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Motivations
Gap solitonsare localized stationary solutions of nonlinear PDEs
with space-periodic coefficients which reside in the spectral gaps of
associated linear operators.

Examples:Complex-valued Maxwell equation

∇2E − Ett +
(

V (x) + σ|E|2
)

Ett = 0

and the Gross–Pitaevskii equation

iEt = −∇2E + V (x)E + σ|E|2E,

whereE(x, t) : R
N × R 7→ C, V (x) = V (x+ 2πej) : R

N 7→ R,
andσ = ±1.
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Existence of stationary solutions

Stationary solutionsE(x, t) = U(x)e−iωt with ω ∈ R satisfies a
nonlinear elliptic problem with a periodic potential

∇2U + ωU = V (x)U + σ|U |2U

Theorem: [Pankov, 2005] LetV (x) be a real-valued bounded
periodic potential. Letω be in a finite gap of the spectrum of
L = −∇2 + V (x). There exists a non-trivial weak solution
U(x) ∈ H1(RN ), which is (i) real-valued, (ii) continuous on
x ∈ R

N and (iii) decays exponentially as|x| → ∞.

Remark: Additionally, there exists a localized solution
U(x) ∈ H1(RN ) in the semi-infinite gap forσ = −1 (NLS soliton).
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Asymptotic reductions

The nonlinear elliptic problem with a periodic potential can be
reduced asymptotically to the following problems:

• Coupled-mode (Dirac) equations forsmallpotentials
{

ia′(x) + Ωa+ αb = σ(|a|2 + 2|b|2)a
−ib′(x) + Ωb+ αa = σ(2|a|2 + |b|2)b

• Envelope (NLS) equations forfinite potentials near band edges

a′′(x) + Ωa+ σ|a|2a = 0

• Lattice (dNLS) equations forlargeor long-periodpotentials

α (an+1 + an−1) + Ωan + σ|an|2an = 0.

Localized solutions of reduced equations exist in the analytic form.
Justification of coupled-mode equations for optical lattices – p. 4/19



Full versus asymptotic solutions

Main Question: Can we justify the use of the three approximations
to classify localized solutions forU(x)?

Remark: We avoid consideration of time-dependent problems. For
justification of Dirac and NLS equations on a finite time interval,
see Schneider-Uecker (2001) and Buschet al. (2006).

Theorem: [Goodman,Weinstein,Holmes, 2001] Let
(a, b) ∈ C([0, T0], H

3(R,C2)) be solutions of the time-dependent
coupled-mode system for a fixedT0 > 0. There existsǫ0, C > 0
such that for allǫ ∈ (0, ǫ0) the Gross–Pitaevskii equation has a local
solutionE(x, t) and

‖E(x, t) −
√
ǫ
[

a(ǫx, ǫt)ei(kx−ωt) + b(ǫx, ǫt)ei(−kx−ωt)
]

‖H1(R) ≤ Cǫ

for some(k, ω) and anyt ∈ [0, T0/ǫ].
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Formal coupled-mode theory

LetN = 1 andV (x) = ǫ(1 − cos x). The finite-band spectrum of
L = −∂2

x + V (x) is

Asymptotic multi-scale expansion:

U(x) =
√
ǫ
[

a(ǫx)e
ix
2 + b(ǫx)e−

ix
2 + O(ǫ)

]

, ω =
1

4
+ ǫΩ + O(ǫ2)
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Gap solitons in coupled-mode equations

The vector(a, b) : R 7→ C
2 satisfies asymptotically the

coupled-mode system with parameterΩ ∈ R:
{

ia′ + Ωa+ V2b = σ(|a|2 + 2|b|2)a,
−ib′ + Ωb+ V−2a = σ(2|a|2 + |b|2)b,

whereV2 = V̄−2 are Fourier coefficients ofV (x) and derivatives are
taken with respect toy = ǫx. Gap solitons of the coupled-mode
system are obtained in the explicit analytic form, e.g. forσ = 1,

a(y) = b̄(y) =

√
2√
3

√

|V2|2 − Ω2

√

|V2| − Ω cosh(κy) + i
√

|V2| + Ω sinh(κy)
,

whereκ =
√

|V2|2 − Ω2 and|Ω| < |V2|.
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Definitions for the main theorem

