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◮ Burgers equation (T = [0, 1], u ∈ R )

∂u

∂t
+ 2u

∂u

∂x
=
∂2u

∂x2
x ∈ T, t ∈ R+

◮ Periodic boundary conditions on T
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◮ Burgers equation (T = [0, 1], u ∈ R )

∂u

∂t
+ 2u

∂u

∂x
=
∂2u

∂x2
x ∈ T, t ∈ R+

◮ Periodic boundary conditions on T

◮ Local solutions exist for all u|t=0 ∈ Hs
per

(T) with s > −1
2

(Dix, 1996). Global existence holds for all u|t=0 ∈ H1
per

(T).
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◮ Burgers equation (T = [0, 1], u ∈ R )

∂u

∂t
+ 2u

∂u

∂x
=
∂2u

∂x2
x ∈ T, t ∈ R+

◮ Periodic boundary conditions on T

◮ Local solutions exist for all u|t=0 ∈ Hs
per

(T) with s > −1
2

(Dix, 1996). Global existence holds for all u|t=0 ∈ H1
per

(T).

◮ Hopf–Cole transformation

u(x , t) = − ∂

∂x
logψ(x , t) ⇒ ∂ψ

∂t
=
∂2ψ

∂x2
,

provided ψ(x , t) > 0 for all (x , t).
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◮ Enstrophy E (u) = 1
2

∫

T
u2
x dx satisfies

dE (u)

dt
= R(u) := −

∫

T

(u2
xx + u3

x ) dx ,

for a strong solution u ∈ C ([0, t0],H
3
per

(T)).
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◮ Enstrophy E (u) = 1
2

∫

T
u2
x dx satisfies

dE (u)

dt
= R(u) := −

∫

T

(u2
xx + u3

x ) dx ,

for a strong solution u ∈ C ([0, t0],H
3
per

(T)).

◮ Using Young’s inequality and the elementary bound

‖ux‖L∞ ≤ ‖ux‖1/2
L2 ‖uxx‖1/2

L2 ,

one can estimate

|R(u)| ≤ −‖uxx‖2
L2+‖ux‖5/2

L2 ‖uxx‖1/2
L2 ≤ 3

44/3
‖ux‖10/3

L2 ≡ 3

2
E 5/3(u).
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Lu and Doering (2008) considered the maximization problem

max
u∈H2

per
(T)

R(u) subject to E (u) = E ,

where E > 0 is given.

Solutions were found analytically in terms of Jacobi’s elliptic
functions, and it was shown that

R(u) = O(E5/3) as E → ∞.

This instantaneous bound is not related to the time evolution of
the Burgers equation.
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◮ Using energy balance

K (u) =
1

2

∫

T

u2dx ⇒ dK (u)

dt
= −2E (u),

one can estimate

E 1/3(u(T ))−E 1/3(u0) ≤
1

2

∫

T

0
E (u(t))dt =

1

4
(K (u0) − K (u(T )))
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◮ Using energy balance

K (u) =
1

2

∫

T

u2dx ⇒ dK (u)

dt
= −2E (u),

one can estimate

E 1/3(u(T ))−E 1/3(u0) ≤
1

2

∫

T

0
E (u(t))dt =

1

4
(K (u0) − K (u(T )))

◮ Using Poincaré’s inequality for mean-zero periodic functions,

K (u0) ≤
1

4π2
E (u0),

we obtain

E (u(T )) ≤
(

E 1/3(u0) +
1

16π2
E (u0)

)3

.
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Bounds on the enstrophy growth

Ayala & Protas (2011) considered the finite-time maximization:

max
u0∈H1

per
(T)

E (u(T )) subject to E (u0) = E ,

and showed that

E (u(T∗)) = O(E1.5), T∗ = O(E−0.5), as E → ∞,

where T∗ is the value of T for which maxu0∈H1
per

(T) E (u(T )) is
maximal over T ∈ R+.

