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Stability of relative equilibria in Hamiltonian systemsConsider an abstract Hamiltonian dynamical systemdudt = J H ′(u), u(t) ∈ Xwhere X ⊂ L2 is a phase space, J+ = −J is a bounded invertible operatorfor the symplectic structure, and H : X → R is the Hamilton function.Assume existence of the stationary state u0 ∈ X such that H ′(u0) = 0.Perform linearization u(t) = u0 + veλt , where λ is the spectralparameter and v ∈ X satis�es the spectral problemJH ′′(u0)v = λv ,where H ′′(u0) : X → L2 is a self-adjoint Hessian operator.Dmitry Pelinovsky (McMaster University)Stability of breathers in nonlinear lattices Leiden, 2016 2 / 36



Spectral stabilityConsider the spectral problem:JH ′′(u0)v = λv , v ∈ X .Assumptions:The spectrum of H ′′(u0) is positive except for �nitely many negativeand zero eigenvalues of �nite multiplicity.The continuous wave spectrum of JH ′′(u0) is purely imaginary.Multiplicity of the zero eigenvalue of JH ′′(u0) is given by the numberof parameters in u0 (symmetries).Question: Is there a relation between unstable eigenvalues of JH ′′(u0) andnegative eigenvalues of H ′′(u0)?Dmitry Pelinovsky (McMaster University)Stability of breathers in nonlinear lattices Leiden, 2016 3 / 36



Example: discrete NLS equationConsider the discrete nonlinear Schrödinger equation in 1D,i dundt = (∆u)n + 2|un|2un, n ∈ Z.The stationary state (discrete soliton) isu(t) = Uωe−iωt , ω > 0, Uω ∈ `2(Z).Uω is a critical point of Hω(u) = H(u) + ωQ(u),H(u) = ∑n∈Z |un+1 − un|2 − |un|4, Q(u) = ∑n∈Z |un|2.The self-adjoint Hessian operator H ′′

ω(Uω) is given byH ′′

ω(Uω) =

[

−∆+ ω − 4|Uω|2 −2U2
ω

−2Uω
2 −∆+ ω − 4|Uω|2 ]

.J = diag(i ,−i) is a bounded invertible symplectic operator.Dmitry Pelinovsky (McMaster University)Stability of breathers in nonlinear lattices Leiden, 2016 4 / 36



Main questionQuestion: Is there a relation between unstable eigenvalues of JH ′′(u0) andnegative eigenvalues of H ′′(u0)?For a gradient system:dudt = −F ′(u) ⇒ λv = −F ′′(u0)v ,TheoremThe number of unstable eigenvalues of −F ′′(u0) equals the number ofnegative eigenvalues of F ′′(u0).The relation is less straightforward in a Hamiltonian system
λv = JH ′′(u0)v , v ∈ X .Quadruple Symmetry: If λ is an eigenvalue, so is −λ, λ̄, and −λ̄.Dmitry Pelinovsky (McMaster University)Stability of breathers in nonlinear lattices Leiden, 2016 5 / 36



Example: two coupled oscillatorsQuestion: Is there a relation between unstable eigenvalues of JH ′′(u0) andnegative eigenvalues of H ′′(u0)?Consider energy H =
12(y21 + y22 ) + 12(ω21x21 + ω22x22 )The quadratic form for H has four positive eigenvalues.The two oscillators are stable:















ẋ1 = y1,ẋ2 = y2,ẏ1 = −ω21x1,ẏ2 = −ω22x2, ⇒
{ ẍ1 + ω21x1 = 0,ẍ2 + ω22x2 = 0.Dmitry Pelinovsky (McMaster University)Stability of breathers in nonlinear lattices Leiden, 2016 6 / 36



Example: two coupled oscillatorsQuestion: Is there a relation between unstable eigenvalues of JH ′′(u0) andnegative eigenvalues of H ′′(u0)?Consider energy H =
12(y21 + y22 ) + 12(ω21x21 − λ22x22 )The quadratic form for H has three positive and one negative eigenvalues.One of the two oscillators is unstable:















ẋ1 = y1,ẋ2 = y2,ẏ1 = −ω21x1,ẏ2 = λ22x2, ⇒
{ ẍ1 + ω21x1 = 0,ẍ2 − λ22x2 = 0.Negative index count: Nre(JH) = 1 = Nneg(H)Dmitry Pelinovsky (McMaster University)Stability of breathers in nonlinear lattices Leiden, 2016 7 / 36



Example: two coupled oscillatorsQuestion: Is there a relation between unstable eigenvalues of JH ′′(u0) andnegative eigenvalues of H ′′(u0)?Consider energy H =
12(y21 + y22 ) + 12(−λ21x21 − λ22x22 )The quadratic form for H has two positive and two negative eigenvalues.Both oscillators are unstable:















ẋ1 = y1,ẋ2 = y2,ẏ1 = λ21x1,ẏ2 = λ22x2, ⇒
{ ẍ1 − λ21x1 = 0,ẍ2 − λ22x2 = 0.Negative index count: Nre(JH) = 2 = Nneg(H)Dmitry Pelinovsky (McMaster University)Stability of breathers in nonlinear lattices Leiden, 2016 8 / 36



Example: two coupled oscillatorsQuestion: Is there a relation between unstable eigenvalues of JH ′′(u0) andnegative eigenvalues of H ′′(u0)?Consider energy H =
12(y21 − y22 ) + 12(ω21x21 − ω22x22 )The quadratic form for H has two positive and two negative eigenvalues.The two oscillators are nevertheless stable:















ẋ1 = y1,ẋ2 = −y2,ẏ1 = −ω21x1,ẏ2 = ω22x2, ⇒
{ ẍ1 + ω21x1 = 0,ẍ2 + ω22x2 = 0.Negative index count: 2N−im(JH) = 2 = Nneg(H)Dmitry Pelinovsky (McMaster University)Stability of breathers in nonlinear lattices Leiden, 2016 9 / 36



Example: two coupled oscillatorsQuestion: Is there a relation between unstable eigenvalues of JH ′′(u0) andnegative eigenvalues of H ′′(u0)?Consider energy H =
12(y21 − y22 ) + ω2x1x2The quadratic form for H has two positive and two negative eigenvalues.The two oscillators are unstable with a quartet of complex eigenvalues:















ẋ1 = y1,ẋ2 = −y2,ẏ1 = −ω2x2,ẏ2 = −ω2x1, ⇒
{ ẍ1 + ω2x2 = 0,ẍ2 − ω2x1 = 0, ⇒ x(4)1 + ω4x1 = 0.Negative index count: 2Nc(JH) = 2 = Nneg(H)Dmitry Pelinovsky (McMaster University)Stability of breathers in nonlinear lattices Leiden, 2016 10 / 36



Spectral stability theoremsConsider the spectral stability problem:JH ′′(u0)v = λv , v ∈ X .For simplicity, assume a zero-dimensional kernel of H ′′(u0).Grillakis, Shatah, Strauss, 1990 Orbital Stability Theory:
I If H ′′(u0) has no negative eigenvalues, then JH ′′(u0) has no unstableeigenvalues and u0 is nonlinearly stable.
I If H ′′(u0) has an odd number of negative eigenvalues, then JH ′′(u0)has at least one real unstable eigenvalue.Kapitula, Kevrekidis, Sandstede, 2004; Pelinovsky, 2005Negative Index Theory:Nre(JH ′′(u0)) + 2Nc(JH ′′(u0)) + 2N−im(JH ′′(u0)) = Nneg(H ′′(u0)).Dmitry Pelinovsky (McMaster University)Stability of breathers in nonlinear lattices Leiden, 2016 11 / 36