Assumption: Let V (x) be a smooth2π-periodic real-valued function
with zero mean and symmetryV (x) = V (−x) onx ∈ R, such that

V (x) =
∑

m∈Z

V2me
imx :

∑

m∈Z

(1 +m2)s|V2m|2 <∞,

for somes ≥ 0, whereV0 = 0 andV2m = V−2m = V̄−2m.

Definition: The gap soliton of the coupled-mode system is said to be
a reversible non-degenerate homoclinic orbit if
a(y) = ā(−y) = b̄(y) anda(y) decays to zero as|y| → ∞
exponentially fast.

Remark: If V (x) = V (−x) andU(x) is a solution of the nonlinear
elliptic problem, thenU(−x) is also a solution.

Justification of coupled-mode equations for optical lattices – p. 8/19



Spaces for the main theorem

LetU(x) be represented by the Fourier transform

U(x) =
1√
2π

∫

R

Û(k)eikxdk, Û(k) =
1√
2π

∫

R

U(x)e−ikxdx,

in the vector space

Û ∈ L1
q(R) : ‖Û‖L1

q(R) =

∫

R

(1 + k2)q/2|Û(k)|dk <∞.

By the Riemann–Lebesque Lemma, ifÛ ∈ L1(R), thenU(x)
decays to zero at infinity as|x| → ∞ andU(x) is n-times
continuously differentiable onx ∈ R for 0 ≤ n ≤ [q].

Moreover, since‖Û‖L2
q
≤ ‖Û‖L1

q
, thenU ∈ Hq(R).
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Main Theorem in 1D

Theorem: Let V (x) satisfy the assumption andV2n 6= 0 for a fixed

n ∈ N. Letω = n2

4
+ ǫΩ with |Ω| < |V2n|. Let (a, b) be a reversible

homoclinic orbit of the coupled-mode system. Then, there exists
ǫ0, C > 0 such that for allǫ ∈ (0, ǫ0) the nonlinear elliptic problem
has a non-trivial solutionU(x) and

‖U(x) −
√
ǫ
[

a(ǫx)e
inx

2 + b(ǫx)e−
inx

2

]

‖Hq(R) ≤ Cǫ5/6,

for anyq ≥ 0. Moreover, the solutionU(x) is real-valued,
continuous onx ∈ R, and lim

|x|→∞
U(x) = 0.

Remarks:1) We do not prove thatU(x) decays exponentially at
infinity. 2) The power ofǫ5/6 can be extended to anyǫp for
1
2
< p < 1.
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Steps of the proof

1. Convert the problem to the integral equation

(

ω − k2
)

Û(k) = ǫ
∑

m∈Z

V2mÛ(k −m)

+ǫσ

∫ ∫

Û(k1)
ˆ̄U(k2)Û(k − k1 + k2)dk1dk2

2. If V ∈ l2s+q(Z) for anys > 1
2

andq ≥ 0, then the vector field of
the integral equation is closed inL1

q(R) such that

∥

∥

∥

∥

∫

R

Û(k1)Ŵ (k − k1)dk1

∥

∥

∥

∥

L1
q(R)

≤ ‖Û‖L1
q(R)‖Ŵ‖L1

q(R)

∥

∥

∥

∥

∥

∑

m∈Z

V2mÛ(k −m)

∥

∥

∥

∥

∥

L1
q(R)

≤ ‖Û‖L1
q(R)‖V‖l2s+q(Z).
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Steps of the proof

3. Decompose the solution̂U(k) into three parts

Û(k) = Û+(k)χR
′

+
(k) + Û−(k)χR

′

−

(k) + Û0(k)χR
′

0
(k)

with a compact support on

R
′
± =

[

±n/2 − ǫ2/3,±n/2 + ǫ2/3
]

, R
′
0 = R\(R′

+ ∪ R
′
−),

whereinfk∈R′

0
|n2/4 − k2| ≥ Cǫ2/3.

