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Stability of relative equilibria in Hamiltonian systems

Consider an abstract Hamiltonian dynamical system

d
d—‘; = JH'(v), u(t)eX
where X C L2 is a phase space, JT = —J is a bounded invertible operator

for the symplectic structure, and H : X — R is the Hamilton function.

@ Assume existence of the stationary state ug € X such that H'(up) = 0.

@ Perform linearization u(t) = up + vet, where \ is the spectral
parameter and v € X satisfies the spectral problem

JH" (up)v = Av,

where H"(ug) : X — L2 is a self-adjoint Hessian operator.
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Spectral stability
Consider the spectral problem:
JH (wo)v = v, veX.

Assumptions:

@ The spectrum of H”(up) is positive except for finitely many negative
and zero eigenvalues of finite multiplicity.

@ The continuous wave spectrum of JH"(ug) is purely imaginary.

o Multiplicity of the zero eigenvalue of JH”(ug) is given by the number
of parameters in up (symmetries).

Question: Is there a relation between unstable eigenvalues of JH" (up) and
negative eigenvalues of H"(up)?
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Example: discrete NLS equation
Consider the discrete nonlinear Schrédinger equation in 1D,

.dup
] =
dt
The stationary state (discrete soliton) is

u(t) = Uye ™t w>0, U,c?2).

(Av)n + 2|up?u,, n€Z.

@ U, is a critical point of H,,(v) = H(u) + wQ(u),
H(u) = Z U1 — u,,|2 - |Un‘4’ Qu) = Z ‘u,,|2.

nezZ neZ

@ The self-adjoint Hessian operator H”(U,,) is given by

—A+w— 4|U,? —2U?
—2

H/I Uw —
() —2U, A+ w—4U,?

o J = diag(i,—1) is a bounded invertible symplectic operator.
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Main question

Question: Is there a relation between unstable eigenvalues of JH" (up) and
negative eigenvalues of H"”(up)?

For a gradient system:
d
&= —F'(u) = Av=—F"(u)v,
dt

Theorem

The number of unstable eigenvalues of —F"(ug) equals the number of
negative eigenvalues of F"(up).

The relation is less straightforward in a Hamiltonian system
Av = JH (wp)v, veEX.

Quadruple Symmetry: If X is an eigenvalue, so is —J, X, and —\.
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Example: two coupled oscillators

Question: Is there a relation between unstable eigenvalues of JH" (up) and
negative eigenvalues of H"”(up)?

Consider energy

1 1
H= 5(}’12 +y3)+ E(W%Xf + wix3)

The quadratic form for H has four positive eigenvalues.

The two oscillators are stable:

X1 =,

X2 = y2, N { X +wixg =0,
y'1 = —wfxl, X2 +OJ%X2 =0.
Yo = —wixy,
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Example: two coupled oscillators

Question: Is there a relation between unstable eigenvalues of JH"(up) and
negative eigenvalues of H”(up)?

Consider energy

H = 2(}’1 +y3)+ 5 (W1X1 A5%3)
The quadratic form for H has three positive and one negative eigenvalues.

One of the two oscillators is unstable:

X.l =¥,

. . 2 _
X2 = Yo, X1 +wixi =0,
2 = . _)\2 o 0
1= wlxlu X2 2X2

Y2 = A3xa,

Negative index count:
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Example: two coupled oscillators

Question: Is there a relation between unstable eigenvalues of JH"(up) and
negative eigenvalues of H”(up)?

Consider energy
H —

2(}’1 +y3)+ = ( Ax — A3x3)

The quadratic form for H has two positive and two negative eigenvalues
Both oscillators are unstable:

X1 =,

X2 =y, N {Xi—)\%xlz(),
yi = )\lxl, X3 — A3xa = 0.
Y2 = )\2X27

Negative index count:

Neo(JH) = 2 = Noeg(H)
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Example: two coupled oscillators

Question: Is there a relation between unstable eigenvalues of JH"(up) and
negative eigenvalues of H”(up)?

Consider energy
H_l( 2 2)+l( 2,2 2 2)
=W ) S \WiX1 = WaXo
The quadratic form for H has two positive and two negative eigenvalues.