What is Krein signature for eigenvalues?Suppose that λ ∈ iR is a simple isolated eigenvalue of JH ′′(u0) withthe eigenvector v . Then, the sign ofE ′′(v) = 〈H ′′(u0)v , v〉`2is called the Krein signature of the eigenvalue λ.If λ is a multiple isolated eigenvalue of JH ′′(u0), then the numberN−im(JH ′′(u0)) is introduced as the number of negative eigenvalues ofthe quadratic form E ′′(v) restricted at the invariant subspace ofJH ′′(u0) associated with the eigenvalue λ.Dmitry Pelinovsky (McMaster University)Stability of breathers in nonlinear lattices Leiden, 2016 12 / 36



What if H ′′(u0) has a kernel?In the dNLS examplei dundt = (∆u)n + 2|un|2un, n ∈ Z.with the discrete solitonu(t) = Uωe−iωt , ω > 0, Uω ∈ `2(Z),the kernel is one-dimensional:H ′′

ω(Uω)

[ Uω

−Uω

]

=

[ 00 ]

,where Hω(u) = H(u) + ωQ(u).Let d(ω) := Hω(Uω), then d ′(ω) = Q(Uω) = ‖Uω‖2̀2 .If d ′′(ω) = ddωQ(Uω) > 0, the negative index theory applies withNneg(H ′′

ω(Uω)) → Nneg(H ′′

ω(Uω))− 1.The soliton is nonlinearly stable if d ′′(ω) > 0 and Nneg(H ′′

ω(Uω)) = 1.Dmitry Pelinovsky (McMaster University)Stability of breathers in nonlinear lattices Leiden, 2016 13 / 36



Klein-Gordon latticeKlein-Gordon (KG) lattice models a chain of coupled anharmonic oscillatorswith nearest-neighbour interactionsd2undt2 + V ′(un) = ε(un+1 − 2un + un−1),where {un(t)}n∈Z : R → R
Z, ε is the coupling constant, and V : R → R isan on-site potential, e.g.

un un+1

V

u

V

Applications:dislocations in crystals (e.g. Frenkel & Kontorova '1938)oscillations in biological molecules (e.g. Peyrard & Bishop '1989)Dmitry Pelinovsky (McMaster University)Stability of breathers in nonlinear lattices Leiden, 2016 14 / 36



Relation to the discrete nonlinear Schrödinger equationDiscrete nonlinear Schrodinger equation (dNLS) corresponds to thesmall-amplitude weakly coupled limit of the KG lattice with V ′(u) = u±u3:2i dandτ ± 3|an|2a = an+1 − 2an + an−1,where {an(τ)}n∈Z : R → C
Z and τ is new time variable.By using the leading-order approximationUj(t) = ε1/2 [aj(εt)e it + āj(εt)e−it] ,in dKG, one can obtain dNLS and estimate the residual termsResj(t) := ±ε3/2 (a3j e3it + ā3j e−3it)+ ε5/2 (äje it + ¨̄aje−it) ,For every |t| ≤ τ0ε−1, there is C > 0 such that

‖u(t)−U(t)‖l2 + ‖u̇(t)− U̇(t)‖l2 ≤ Cε3/2.D.P., T. Penati, S. Paleari, Rev. Math. Phys. (2016), in press.Dmitry Pelinovsky (McMaster University)Stability of breathers in nonlinear lattices Leiden, 2016 15 / 36



Relation to the anti-continuum limitIn the anti-continuum limit (ε = 0), each oscillator is governed by
ϕ̈+ V ′(ϕ) = 0, ⇒ 12 ϕ̇2 + V (ϕ) = E ,where ϕ ∈ H2per (0,T ).
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Figure: Period vs. energy in hard(magenta) and soft (blue)potential V (u) = 12u2 ± 14u4.
The period of the oscillator isT (E ) = √2∫ a(E)

−a(E)

dx
√E − V (x) ,where a(E ), the amplitude, is thesmallest root of V (a) = E .Dmitry Pelinovsky (McMaster University)Stability of breathers in nonlinear lattices Leiden, 2016 16 / 36