4. There exists a unique map̂Uǫ : L1
q(R

′
+) × L1

q(R
′
−) 7→ L1

q(R
′
0)

such thatÛ0(k) = Ûǫ(Û+, Û−) and

∀|ǫ| < ǫ0 : ‖Û0(k)‖L1
q(R′

0) ≤ ǫ1/3C
(

‖Û+‖L1
q(R′

+) + ‖Û−‖L1
q(R′

−
)

)

.
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Steps of the proof

5. Write projections to the new amplitudes for the singular part

Û+(k) =
1

ǫ
Â

(

k − n/2

ǫ

)

, Û−(k) =
1

ǫ
B̂

(

k + n/2

ǫ

)

,

whereÂ(p), B̂(p) are defined onp ∈ R0 = [−ǫ−1/3, ǫ−1/3] and

‖Û+‖L1
q(R′

+) ≤ C‖Â‖L1
q(R0), ‖Û−‖L1

q(R′

−
) ≤ C‖B̂‖L1

q(R0).

6. Prove persistence of gap soliton solutions in the coupled-mode
system onp ∈ R0, e.g.

(Ω − np) Â(p) + V2nB̂(p) − σConv.Int.

= ǫp2Â(p) + ǫ1/3R̂a(Â, B̂, Ûǫ(Â, B̂)).
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Steps of the proof

7. Analyze the reminder terms, e.g.

‖R̂a‖L1
q(R0) ≤ Ca‖Â‖L1

q(R0), ǫ‖p2Â(p)‖L1
q(R0) ≤ ǫ1/3‖Â(p)‖L1

q(R0),

8. Solve the system̂N(Â) = R̂(Â) for ˆ̃A = Â− â by fixed-point
iterations

L̂ ˆ̃
A = R̂(â + ˆ̃

A) −
[

N̂(â + ˆ̃
A) − L̂

ˆ̃
A

]

, L̂ = DâN̂(â),

whereL̂ is a linearized operator for the coupled-mode system.

9. Analyze the truncation terms, e.g.

‖Â− â‖L1
q+1(R\R0) ≤ ‖Â− â‖L1

q+1(R) ≤ ǫ1/3C‖R̂a‖L1
q(R).
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Remarks

1. The method of the proofdoes notwork inN ≥ 2 since|k|2 − ω

is not invertible on the sphere of radius|k| =
√
ω while resonances

occur in a finite number of points on|k| =
√
ω.

2. Persistence ofy-independent solutions of the coupled-mode
system is proved with a simple application of Lyapunov–Schmidt
reductions.

Theorem: The nonlinear elliptic problem has a non-trivial
2π-periodic (or2π-antiperiodic) solutionU(x) in Hs

per(R) for any

s > 1
2

and sufficiently smallǫ if and only if there exists a non-trivial
solution for(a, b) ∈ C

2 of they-independent coupled-mode system.
In particular, there existsǫ0, C > 0 such that for allǫ ∈ (0, ǫ0)

‖U(x) −
√
ǫ
[

ae
inx
2 + be−

inx
2

]

‖Hs
per(R) ≤ Cǫ3/2.
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Extensions
• We have justified approximations of gap solitons by the

coupled-mode equations forsmallone-dimensional potentials.

• Coupled-mode equations in two dimensions lead to coupled
NLS equations, which are generalizations of the coupled NLS
equations derived nearband edges.

• Approximations of gap solitons in the coupled NLS equations
nearband edgescan be justified using the Fourier–Bloch
analysis.

• Similarly, we can justify approximations of gap solitons inthe
discrete NLS (lattice) equations forlargepotentials.

• The last two results remain valid in one, two, and three
dimensions for a class ofseparablebounded periodic potentials.
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