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The rogue wave of the cubic NLS equation

The focusing nonlinear Schrédinger (NLS) equation

A
e+ e+ [Py =0

vix 1) = [1 T 1442+ 4R
It was discovered by H. Peregrine (1983) and was labeled as the rogue wave.

admits the exact solution
4(1 4 2it) } it
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Rogue waves and breathers

Modulational instability of the constant-amplitude wave

The rogue wave solution is related to the modulational instability of the
constant-amplitude wave:

Y(x.t) =€ [1 + (K + 2iN) MR 4 (K2 + 2//‘\)ef_\t—ikx} 7

where k € R is the wave number and A is given by

1
N =kK2(1-_K?).
(1-5)

The wave is unstable for k € (0, 2).
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Re(A)
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Rogue waves and breathers

Other rogue waves - Akhmediev breathers (AB)

Spatially periodic homoclinic solution was constructed by N.N. Akhmediev,
V.M. Eleonsky, and N.E. Kulagin (1985):

2(1 — A2) cosh(kAt) + ikAsinh(kAt)

—etl1_
w(xv t) =e |1 cosh(k)\t) — )\COS(kX) ’

where k =2v/1 — X2 € (0,2) and X € (0, 1) is the only free parameter. There
is a unique solution for each spatial period L = 27’“ = L= >T.

V1-)2

D.Pelinovsky (McMaster University) Instability of breathers 4/29



Rogue waves and breathers

Other rogue waves - Kuznetsov-Ma breathers

Temporally periodic soliton was constructed by E. A. Kuznetsov (1977) and
Y.-C. Ma (1979):

Bl t) = {1 ~ 2()\ — 1) cos(BAL) +iBA sin(,B)\t)] e

A cosh(5x) — cos(BAt)

where 3 =2V 2 — 1 and A € (1,0) is the only free parameter. There is a
unique solution for each temporal period T = 22 = —Z_— > 0 with k = if.

BA T /A2t

D.Pelinovsky (McMaster University) Instability of breathers 5/29



Rogue waves and breathers

Other rogue waves - Kuznetsov-Ma breathers
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BA T /A2t

Re(A)

The main task is to understand the linear and nonlinear instability of breathers.
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Background

Selected results on Kuznetsov—Ma breathers (time-periodic solitons):

@ Numerical computations of linearized NLS with Floquet theory in time
(Cuevas—Maraver, Haragus, et al., PRE, 2017)

@ Attempt to prove the spectral mapping theorem:
Uess(M) - Uess(eTLOO)
(Zweck, Latushkin, Marzuola, Jones, J. Evol. Egs., 2020)

@ Proof of energetic instability in H5(R) for s > 1/2 from saddle point
geometry associated with the fourth-order Lax-Novikov equation
(Alejo, Fanelli, Munoz, arXiv, 2019)
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Background

Selected results on Akhmediev breathers (spatially-periodic homoclinics):

@ Claim of linear stability based on eigenvectors of ZS problem
(Calini, Schober, Nonlinearity, 2012)

@ Claim of exponential instability based on computations of x-growing
solutions of ZS problem (Grinevich, Santini, arXiv, 2021)

@ Proof of energetic instability in H,(R) for s > 1/2 from saddle point
geometry associated with the fourth-order Lax-Novikov equation
(Alejo, Fanelli, Munoz, Sao Paulo J. Math. Sci., 2019)
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Background

Selected results on Peregrine rogue wave:

@ Perturbation theory via inverse scattering
(Garnier, Kalimeris, J. Phys. A, 2012) (Biondini, Kovacic, 2014)

@ Completeness of eigenfunctions via Riemann—Hilbert problem
(Bilman, Miller, Comm. Pure Appl. Math., 2019)

@ Numerical simulations of Peregrine breathers
(Klein, Haragus, Ann. Math. Sci. Appl., 2017)
(Calini, Schober, Stawn, Appl. Numer. Math., 2019)
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Lax spectrum and double-periodic solutions

The spectral context of breathers

The focusing nonlinear Schrédinger (NLS) equation

. 1
/% + é’(/)xx + |1P|2¢ =0

is related to the integrable hierarchy, which admits the following stationary
equations (Lax—Novikov equations):

U'(x) + 2icu = 0,
U’ (x) + 2|ulPu + 2icu’ + 4bu = 0,
u"(x) + 6|ulPu’ + 2ic(u” + 2|u?u) + 4bu’ + 8iau = 0,
where ¢, b, a are constants.

The third-order Lax—Novikov equation with a = ¢ = 0 admits the exact

solutions by separation of variables (Akhmediev, Eleonskii, Kulagin, 1987):

Y(x, 1) = [q(x. 1) + is(t)] €,
where q(x + L, t) = q(x,t+ T) = q(x,t) and §(t + T) = §(¢).
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Lax spectrum and double-periodic solutions
Lax system

If uis a solution of the NLS, then it is a potential of the linear Lax system:

ox = U\ u)p, U u) = < A;, iy} )

and

24 11412 1
pr= V(A U, V(A,u):/(/\ +3luff Ut du )

O — AT —X2—L|uf?
The x-part is referred to as the Zakharov—Shabat spectral problem.

