P(z), z=wix,
we can consider the Euler—Largrange equation:

~AD+ D — (p+1)|®*D =0, ® € HE,

The half-soliton state

d(x) =o(x) | . with ¢(x) = sech’ (px)

is a critical point of the action functional

A(T) = E(T) + Q().



Second variation

Substituting ¥ = & + U + iW with real-valued U, W € HL into A(¥) yield

MOHU+IW) = A(®)+H(Ly U, U)oy HL-W, W) 20y +0 ([ U+iW | 71 1),

where
(LyUU)pry = / (VU 4+ U* = (2p + 1)(p + )@*U?] dx,
r
(LW, W)y = / [(VW)* + W? — (p+ 1)@ W?] dx,
r

Theorem (Kairzhan—P, 2017)
For everyp € (0,2), (\"(®)V, V) 2y > 0 for every V € H. N L, where
L2:={vel’I): (V,®)pr =0}.

Moreover, (N"(®)V, V) 2y = 0 if and only if V € ker(L,.) of dimension
(N — 1). Consequently, V = 0 is a degenerate minimizer of
<AH((I))V, V>L2(F) in HII‘ N Lg



Spectral information

The second variation is a sum of two quadratic forms:
(LyU Uy 1= / (VU + U = (2p + 1)(p + )@*U?] dx,
r
(LLW W)y = / [(VW)? + W? — (p + 1)@ W?] dx,
r

where Ly : H: — L*(T') with 0.(L+) € [1,00).

» L_ > 0andker(L;) = span{®}.
» L. has one simple negative eigenvalue and
ker(Ly) = span{U", U ... UN=D} with

1
N=3: UD=¢w[-1], vP=¢@x| 1
0 )

> Ly > 0ifp € (0,2), where

L2:={Uel*I): (U, ®)pr =0}.



Saddle-point geometry

Theorem (Kairzhan—P, 2017)

Consider the orthogonal decomposition in HY.,
U =30+ ClU(l) + C2U(2) 4+ 4 CN_IU(N*I) + UJ—,

where X, = span{U), U® ... . UN-DYand U+ € HL. N L2 N [X]*.

For everyp € [%, 2), there exists 6 > 0 such that for every
c=(c1,c2,...,cn—1)T € RN satisfying ||c|| < 6, there exists a unique
minimizer U+ € HL N L? N [X.]* of the variational problem

M(c) = inf [A(Y) — A(®)]

Ut eHLNL2N[X]+

such that U~ ry < Allc||? for a c-independent constant A > 0.

Moreover, M(c) is sign-indefinite in c. Consequently, ® is a nonlinear saddle
point of A in H\. with respect to perturbations in H: N L.



Minimization of the remainder term
Expanding for real U € Hk:
A(@+U) = A(®)+(L+ U, U>L2(r>—%P(P+1)(2P+1)<‘I’2p_lUz, U)zry+o([U 17
Looking at M(c) := infy. ey rznpx+ [A(® + U) — A(®)] with
U=cUY + U+ 4oy UND 4 Ut
we obtain F(U~, ¢) = 0 with

F(UY¢) : XxR¥"'s v, X:=HMNLANX], Y:=H'n2nX]
2

N—1
F(U* ¢) i= LUt —p(p+ 1) (2p+ DILO¥ " | Y " U + U+ | +o(|[U]7).
j=1
(i) Fisa C?> map fromX x RV to ¥;
(i) F(0,0)=0;
(iii) Dy F(0,0) = II.L 11, : X — Y is invertible with a bounded inverse
from Y to X

(iv) II.L,II, is strictly positive;
(v) D.F(0,0) =0.



Normal form argument

By the minimization problem, we obtain

M(c) = inf [A(® + U) — A(D)]

Ut eH.n2N[X ]+

Mo(c) + o(le[|*),

where

N—1N—-1N—-1

2 o
My(c) := —gp(p +1H)(2p+1) E g E cicien (@ Uy, U(k)>L2(F).
i=1 j=1 k=1

My(c), and hence M(c), is sign-indefinite near ¢ = 0O:

N=3: Mylc)=2p*(c? —3)ca.



Nonlinear instability

Theorem (Kairzhan—P, 2017)

For everyp € [%, 2), there exists € > 0 such that for every § > 0 (sufficiently
small) there exists V € HL with || V|| u). < 0 such that the unique global
solution U(t) € C(R,HL) N CY (R, Hy ') to the NLS equation starting with
the initial datum ¥ (0) = ® + V satisfies

gireljg le= W (to) — @||m(ry > € forsome 7, > 0.

Consequently, the orbit {®e”®}gcg is unstable in the time evolution of the
NLS equation in H}.

Nonlinear instability of saddle points of action functionals does not hold
generally for Hamiltonian systems.
Example: negative Krein signature of stable eigenvalues.