The two oscillators are nevertheless stable:

X1 = Y1,

Xo = —y, N { X +wix =0,
y'1 = —wfxl, X2 +OJ%X2 =0.
Y2 = wixo,

Negative index count:

2N (JH) = 2 = Nyog (H)
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Example: two coupled oscillators
Question: Is there a relation between unstable eigenvalues of JH"(up) and
negative eigenvalues of H”(up)?

Consider energy
1
H= E(yl2 — y22) + w2x1x2
The quadratic form for H has two positive and two negative eigenvalues.

The two oscillators are unstable with a quartet of complex eigenvalues:

XIZYL

. . 2

Xo = — X1 +wxp=0 4

.2 y22’ = 1 2 2 ’ = X]F )+w4X]_ = 0.
y1=—wx, xp —wxy =0,

. 2

Y2 = —WwW Xy,

Negative index count:

2NC(JH) =2= Nneg(H)
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Spectral stability theorems

Consider the spectral stability problem:
JH (wo)v = Av, veX.
For simplicity, assume a zero-dimensional kernel of H”(up).

@ Grillakis, Shatah, Strauss, 1990 Orbital Stability Theory:

» If H”(up) has no negative eigenvalues, then JH”(up) has no unstable
eigenvalues and ug is nonlinearly stable.

» If H”(up) has an odd number of negative eigenvalues, then JH" (up)
has at least one real unstable eigenvalue.

o Kapitula, Kevrekidis, Sandstede, 2004; Pelinovsky, 2005
Negative Index Theory:

Nee(JH" (o)) + 2Ne(JH" (u0)) + 2Ni, (JH" (t0)) = Nieg (H" (o))
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What is Krein signature for eigenvalues?

@ Suppose that A € iR is a simple isolated eigenvalue of JH" (ug) with
the eigenvector v. Then, the sign of

E"(v) = (H"(w)v, V)e

is called the Krein signature of the eigenvalue .

@ If X is a multiple isolated eigenvalue of JH”(ug), then the number
N. (JH"(ug)) is introduced as the number of negative eigenvalues of
the quadratic form E”(v) restricted at the invariant subspace of
JH" (up) associated with the eigenvalue A.
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What if H”(up) has a kernel?
In the dNLS example
duy,
Tdr T
with the discrete soliton

u(t) = Upe ™t w>0, U, e *2),

(Au)p + 2|up|?up, n €.

the kernel is one-dimensional:

] ][]
where Hy(u) = H(u) + wQ(u).

o Let d(w) := Hy(Uy), then d'(w) = Q(U,,) = ||Us|1%.
If d"(w) = &£ Q(U.,) > 0, the negative index theory applies with

Naeg (H3(Uss)) = Naeg (H(Uw)) — 1.
The soliton is nonlinearly stable if d”(w) > 0 and Ny (H(Uy)) = 1.
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Klein-Gordon lattice
Klein-Gordon (KG) lattice models a chain of coupled anharmonic oscillators
with nearest-neighbour interactions
d?u,
dt?

+ V'(up) = €(uns1 — 2up + up_1),

where {u,(t)}nez : R — RZ, € is the coupling constant, and V : R — R is
an on-site potential, e.g.

\Y
MMM K% u
Applications:

o dislocations in crystals (e.g. Frenkel & Kontorova '1938)
@ oscillations in biological molecules (e.g. Peyrard & Bishop '1989)

Dmitry Pelinovsky (McMaster University Stability of breathers in nonlinear lattices Leiden, 2016 14 / 36



Relation to the discrete nonlinear Schrédinger equation

Discrete nonlinear Schrodinger equation (dNLS) corresponds to the
small-amplitude weakly coupled limit of the KG lattice with V/(u) = u =+ u>:

d
0i % 4 3|an|?a = aps1 — 2an + an_1,
dr

where {a,(7)}nez : R — CZ and 7 is new time variable.

By using the leading-order approximation
Uj(t) = €2 [aj(et)e™ + 3j(et)e ],
in dKG, one can obtain dNLS and estimate the residual terms
Res;(t) := :|:63/2( 3 g3it —|—a e 3it) 152 (aje —i—aj it)’
For every |t| < mpe ™1, there is C > 0 such that
lu(t) = U]l + la(t) — U(t)[| < Ce/2.
D.P., T. Penati, S. Paleari, Rev. Math. Phys. (2016), in press.
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Relation to the anti-continuum limit

In the anti-continuum limit (¢ = 0), each oscillator is governed by

. 1.
¢+ V'(p)=0, = §s02 + V(p) =E,

where ¢ € H3.,(0, T).