Multi-breathers near the anti-continuum limitBreathers are spatially localized time-periodic solutions to the Klein-Gordonlattice. Multi-breathers are constructed by parameter continuation in εfrom the limiting con�guration:u(0)(t) = ∑k∈S σkϕ(t)ek ∈ H2per ((0,T ); l2(Z)),where S ⊂ Z is a �nite set of excited sites and ek is the unit vector inl2(Z) at the node k . The oscillators are in-phase if σk = +1 andanti-phase if σk = −1.
a(E)
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−a(E)

σn 1 −1 1

Figure: An example of a multi-site discrete breather at ε = 0.R. MacKay & S. Aubry, 1994; D. Bambusi, 2013.Dmitry Pelinovsky (McMaster University)Stability of breathers in nonlinear lattices Leiden, 2016 17 / 36



Spectral stability of breathers in the anti-continuum limitArchilla, Cuevas, Sánchez-Rey, Alvarez '2003Koukouloyannis, Kevrekidis '2009Pelinovsky, Sakovich '2012Youshimura '2012Short summary of stability results near the anti-continuum limit:Single-site breather - spectrally stableTwo-site breathers at two adjacent sites:
I spectrally unstable if in-phase (soft) or anti-phase (hard)
I spectrally stable if anti-phase (soft) or in-phase (hard)

Figure: Stable con�guration in soft potential: T ′(E ) > 0.Dmitry Pelinovsky (McMaster University)Stability of breathers in nonlinear lattices Leiden, 2016 18 / 36



Spectral stability via Floquet multipliersFor ε > 0, Floquet multipliers split as follows:
Imµ

Reµ

e
iT

e
−iT

1

1 ε = 0 Imµ

Reµ

e
iT

e
−iT

1 ε > 0

One-site breathers have a double Floquet multiplier at µ = 1.Question: Do they remain stable far from the anti-continuum limit?Two-site breathers have one split pair of multipliers:the pair is on the unit circle if the breathers are spectrally stablethe pair is on the real line if the breathers are unstableQuestion: Are spectrally stable two-site breathers also nonlinearly stable?Dmitry Pelinovsky (McMaster University)Stability of breathers in nonlinear lattices Leiden, 2016 19 / 36



Energy stability criterion for breathersThe KG lattice d2undt2 + V ′(un) = ε(un+1 − 2un + un−1)has the conserved energyH =
∑n∈Z 12 (dundt )2

+ V (un) + 12ε(un+1 − un)2.Breathers (time-periodic solutions) are NOT relative equilibria of theenergy function H. They can be written in the normalized form:u(t) = U(τ), τ = ωt, U(τ + 2π) = U(τ),where ω = 2π/T is breather frequency and U(τ) ∈ H2per((0, 2π), `2(Z)).Breathers with increasing (decreasing) energy-frequency dependence aregenerically unstable in soft (hard) nonlinear potentials.P.G. Kevrekidis, J. Cuevas, D.P., Phys. Rev. Lett. 117, 094101 (2016).Dmitry Pelinovsky (McMaster University)Stability of breathers in nonlinear lattices Leiden, 2016 20 / 36



A simple argument for energy stability criterionNormalized breather pro�le u(t) = U(τ) ∈ H2per((0, 2π), `2(Z)) satis�es
ω2U ′′n (τ) + V ′(Un(τ)) = ε(∆U)n(τ), n ∈ Z.Linearized equations for small perturbations are given byẅn + V ′′(un)wn = ε(∆w)n, n ∈ Z. (1)With Floquet theory,w(t) = W (τ)eλt , τ = ωt, W (τ + 2π) = W (τ),we obtain the spectral stability problem

(LW )(τ) = 2λωW ′(τ) + λ2W (τ),where L = ε∆− V ′′(U(τ)) − ω2∂2τ acts on H2per((0, 2π), `2(Z)).Dmitry Pelinovsky (McMaster University)Stability of breathers in nonlinear lattices Leiden, 2016 21 / 36



A simple argument for energy stability criterionSpectral stability problem is
(LW )(τ) = 2λωW ′(τ) + λ2W (τ).