In addition, they showed that K (u(T∗)) = O(E1.0).
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Numerical results: Lu & Doering (2008)

maxt∈[0,T ] R(u(t)) = 0.2476E5/3

Instantaneous growth
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Finite–time growth
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Numerical results: Ayala & Protas (2011)

Maximizers of the finite-time optimization problem
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Numerical results indicate that for all u0 ∈ H1
per

(T), there is C > 0:

sup
t∈R+

E (u(t)) ≤ CE3/2, E = E (u0).

and this bound is sharp as E → ∞.
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Numerical results indicate that for all u0 ∈ H1
per

(T), there is C > 0:

sup
t∈R+

E (u(t)) ≤ CE3/2, E = E (u0).

and this bound is sharp as E → ∞.

The integral bound

E 1/3(u(T∗)) ≤ E1/3 +
1

4
(K (u0) − K (u(T∗)))

is sharp if

K (u0) − K (u(T∗)) = O(E1/2), as E → ∞,

but numerical results have low accuracy to justify this estimate.
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Theorem 1

Consider the instantaneous maximization problem,

max
u∈H2

per
(T)

R(u) subject to E (u) = E .

There exists a unique odd function u∗ ∈ H2
per

(T) with u′
∗(0) < 0

that solves the maximization problem and satisfies

u∗(x) = 4k(2x − tanh(kx)) + OL∞(k2e−k), as k → ∞,

where k determines the leading order expansions,

K (u∗) =
8

3
k2 + O(k),E (u∗) =

32

3
k3 + O(k2),R(u∗) =

256

5
k5 + O(k4).
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Corollary

When k is expressed in terms of E , we obtain

K (u∗) = 1
61/3E2/3 + O(E1/3),

R(u∗) = 35/3

5·21/3E5/3 + O(E4/3),

}

as E → ∞.

◮ Poincaré’s inequality is not saturated by u∗.

◮ Instantaneous bound R(u) ≤ CE5/3 is sharp up to a choice of
the numerical constant

C =
35/3

5 · 21/3
<

3

2
.
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Initial conditions for the Burgers equation

u0(x) = 4k(2x − f (x)), f (x) =
tanh(lx)

tanh(l/2)
, x ∈ T,

where k > 0 is a free parameter and
either l = k (maximizer) or l = O(1) as k → ∞.
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Poincare’s inequality

For the initial condition, we compute

K (u0) = k2K̃ (l), E (u0) = k2Ẽ (l).

0 1 2 3 4 5 6 7 8
0.018

0.02

0.022

0.024

0.026

l

F

The maximum of K̃ (l)/Ẽ (l)
occurs for l = l0 ≈ 3.0, where

F (l0) ≈ 0.025297 <
1

4π2
,

which is 99.9% close to the
Poincaré constant.
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Numerical simulations of the initial-value problem
{

ut + 2uux = uxx x ∈ T, t ∈ R+,
u|t=0 = k sin(2πx), x ∈ T.
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Self-similar transformation for Burgers equation

Let us consider the initial-value problem for the Burgers equation:

{

ut + 2uux = uxx x ∈ T, t ∈ R+,
u|t=0 = 4k(2x − f (x)), x ∈ T.

The unique solution u ∈ C (R+,H
1
per

(T)) is given by

u(x , t) = p(t) (2x − w(ξ(x , t), τ(t))) , x ∈ T, t ∈ R+,

where

p(t) =
4k

1 + 16kt
, ξ(x , t) =

4kx

1 + 16kt
, τ(t) =

16k2t

1 + 16kt
.

Dmitry Pelinovsky (McMaster University) Enstrophy Growth in the Viscous Burgers Equation



Background
Results
Proofs

Theorem 1
Time evolution of the Burgers equation
Theorem 2

Self-similar transformation for Burgers equation

The function w(ξ, τ) satisfies the rescaled Burgers equation,

{

wτ = 2wwξ + wξξ, |ξ| < 2(k − τ), τ ∈ (0, k),
w |τ=0 = f (ξ/4k), |ξ| ≤ 2k ,

subject to the boundary conditions

w(ξ, τ) = ±1, ξ = ±2(k − τ), τ ∈ [0, k).

The stationary viscous kink on the infinite line is

w∞(ξ) = tanh(ξ), ξ ∈ R.
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Metastable state for Burgers equation

We shall prove that u is close to u∞, where

u∞(x , t) = p(t) (2x − tanh(p(t)x)) , p(t) =
4k

1 + 16kt
= O(k),

in the inertial range C− < kt < C+ for some 0 < C− < C+ <∞
as k → ∞.