Since u is L-periodic in x for fixed t, by Floquet theorem, X belongs to the Lax
spectrum if p(x) = p(x)e* is bounded with L-periodic p and k € [-F, 7].
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Lax spectrum and double-periodic solutions

Double-periodic solutions

There are only two families of solutions of the third-order Lax-Novikov
equation:
u"(x) + 6|ul?u’(x) + 4bu'(x) = 0.

Their Lax spectrum is shown below.
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Akhmediev breathers: the gap shrinks to a point.
Kuznetsov-Ma- breather: the outer band shrinks to a point.
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Analytical method

Analytical method: linearized NLS equation

Recall the linear Lax system:

©x = U()\7 U)QO, Pt = V()\7 U)QO,

where u is a solution of the NLS equation

, 1
iUy + 2 U + (Ju? = 1)u=0.

If » and ¢ are two linearly independent solutions of the Lax system, then

Pair | Pair I Pair Il
V=07 — @5 | V=011 — Podo | V=95 — 3
V=i +ig5 | v=lpi1o1 +igage | v =i¢% +id5

are solutions of the linearized NLS equation

— _
vt + évxx+(2|U|2 —-1)v+ufv=0.
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Analytical method

Example: constant-amplitude background u = 1

Two linearly independent solutions

o= A= ék‘(/\) o~ BK(x=AD) b= At ék_(/\) e k(N (ix=A1)
—\/ A+ Fk(V) =\ A= 3k(N)

where k(\) = 2v1 — X2 and X € C is the spectral parameter. Solutions are
bounded if A € IRU [-1,1].
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Figure: Left: basis in L2(R) (Fourier transform). Right: basis in Lger (Fourier series).
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Case of periodic boundary conditions

Two linearly independent solutions

\/Am = gkm o \/Am+ gkm e
= : e*jkm(/X*)\mt)’ ¢ — 2 . eékm(/xf)\mt)’
*\/Am+ékm Y, )‘miékm

where kp, = 22 and m € N.

Pairs | and Il give four linearly independent solutions for m € N:
V(X 1) = (2iAm~+ km) sin(kmx) e kntvE(x, 1) = (2ixm + km) cos(kmx)e*mFmt,

Vi (X, 1) = (2iAm—Km) sin(kmx)e Akt v (x, 1) = (2iAm—Km) cos(kmx)e™ Akt
Pair Il gives v = 0 and vy = 2/ and the second solution is missing...
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Recovering the missing element of the basis

In order to recover the second solution, we find two linearly independent
solutions for A =1 (m = 0):

@_{11]7 ¢_{X+’t+1],

—Xx — it

Pairs | gives
v=0, v=2I.
Pair Il gives
w=2it+1, v=i@2x+1).
Pair Ill gives

v=4ixt+2x+2it+1, v=2ix2— 4 x+it)+1.
General solution of the linearized NLS equation is

V=CoVo+ Golo+ Y GV + ConVim + CL iV + €2V
meN
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Analytical method

Analytical method: breather solutions

Recall the linear Lax system:
ox = U\ U)p, or = V(A u)e.

For fixed Ao € C, let ¢ = (po, o) be a particular solution of the Lax system
with u = ug and X\ = X\o. Then, ¢ = (Do, Go)" is a particular solution of the Lax
system with u = p and A\ = \g, where

[f?o } ot [-@0}
G | [pol2+]qof2 | Po
and -
2(Mo + Ao)PoQo
IPol? + |qo?
If ®()\) is a general solution for uy, then ®()\) is a general solution for y:

o = up +

S =DM, DY) =1+ 525 | 2 |0 .
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Case of Kuznetsov—Ma breathers

Fix \o € (1, 00) and choose the solution ¢ = (po, go)” with ty = 1 in the form:

po(X,t) =1/ Ao + %ﬁo etfolxritat) _ \/ Ao — %50 e~ 2lrNat)
Go(X,t) = —{/ Ao — %ﬁo g2Polxtidol) | \/ Ao+ %ﬁo g~ 0t

Then {y is the Kuznetsov—Ma breather (the time-periodic soliton).

It is found from

1

B0) = DO, DO =1+ 55 | & | 1o i

and the spectral analysis in L2(R) that
@ The Lax spectrum consists of iR U [—1,1] and {—Xg, Ao} Wwith Ao > 1.
@ Eigenvalues at {—Xo, Ao} are algebraically simple.
@ Continuous spectrum at /R U [—1, 1] has same properties as for up = 1.
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Analytical method

Pair | Pair Il Pair 1l
V=2 — 35 | V=p1d1— oo | V=0F—¢5
V=gt +ig5 | v=lip1d1 +iPade | V=i¢] +id5

@ Continuous spectrum gives what (Zweck et al., 2020) wanted:
Uess(M) = Uess(eTcoo)
@ Eigenvalues at {—Xo, Ao} give neutral modes

ot o
T oox

@ Completeness of eigenfunctions of the linearized NLS equation ?77?
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Case of Akhmediev breathers

Fix \o € (0, 1) and choose the solution ¢ = (py, go)” with tp = 1 in the form:

po(x,t) = m eféiko(X+/)\uf) _ \m e‘éikg(x+i>\0t)
Qo(x,t) = Ao + 2k0 e~ Liko(X+iXot) 4 m ezlko(er/)\ot)

Then g is the Akhmediev breather (the space-periodic homoclinic orbit).