λ = 0 is at least a double eigenvalue because of the translational invariance:LU ′(τ) = 0, L∂ωU(τ) = 2ωU ′′(τ).

λ = 0 is at least a quadruple eigenvalue if TH ′(ω) = 0.Assumptions:The spectral bands of the spectral stability problem are bounded awayfrom λ = 0,The kernel of L is exactly one-dimensional with the eigenvectorW (τ) = U ′(τ).The energy H of the breather U is a C 1 function of frequency ω.Dmitry Pelinovsky (McMaster University)Stability of breathers in nonlinear lattices Leiden, 2016 22 / 36



Energy stability criterion in the anti-continuum limitIn the anti-continuum limit (ε = 0), each oscillator is governed by
ϕ̈+ V ′(ϕ) = 0, ⇒ 12 ϕ̇2 + V (ϕ) = E ,where ϕ ∈ H2per (0,T ).
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Figure: Period vs. energy in hard(magenta) and soft (blue)potential V (u) = 12u2 ± 14u4.
Since |T ′(E )| < ∞ inH ′(ω) = − T

ωT ′(E ) ,the stability threshold H ′(ω) = 0cannot be achieved.Oscillators are always stable withH ′(ω) > 0 for hard potentials andH ′(ω) < 0 for soft potentials.Dmitry Pelinovsky (McMaster University)Stability of breathers in nonlinear lattices Leiden, 2016 23 / 36



Further arguments for energy stability criterionExpanding in powers of λ:W (τ) = U ′(τ) + λ∂ωU(τ) + λ2Y (τ) + λ3Z (τ) +O(λ4)and using Fredholm conditions yields the dispersion relation0 = λ2TH ′(ω) + λ4M(ω) +O(λ6),where M(ω) is computed in terms of U and Y .The sign of M(ω) is not generally de�ned...However, in the dNLS approximation limit, we can show thatM(ω) > 0 for hard potentials [breathers are stable for H ′(ω) > 0];M(ω) < 0 for soft potentials [breathers are stable for H ′(ω) < 0].Dmitry Pelinovsky (McMaster University)Stability of breathers in nonlinear lattices Leiden, 2016 24 / 36



Energy stability criterion in the dNLS approximationConsider the KG latticed2undt2 + un ± εu1+2pn = ε(un+1 − 2un + un−1), n ∈ Z.By using the leading-order approximation (P., Penati, Paleari, 2016),Un(τ) = Ane iτ + Āne−iτ +O(ε),one can derive and justify the stationary dNLS equation
(∆A)n = ε−1(1− ω2)An ± γ|An|2pAn, γ =

(2p + 1)!p!(p + 1)! .
Dmitry Pelinovsky (McMaster University)Stability of breathers in nonlinear lattices Leiden, 2016 25 / 36



Energy stability criterion in the dNLS approximationConsider the KG latticed2undt2 + un ± εu1+2pn = ε(un+1 − 2un + un−1), n ∈ Z.By using the leading-order approximation (P., Penati, Paleari, 2016),Un(τ) = Ane iτ + Āne−iτ +O(ε),one can derive and justify the stationary dNLS equation
(∆A)n = ε−1(1− ω2)An ± γ|An|2pAn, γ =

(2p + 1)!p!(p + 1)! .Breathers exist for hard potentials if ω2 > 1+ 4ε and for soft potentials if
ω2 < 1. Hence, we can introduce Ω > 0 in either ω2 = 1+ 4ε+ εΩ or
ω2 = 1− εΩ. Then, A ∈ `2(Z) depends on Ω and is independent of ε.H(ω) = 2Q(Ω) +O(ε).The energy stability criterion becomes the slope condition:H ′(ω) = ±4ωε−1Q ′(Ω) +O(1), Q(Ω) = ‖A‖2̀2 .Dmitry Pelinovsky (McMaster University)Stability of breathers in nonlinear lattices Leiden, 2016 25 / 36