Now we have k = O(E1/2) as E → ∞ and

K (u∞) = O(p2) = O(E), E (u∞) = O(p3) = O(E3/2),

and the maximum of E (u) occurs in the inertial range, where
t = O(k−1) = O(E−1/2).
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Theorem 2

Consider the initial-value problem for the Burgers equation:

∂u

∂t
+ 2u

∂u

∂x
=
∂2u

∂x2
x ∈ T, t ∈ R+.

There exists T∗ > 0 such that the enstrophy E (u) achieves its

maximum at u∗ = u(·,T∗). If l = O(k) as k → ∞, then

T∗ = O(E−2/3 log(E)), E (u∗) = O(E), K (u∗) = O(E2/3),

whereas if l = O(log(k)), then T∗ = O(E−1/2 log1/2(E)),

E (u∗) = O(E3/2 log−3/2(E)), K (u∗) = O(E log−1(E)).
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Remarks

The goal is to consider the case l = O(1) as k → ∞ and show

T∗ = O(E−1/2), E (u∗) = O(E3/2), K (u∗) = O(E),

and
K (u0) − K (u(T∗)) = O(E1/2), as E → ∞.

This goal is not achieved yet because our technique relies on good
decay of the shock solution near x = ±1

2 and on the separation of
the temporal scales for the dynamics of the viscous shock and the
dynamics of the rarefactive wave.
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Proof of Theorem 1

Consider the instantaneous maximization problem,

max
u∈H2

per
(T)

R(u) subject to E (u) = E .

Set v = ux and look for critical points v ∈ H1
per

(T) of the
functional (Lu & Doering, 2008),

J(v) =

∫

T

(

v2
x + v3 + λv2 + µv

)

dx ,

subject to
1

2

∫

T

v2(x)dx = E ,
∫

T

v(x)dx = 0.
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Euler–Lagrange equations give the stationary KdV equation,

d2v

dx2
=

3

2
v2 + λv − 3E ,

where λ→ ∞ as E → ∞ and (a±, 0) are equilibrium states with
a− < 0 < a+. We are looking for a 1-periodic solution v(x).

−8 −4 0 4 8
−20

−10

0

10

20

v

v’

a
−
 a

+

We can write

v(x) = a+ − 4k2y(ξ), ξ = kx ,

where y is k-periodic and
k = 1

2
4
√
λ2 + 18E → ∞.
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The rescaled differential equation is

d2y

dξ2
− 4y + 6y2 = 0

and we are looking for a k-periodic solution y(ξ).

Lemma

sup
ξ∈[−k/2,k/2]

∣

∣y(ξ) − sech2(ξ)
∣

∣ ≤ Ce−k as k ≫ 1.

Hence, we obtain a+ = 8k(1 + O(ke−k)) and then

k =

(

3

32
E
)1/3

+ 1 + O(E−1/3), λ =

(

3

4
E
)2/3

+ O(E1/3).
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The Burgers equation,

{

ut + 2uux = uxx x ∈ T, t ∈ R+,
u|t=0 = 4k(2x − f (x)), x ∈ T,

is transformed to the rescaled form
{

wτ = 2wwξ + wξξ, |ξ| < 2(k − τ), τ ∈ (0, k),
w |τ=0 = f (ξ/4k), |ξ| ≤ 2k ,

after the self-similar transformation:

u(x , t) = p(t) (2x − w(ξ(x , t), τ(t))) , x ∈ T, t ∈ R+,

where

p(t) =
4k

1 + 16kt
, ξ(x , t) =

4kx

1 + 16kt
, τ(t) =

16k2t

1 + 16kt
.
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The initial condition is now

f (x) =
tanh(lx)

tanh(l/2)
⇒ w0(ξ) =

tanh(ξ/a)

tanh(l/2)
, a =

4k

l
.

◮ When l = k (maximizer), a = 4.

◮ When l = O(log(k)), a = O(k/ log(k)).

◮ When l = O(1), a = O(k).

The boundary conditions are

w(ξ, τ) = ±1 for ξ = ±2(k − τ), τ ∈ [0, k).
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Steps to prove Theorem 1

1. Consider the Burgers equation on the infinite line,







wτ = 2wwξ + wξξ, ξ ∈ R, τ ∈ R+,
w |τ=0 = tanh(ξ/a), ξ ∈ R,
w |ξ→±∞ = ±1, τ ∈ R+,

and prove convergence of w(ξ, τ) to w∞(ξ) = tanh(ξ) in the
H1-norm as τ → ∞.