It is found from

B0) = DO, DO =1+ 55 | & | - i

and the spectral analysis in Lﬁer that
@ Spectrum for iy consists of the same double eigenvalues on iR as for up.
@ Eigenvalues at +)\q are algebraically double and geometrically simple.
@ Eigenvalues at +1 are algebraically simple.
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Analytical method

. : Pair | Pair Il Pair Il
: ' V=7 — 75 V=101 — P22 v =¢% — 5
V=gl + iP5 | v =lp1p1 + iPadhe | v =i¢F +igh

@ Double eigenvalues give four modes v, Vi, VI Vo
@ Eigenvalues at +)\q give neutral modes
ol o
ot - ox’
which become as t — +o0
vy (X, 1) = (2iho—Ko) sin(kox)e k! v (x, t) = (2iAg—ko) cos(kox) e Mokt

@ Simple eigenvalues at +1 give modes similar to vop = 2i and ¥ = 2it + 1.
@ Two modes are missing as t — +oo.
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Missing modes - found

Expanding
501 — _ Po ]
$0) = DO, DO =1+ 55 | B | 1o il
gives A
B(N) = 1+ B0+ B1(A = do) + O((A = X)),
— 0

where ®_; = [0, 0], ®¢ = [¢1, ¢0], and &1 = [z, ¢1] with L-antiperiodic o,
1 and x-growing o2, ¢g, ¢1. Combinations

Vi = ©0191,1 — Po2d1,2 + ¢1,100,1 — $1.200,1,
Vo = ipoi¢11 + iPo2dt 2+ ip1 1001 + iP1 2001,
give the two missing modes which become as t — +o
Vi (X, 1) = (20X + ko) sin(kox) ekl v (x, t) = (2ido + Ko) cos(kox)e !,

This confirms computations in (Grinevich, Santini, 2021). Completeness.???
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Case of Peregrine’s rogue wave

Choose the solution of Lax equations with up =1 and A = 1:

@_{11]7 ¢_{x+it+1]7

—Xx — it

Then {j is the Peregrine’s rogue wave, which is localized in (x, t) plane.

@ Spectrum in L?(R) consists of iR U [—1,1].
@ Eigenvalues at {—1.1} are embedded into
the continuous spectrum.

Im(\)
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Analytical method

Solutions of the linearized NLS equation only give instability of the
background:

. 1 N noo
ive + EVXX+(2|u0|2 —1)v+ 0§V =0.

The embedded eigenvalue is structurally unstable under small perturbation
(Klaus, Pelinovsky, Rothos, J. Nonlin.Sci., 2006):

/ ” f(x, 0) [Reu(x, 0) — fio(x, 0)] dx

— 00
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Analytical method

In addition to linear instability, Peregrine’s rogue wave is structurally unstable

It transforms to either Kuznetsov—Ma breathers or to two counter-propagating
Tajiri-Watanabi breathers (Zakharov, Gelash, Phys. Rev. Lett., 2013)

11
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Instability of double-periodic solutions

Double-periodic solutions

Recall two families of solutions

u(

of the third-order Lax-Novikov equation:

x, t) = [q(x, t) + i5(t)] 7O,

u"(x) + 6|ul?u’(x) + 4bu'(x) = 0.
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Instability of double-periodic solutions

Recall the Lax system
A u
ox = UL ), v =( % 4

and

B _ o Mg uc+
o1 = V() u)p, V(A’“)_’( 0= -2 - flup

Since u is L-periodic in x and T-periodic in t, the Lax spectrum in X is found
from .
QD(X7 t) _ p(x, t)e/kx-HQ’
where p(x + L, t) = p(x,t + T) = p(x, t), k € [-F, 7], and Q = Q(N).
@ Qs uniquely determined in Im(Q2) € [-F, F].
@ 2Re(A) give the instability rate due to v = ¢? solving the linearized NLS.
Is there an explicit formula for () from algebro-geometric construction???
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Instability of double-periodic solutions

Instabilities of one family
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Left: Lax spectrum. Right: stability spectrum.
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Instability of double-periodic solutions

Instabilities of another family
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Left: Lax spectrum. Right: stability spectrum.
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Summary
Summary

@ Breathers are particular cases of double-periodic solutions of the
third-order Lax—Novikov equation.

@ Breathers and their linear instabilities can be obtained by using Darboux
transformations for both the NLS equation and the Lax linear system.

@ Peregrine’s rogue wave is structurally unstable in the time evolution.

@ Double-periodic waves are also linearly unstable, their linear instability is
computed from the Lax system numerically.
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