Numerical illustration: 2D KG lattice.Left - hard φ4 potential with ε = 0.5.Right - soft Morse potential with ε = 0.2.
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Energy stability criterion for FPU lattices?The FPU latticed2undt2 = W ′(un+1 − un)−W ′(un − un−1), n ∈ Z,has the conserved energyH =
∑n∈Z 12 (dundt )2

+W (un+1 − un).In the strain variables rn = un+1 − un, the FPU lattice can be rewritten asd2rndt2 = W ′(rn+1)− 2W ′(rn) +W ′(rn−1), n ∈ Z,and the normalized breather pro�le rn(t) = Rn(τ) ∈ H2per((0, 2π), `2(Z)).The derivations and conclusions apply verbatim... In monoatomic chains,the dNLS approximation is valid at the maximal optical frequency and leadsto breathers in hard potentials (G.James, 2003).Dmitry Pelinovsky (McMaster University)Stability of breathers in nonlinear lattices Leiden, 2016 27 / 36



Nonlinear instability of breathersConsider the discrete KG equationd2undt2 + V ′(un) = ε(un+1 − 2un + un−1), n ∈ Z,where V is smooth and V = 12u2 +O(u3).Assumptions:The double eigenvalue λ = 0 is isolated from the spectral bands.There exists a pair of eigenvalues at λ = ±iΩ isolated from thespectral bands.The double eigenvalue λ = ±2iΩ belongs to the spectral bands withnonzero Fermi golden rule.If Krein signature of eigenvalues at λ = ±iΩ is opposite to that of thespectral bands, the breather is spectrally stable but nonlinearly unstable.P.G. Kevrekidis, D.P., A. Saxena, Phys. Rev. Lett. 114 (2015), 214101.J. Cuevas, P.G. Kevrekidis, D.P., Stud. Appl. Math. 137 (2016), 214.Dmitry Pelinovsky (McMaster University)Stability of breathers in nonlinear lattices Leiden, 2016 28 / 36



Krein quantityLinearized equations for small perturbations are given byẅn + V ′′(un)wn = ε(∆w)n, n ∈ Z. (2)With Floquet theory,w(t) = W (t)eλt , W (t + T ) = W (τ),we obtain the spectral stability problemẄn + 2λẆn + λ2Wn + V ′′(un)Wn = ε(∆w)n, n ∈ Z.The symplectic structure is given bydwndt =
∂H
∂pn , dpndt = − ∂H

∂wn , n ∈ ZThe Krein quantity K is real and constant in time t:K = i∑n∈Z (p̄nwn − pnw̄n) = 2Ω∑n∈Z |Wn|2 + i∑n∈Z ( ˙̄WnWn − ẆnW̄n) .Dmitry Pelinovsky (McMaster University)Stability of breathers in nonlinear lattices Leiden, 2016 29 / 36



Krein quantity for two-site breathers
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Figure: Period vs. energy in hard(magenta) and soft (blue)potential V (u) = 12u2 ± 14u4.
Imµ

Reµ

e
iT

e
−iT

1 ε > 0

For the hard potential with T ′(E ) < 0 and T (E ) < 2π,0 < T < π: the Krein signatures of the internal mode and the wavespectrum in the upper semi-circle coincide;
π ≤ T < 2π: the Krein signatures of the internal mode and the wavespectrum in the upper semi-circle are opposite to each other.Dmitry Pelinovsky (McMaster University)Stability of breathers in nonlinear lattices Leiden, 2016 30 / 36