2. Control the approximation error for the Burgers equation in a
bounded domain for large k from the smallness of
w(ξ, τ) − w∞(ξ) for large values of ξ and all τ ≥ 0.
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Approximate solution for l = k (a = 4)

Approximate solution solves the Burgers equation on the line:

{

wτ = 2wwξ + wξξ, ξ ∈ R, τ ∈ R+,
w |τ=0 = tanh(ξ/4), ξ ∈ R,

An exact solution is available via the Hopf–Cole transformation

w(ξ, τ) = tanh(ξ) + w̃(ξ, τ),

where

w̃ = e−3τ/4sech(ξ)
2 sinh(ξ/2) − 4 cosh(ξ/2) tanh(ξ) − 3 tanh(ξ)e−τ/4

1 + 4 cosh(ξ/2)sech(ξ)e−3τ/4 + 3sech(ξ)e−τ
.
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Lemma
For any integer m ≥ 0, there is a Cm > 0 such that

sup
ξ∈R

∣

∣

∣
e |ξ|/2∂m

ξ (w(ξ, τ) − tanh(ξ))
∣

∣

∣
≤ Cme−3τ/4, τ ∈ R+.

Fix δ > 0. There exist K > 0 and C > 0 such that for all k ≥ K ,
we have

sup
x∈R

|u(x , t) − u∞(x)| ≤ C

kδ
, for all t ≥ T∗ :=

(1 + δ) log(k)

12k2
.

If E = E (u0) = O(k3), then k = O(E1/3) and

E (u∞) = O(E) and T∗ = O(E−2/3 log(E)) as E → ∞.
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Error of the approximation for l = k (a = 4)

The approximation error ‖w − wapp‖H1 is controlled by a priori
energy estimates for the heat equation (via the Hopf–Cole
transformation).

In new variables, the Hopf–Cole transformation

w(ξ, τ) =
∂

∂x
logψ(ξ, τ) ⇒

gives the rescaled heat equation,







ψτ = ψξξ, |ξ| < 2(k − τ), τ ∈ (0, k),
ψ|τ=0 = ψ0(ξ), |ξ| ≤ 2k ,
ψξ = ±ψ, ξ = ±2(k − τ), τ ∈ (0, k).
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Using the decomposition ψ = ψapp(1 + Ψ), we obtain







Ψτ = Ψξξ + 2wappΨξ, |ξ| < 2(k − τ), τ ∈ (0, k),
Ψ|τ=0 = Ψ0(ξ), |ξ| ≤ 2k ,
Ψξ = ±χ(τ)(1 + Ψ), ξ = ±2(k − τ), τ ∈ (0, k),

where χ(τ) = 1 − wapp(2(k − τ), τ) is small in C 2 norm
and Ψ0 is small in H2-norm.

Lemma
Fix C0 ∈ (0, 1). For sufficiently large k, there is a small Ck such

that

‖w − wapp‖2
H1

k,τ
≤ Ck , τ ∈ (0,C0k).

Dmitry Pelinovsky (McMaster University) Enstrophy Growth in the Viscous Burgers Equation



Background
Results
Proofs

Proof of Theorem 1
Proof of Theorem 2
Burgers equation on the infinite line
Burgers equation in a bounded domain

What goes wrong if l = O(1) (a = O(k))

An approximate solution of the Burgers equation on the line
starting with w0(ξ) = tanh(ξ/a) satisfies the following bounds. For
fixed δ > 0 and large a, we have

sup
ξ∈R

|w(ξ, τ) − tanh(ξ)| ≤ C

a3δτ1/2
for all τ ≥ 1

2
(1 + δ)2a log(a)

and

|w(ξ, τ) − tanh(ξ)| ≤ C

a1+δ
for all |ξ| ≥ 1

2
(1+δ)2a log(a) and τ ≥ 0.

If a = O(k), we lose control of the approximation error, because
τ = O(k log(k)) ≫ O(k) and ξ = O(k log(k)) ≫ O(k).
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