The period of the oscillator is

| rEy = va [T
1'50 0.1 0.2 j 0.3 - _a(E) E B V(X)’

where a(E), the amplitude, is the

Figure: Period vs. energy in hard smallest root of V(a) = E.

(magenta) and soft (blue)
potential V(u) = $u? + Lu*.
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Multi-breathers near the anti-continuum limit

Breathers are spatially localized time-periodic solutions to the Klein-Gordon
lattice. Multi-breathers are constructed by parameter continuation in €
from the limiting configuration:

u(o)(t) = Z o'kgo(t)ek S ngr((()? T); I2(Z))v
keS

where S C Z is a finite set of excited sites and e is the unit vector in
I>(Z) at the node k. The oscillators are in-phase if o5 = +1 and
anti-phase if o = —1.

Figure: An example of a multi-site discrete breather at ¢ = 0.

R. MacKay & S. Aubry, 1994; D. Bambusi, 2013,
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Spectral stability of breathers in the anti-continuum limit

@ Archilla, Cuevas, Sanchez-Rey, Alvarez '2003
@ Koukouloyannis, Kevrekidis 2009

@ Pelinovsky, Sakovich 2012

@ Youshimura 2012

Short summary of stability results near the anti-continuum limit:

@ Single-site breather - spectrally stable

@ Two-site breathers at two adjacent sites:
» spectrally unstable if in-phase (soft) or anti-phase (hard)
» spectrally stable if anti-phase (soft) or in-phase (hard)

N S
l l

Figure: Stable configuration in soft potential: T'(E) > 0.
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Spectral stability via Floquet multipliers

For € > 0, Floquet multipliers split as follows:

One-site breathers have a double Floquet multiplier at p = 1.
Question: Do they remain stable far from the anti-continuum limit?
Two-site breathers have one split pair of multipliers:
@ the pair is on the unit circle if the breathers are spectrally stable
@ the pair is on the real line if the breathers are unstable

Question: Are spectrally stable two-site breathers also nonlinearly stable?
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Energy stability criterion for breathers
The KG lattice

d?u,
dt2

has the conserved energy

H=3"3 <dun> v(u,,)+%6(u,,+1—u,,)2.

neZ

+ V'(up) = €(ups1 — 2up + up_1)

Breathers (time-periodic solutions) are NOT relative equilibria of the
energy function H. They can be written in the normalized form:

u(t)=U(r), 7=wt, U(r+2r)=U(7),
where w = 2/ T s breather frequency and U(7) € H2..((0,27), (%(Z)).

Breathers with increasing (decreasing) energy-frequency dependence are
generically unstable in soft (hard) nonlinear potentials.

P.G. Kevrekidis, J. Cuevas, D.P., Phys. Rev. Lett. 117, 094101 (2016).
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A simple argument for energy stability criterion

Normalized breather profile u(t) = U(7) € H2..((0,27),(?(Z)) satisfies

WAUI(T) 4 V' (Un(7)) = e(AU)(7), ne€Z.

Linearized equations for small perturbations are given by
wn + V" (up)wy = e(Aw),, n€Z. (1)
With Floquet theory,
w(t) = W(r)eM, 1=wt, W(r+2r)= W(r),
we obtain the spectral stability problem
(LW)(7) = 22wW!'(7) + N2 W (1),

where L = eA — V"(U(7)) — w?02 acts on H3,.((0, 2m), (*(Z)).
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A simple argument for energy stability criterion

Spectral stability problem is

(LW)(7) = 22wW!'(7) + N2 W (7).

A =0 is at least a double eigenvalue because of the translational invariance:

LU (t) =0, L3,U(T)=2wlU"(1).

A =0 is at least a quadruple eigenvalue if TH'(w) = 0.

Assumptions:

@ The spectral bands of the spectral stability problem are bounded away

from A =0,
@ The kernel of L is exactly one-dimensional with the eigenvector
W(r) = U'(r).

@ The energy H of the breather U is a C! function of frequency w.
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Energy stability criterion in the anti-continuum limit

In the anti-continuum limit (¢ = 0), each oscillator is governed by

. 1.
¢+ V'(p)=0, = Esoz + V(p) =E,

where ¢ € H3.,(0, T).