Numerical illustration: hard φ4 potential T = π
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Numerical illustration: hard φ4 potential T < π
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Numerical illustration in 1DThe dNLS equationi u̇n + ε(un+1 − 2un + un−1) + |un|2un = 0, n ∈ Z.For ε = 0.07 and ω = 1, we have Ω ≈ 0.598, so that Ω < ω but 2Ω > ω.
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tFigure: Evolution of a two-site discrete soliton in 1D dNLS.Recall the Negative Index Theory:Nre(JH ′′(u0)) + 2Nc(JH ′′(u0)) + 2N−im(JH ′′(u0)) = Nneg(H ′′(u0)) = 2Dmitry Pelinovsky (McMaster University)Stability of breathers in nonlinear lattices Leiden, 2016 33 / 36



A simple argument for nonlinear instabilityUsing the asymptotic multi-scale expansion for solutions to the KG lattice,u(t) = U(t) + δ
(c(τ)W (t)e iΩt + c̄(τ)W̄ (t)e−iΩt)+ δ2Y (t) +O(δ3),yieldsthe breather U(t + T ) = U(t),the Floquet mode W (t + T ) = W (t) for eigenvalues λ = ±iΩ,the slowly varying envelope c(τ), τ = δ2t,the correction terms at O(δ2),Y (t) = c(τ)2P(t)e2iΩt + |c(τ)|2Q(t) + c̄(τ)2P̄(t)e−2iΩt ,where P(t) ∈ H2per((0,T ), `∞(Z)) and Q(t) ∈ H2per((0,T ), `2(Z))from the assumptions of the theory.The correction term P(t) satis�es Sommerfeld radiation boundaryconditions at in�nity due to coupling with the spectral bands.Dmitry Pelinovsky (McMaster University)Stability of breathers in nonlinear lattices Leiden, 2016 34 / 36



A simple argument for nonlinear instabilityRemoving secular terms at O(δ3) yields the amplitude equationiK dcdτ + β|c |2c = 0,where K ∈ R is the Krein quantity of the eigenvalue λ = iΩ and Im(β)encodes Sommerfeld conditions. By the Fermi Golden Rule, Im(β) 6= 0.For the hard potential with T ′(E ) < 0 and T (E ) < 2π,K > 0 for eigenvalue λ = iΩ;Im(β) > 0 if 0 < T < π and Im(β) < 0 if π ≤ T < 2π.If sign(K ) = −sign(Im(β)), then |c |2 grows in τ ,K d |c |2dτ = −2Im(β)|c |4,hence, the breather is nonlinearly unstable.For NLS-type models, see S. Cuccagna (2009); M. Maeda (2014).Dmitry Pelinovsky (McMaster University)Stability of breathers in nonlinear lattices Leiden, 2016 35 / 36



ConclusionsSpectral stability theory is well-developed for relative equilibria inHamiltonian systems.Negative eigenvalues of the quadratic Hamiltonian show up in thespectral stability problem either as unstable eigenvalues or as stableeigenvalues of negative Krein signature.If no negative eigenvalues exist, nonlinear stability holds by Lyapunovmethod. In the presence of negative eigenvalues, nonlinear instabilitymay destroy stationary states in spite of their spectral stability.
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ConclusionsSpectral stability theory is well-developed for relative equilibria inHamiltonian systems.Negative eigenvalues of the quadratic Hamiltonian show up in thespectral stability problem either as unstable eigenvalues or as stableeigenvalues of negative Krein signature.If no negative eigenvalues exist, nonlinear stability holds by Lyapunovmethod. In the presence of negative eigenvalues, nonlinear instabilitymay destroy stationary states in spite of their spectral stability.Breathers are not relative equilibria of the Hamiltonian system. Thegeneralization of the above results to breathers is not trivial.Energy stability criterion is presented for breathers for the �rst time.We have also shown that spectrally stable multi-site breathers may beeither nonlinearly stable or unstable, depending on their period T .Dmitry Pelinovsky (McMaster University)Stability of breathers in nonlinear lattices Leiden, 2016 36 / 36
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