Expansion of the action functional
Expanding for real U, W € H} N L%

A(r) = E(® wm + U(1) +1W( )) — E(®)
+w(t) [Q(Pu) + U(1) +iW(1) — O(2)]
= D(w)+ (Lt(w)U, U>L2(F) (L (W)W, W)y + N (U, W),
where
D(w) = E(®,)—E(®?)+w[0(Ps) — O(P)]
= (OJ - 1)2<<I)’ 6¢f.J<I>o.J|L«J:1>L2(Q) + O(|w - 1|3)
and

A1) = A0) + (w(r) = 1) [Q(® + U(0) +iW(0)) — Q(D)],

If |U(0) + iW(0) . < 6. then

|A(0)] + |Q(® + Uy + iW,) — Q(®)| < AS>.



Secondary decomposition
Expand U, W € HL N L2 as

N—1
=>"GUY, + U@, W) = bW, + W),
j=1

and
<Ul(t)7 ngt)>L2(F) = <WL(I)7 ng[)>L2(F) =0, 1<j<N-—-1,
where L (w)Ug) =0and L_ (w)Wu(,i) =vY.

The action functional is further expanded as follows:

A = D)+ (Li(@)Uh,Ub) ) + (L (@)W, W) )
—1
+ > (WD UDY )b} + Mo(c) + Ae, b, U, W),
1

2

~.
I

where A is a remainder term (of higher order).



Truncated Hamiltonian system
At the leading order, {c;, bj}j.vz ! satisfy

¢ = bj,

. N—1N-1 <q>2ﬂ lU(k)U("),UO)>L2(F)

bj = kZI 21 W00 5 1 CikCny
=] n=

which is Hamiltonian system with the conserved energy

2

—1
Ho(e,b) =Y (WD UV r)b7 + Mo(c).
1

J

For N = 3,

H‘i)”%z(nh)'él = —4cica,
3||¢||%2(JR+)62 = —2(cf = 3¢3).

c; = 0 is an invariant reduction. Zero solution is nonlinearly unstable.



Closing the energy estimates

Consider the region where nonlinear instability is developed in the
Hamiltonian system:

le@] < Ae, b <AE2, 1€ (0,0, 1o <A,

By energy estimates, we have:
() = 1+ U () + W Ollmery <4 (54 672) 1€ (0,1,
which is much smaller than the leading-order term if § = O(€/2).

Solutions of the system for {c;, b, }jN: _11 remain close to the (unstable)
solutions of the truncated Hamiltonian system. Hence, there exists
to = O(e~'/?) such that

||U(l‘()) + iW(t())HHl(p) > €.



NLS under generalized Kirchhoff conditions

Let (v, a4, a— ) be defined by the generalized Kirchhoff conditions:

{ a0t0(0) = a4 (0) = a_1p_(0)

ap ' 0ho(0) = a3 '04 (0) + aZ'0—(0),
and the cubic NLS equation

i07bo + 9210 + ool o = 0,

x <0,
. 2 2 2

0+ + Octhx + ag b ["Yr =0, x> 0.

If (avo, 4, ) satisfy the constraint:

1 n 1
e R
then there exists an invariant reduction
a+1/1+(t,x) = OZJ/L(WC)» X € RJra

to the integrable cubic NLS equation

00 + 02 + |V =0, xeR.



Translated stationary state

The half-soliton can now be translated along the graph I':

do(x) = ag 'sech(x —a), x € (—o0,0),
®(x) = | ¢1(x) =ai'sech(x—a), xe€(0,00), |,
é_(x) = a'sech(x —a), x € (0,00),

where a € R is arbitrary parameter.

Whena =0, L, : H- — L*(T') has one simple negative eigenvalue and
ker(Ly) = span{U), UP} with

by (x) 0
U = (¢ (x)], UP = ar¢)(x
¢ (x) —a_¢’(x)

The first mode is due to the translational invariance of the invariant
reduction. The second mode breaks the invariant reduction.



Translated stationary state

The half-soliton can now be translated along the graph I':

do(x) = ag 'sech(x —a), x € (—o0,0),
®(x) = | ¢1(x) =ai'sech(x—a), xe€(0,00), |,
é_(x) = a'sech(x —a), x € (0,00),

where a € R is arbitrary parameter.

Whena =0, L, : H- — L*(T') has one simple negative eigenvalue and
ker(Ly) = span{U), UP} with

by (x) 0
U = (¢ (x)], UP = ar¢)(x
¢ (x) —a_¢’(x)

The first mode is due to the translational invariance of the invariant
reduction. The second mode breaks the invariant reduction.

Half-soliton is still a nonlinear saddle point of the action functional.



Summary

» For the star graphs with Kirchhoff boundary conditions, we proved that
the saddle points of action functional are nonlinearly unstable.

» For the star graphs with reflectionless boundary conditions, we proved
that the half-solitons are still nonlinearly unstable due to
symmetry-breaking perturbations.

» In the latter case, half-solitons are continued as shifted states along the
parameter a and the shifted solitons with a > 0 are orbitally stable
because they are local constrained minimizers of the action functional.
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