Since |T'(E)| < oo in

T
H(w) = ———
@) =-C7Ey
— B the stability threshold H'(w) =0
SE ' cannot be achieved.
Figure: Period vs. energy in hard Oscillators are always stable with
(magenta) and soft (blue) H'(w) > 0 for hard potentials and
potential V(u) = $u? + Lu*. H'(w) < 0 for soft potentials.
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Further arguments for energy stability criterion

Expanding in powers of \:
W(r) = U'(7) + A0, U(7) + XY (1) + X3 Z(7) + O(X*)
and using Fredholm conditions yields the dispersion relation
0= NTH'(w) + X*M(w) + O(A°),
where M(w) is computed in terms of U and Y.

The sign of M(w) is not generally defined...

However, in the dNLS approximation limit, we can show that
M(w) > 0 for hard potentials [breathers are stable for H'(w) > 0];
M(w) < 0 for soft potentials [breathers are stable for H'(w) < 0].
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Energy stability criterion in the dNLS approximation
Consider the KG lattice
2
ddtzn + up & €t tP = e(upy1 — 2up + up_1), n€Z.

By using the leading-order approximation (P., Penati, Paleari, 2016),
Un(T) = Ane'™ + Ane™ '™ + O(e),
one can derive and justify the stationary dNLS equation

o 2 2p _M
(AA), =€ (1 — w)A, £ v|An|PA,, T opllp+ 1)
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Energy stability criterion in the dNLS approximation
Consider the KG lattice
d?u,
dt?
By using the leading-order approximation (P., Penati, Paleari, 2016),
Un(T) = Ane'™ + Ane™ '™ + O(e),
one can derive and justify the stationary dNLS equation
_(@p+ 1)
pl(p+ 1)V
Breathers exist for hard potentials if w? > 1 + 4¢ and for soft potentials if
w? < 1. Hence, we can introduce Q > 0 in either w? =1 + 4e + €Q or
w? =1—¢Q. Then, A € (*(Z) depends on § and is independent of e.
H(w) =2Q(2) + O(e).
The energy stability criterion becomes the slope condition:

H'(w) = +4we ' Q(Q) + 0(1),  Q(Q) = || Al

+ up & €t tP = e(upy1 — 2up + up_1), n€Z.

(AA)n = 6_1(1 - wz)An + ’Y‘An|2pAn7
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Numerical illustration: 2D KG lattice.

Left - hard ¢* potential with € = 0.5.
Right - soft Morse potential with ¢ = 0.2.
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Energy stability criterion for FPU lattices?
The FPU lattice

d?u, , ,
ek W'(ups1 — up) — W(up — up—1), n€Z,

has the conserved energy

H= Z <du,,> W(Un+1—un)~

nEZ

In the strain variables r, = up+1 — up, the FPU lattice can be rewritten as

d?r,
dt2 = W(rn+1)—2W(rn)+W(rn 1) new,

and the normalized breather profile ry(t) = R,(7) € H2..((0,27), (*(Z)).

The derivations and conclusions apply verbatim... In monoatomic chains,
the dNLS approximation is valid at the maximal optical frequency and leads
to breathers in hard potentials (G.James, 2003).
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Nonlinear instability of breathers
Consider the discrete KG equation

d?u
dt2n + V'(un) = e(upy1 — 2up + up_1), n€Z,
where V is smooth and V = 1u? + O(u®).

Assumptions:
@ The double eigenvalue A = 0 is isolated from the spectral bands.
@ There exists a pair of eigenvalues at A = +i( isolated from the
spectral bands.
@ The double eigenvalue A = +2iQ belongs to the spectral bands with
nonzero Fermi golden rule.

If Krein signature of eigenvalues at A = £/ is opposite to that of the
spectral bands, the breather is spectrally stable but nonlinearly unstable.

P.G. Kevrekidis, D.P., A. Saxena, Phys. Rev. Lett. 114 (2015), 214101.
J. Cuevas, P.G. Kevrekidis, D.P., Stud. Appl. Math. 137 (2016), 214.
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Krein quantity
Linearized equations for small perturbations are given by
wn + V" (up)wy = e(Aw),, n€Z. (2)
With Floquet theory,
w(t) = W(t)eM, W(t+ T)= W(r),
we obtain the spectral stability problem

W,y + 2AW, + N2 W, + V" (u)W, = e(Aw),, n e Z.

The symplectic structure is given by
dwn _OH —dpn __OH 4
dt Opn dt oW,
The Krein quantity K is real and constant in time ¢:
K =10 (PaWn— pnin) =223 [WolP+i> (W,,W,, - W,,W,,) .

nez neZ nez
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Krein quantity for two-site breathers

0.1 0.2 0.3
E
Figure: Period vs. energy in hard
(magenta) and soft (blue)
potential V/(u) = $u? + Lu*.

For the hard potential with T'(E) < 0 and T(E) < 2,
@ 0 < T < m: the Krein signatures of the internal mode and the wave
spectrum in the upper semi-circle coincide;
o m < T < 27: the Krein signatures of the internal mode and the wave
spectrum in the upper semi-circle are opposite to each other.
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Numerical illustration: hard ¢* potential T = 7
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Numerical illustration: hard ¢*
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Numerical illustration in 1D
The dNLS equation

ity + €(tupt1 — 2up + up—1) + |u,,\2u,, =0, neZ.
For € = 0.07 and w = 1, we have Q ~ 0.598, so that 2 < w but 2Q > w.

1.

£ 1.4
=2
08 0 5000 t 10000
0 2000 2000 6000 8000 10000
t

Figure: Evolution of a two-site discrete soliton in 1D dNLS.

Recall the Negative Index Theory:
Nee(JH" (o)) + 2Ne(JH" (u0)) + 2N, (JH" (o)) = Noeg (H" (o)) = 2
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A simple argument for nonlinear instability
Using the asymptotic multi-scale expansion for solutions to the KG lattice,

u(t) = U(t) + 6 (c(r)W () + e(r) W (0)e ) + 82 (1) + O(5%),

yields
@ the breather U(t+ T) = U(t),
@ the Floquet mode W(t + T) = W(t) for eigenvalues A = £iQ,
@ the slowly varying envelope c(7), 7 = §°t,
@ the correction terms at O(62),

Y (t) = c(7)?P(£)e” ™ + [c(7)[*Q(t) + &(r)*P(t)e >,
where P(t) € H3,,.((0, T),£>°(Z)) and Q(t) € H2..((0, T),*(Z))

from the assumptions of the theory.

The correction term P(t) satisfies Sommerfeld radiation boundary
conditions at infinity due to coupling with the spectral bands.
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A simple argument for nonlinear instability
Removing secular terms at O(53) yields the amplitude equation

d
iKE 4 Blcfec =0,
dr

where K € R is the Krein quantity of the eigenvalue A\ = iQ and Im(f)
encodes Sommerfeld conditions. By the Fermi Golden Rule, Im(3) # 0.

For the hard potential with T'(E) < 0 and T(E) < 2,
@ K > 0 for eigenvalue A = iQ;
e Im(f)>0if0< T <mand Im(B) <0if m < T < 27.
If sign(K) = —sign(Im(B)), then |c|? grows in T,
d|c|?
dr

hence, the breather is nonlinearly unstable.

KL — _omm(8)|cf?,

For NLS-type models, see S. Cuccagna (2009); M. Maeda (2014).
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Conclusions

@ Spectral stability theory is well-developed for relative equilibria in
Hamiltonian systems.

o Negative eigenvalues of the quadratic Hamiltonian show up in the
spectral stability problem either as unstable eigenvalues or as stable
eigenvalues of negative Krein signature.

@ If no negative eigenvalues exist, nonlinear stability holds by Lyapunov
method. In the presence of negative eigenvalues, nonlinear instability
may destroy stationary states in spite of their spectral stability.
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Conclusions

@ Spectral stability theory is well-developed for relative equilibria in
Hamiltonian systems.

o Negative eigenvalues of the quadratic Hamiltonian show up in the
spectral stability problem either as unstable eigenvalues or as stable
eigenvalues of negative Krein signature.

@ If no negative eigenvalues exist, nonlinear stability holds by Lyapunov
method. In the presence of negative eigenvalues, nonlinear instability
may destroy stationary states in spite of their spectral stability.

@ Breathers are not relative equilibria of the Hamiltonian system. The
generalization of the above results to breathers is not trivial.

@ Energy stability criterion is presented for breathers for the first time.

@ We have also shown that spectrally stable multi-site breathers may be
either nonlinearly stable or unstable, depending on their period T.
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