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Motivations

Gap solitonsare localized stationary solutions of nonlinear PDEs
with space-periodic coefficients which reside in the s@ég/aps of
associated linear operators.

Complex-valued Maxwell equation
V?E — Ey+ (V(z) +0|E]?) Ey =0
and the Gross—Pitaevskii equation
iE, = —V*E +V(z)E + ¢|E|°E,

whereE(x,t) : RY x R— C, V(x) = V(z + 27me;) : RY — R,
ando = +1.



EXxistence of stationary solutions

Stationary solution®(x,t) = U(x)e ™" with w € R satisfies a
nonlinear elliptic problem with a periodic potential

V2U 4+ wU = V(2)U + o|U|?U

[Pankov, 2005] Let/(x) be a real-valued bounded
periodic potential. Let be in a finite gap of the spectrum of
L = —V?* + V(x). There exists a non-trivial weak solution
U(x) € H'(RY), which is (i) real-valued, (ii) continuous on
r € RY and (iii) decays exponentially ag| — oo.

Additionally, there exists a localized solution
U(z) € H'(RY) in the semi-infinite gap for = —1 (NLS soliton).



Asymptotic reductions

The nonlinear elliptic problem with a periodic potentiahdae
reduced asymptotically to the following problems:

* Coupled-mode (Dirac) equations famall potentials

ia'(x) + Qa + ab = o(|al* + 2|b]*)a
—ib'(z) + Qb + aa = o(2]al* + |b]*)b

* Envelope (NLS) equations fomite potentials near band edges
a"(z) + Qa + olal?a = 0
* Lattice (dNLS) equations fdargeor long-periodpotentials
o (api1 + An_1) + Qa, + olas|®a, = 0.

Localized solutions of reduced equations exist in the ditafigrm.



Full versus asymptotic solutions

Can we justify the use of the three approximations
to classify localized solutions far (x)?

We avoid consideration of time-dependent problems. For
justification of Dirac and NLS equations on a finite time intdy
see Schneider-Uecker (2001) and Bustcal. (20006).

|[Goodman,Weinstein,Holmes, 2001] Let
(a,b) € C([0,Ty], H*(R,C?)) be solutions of the time-dependent
coupled-mode system for a fix@g > 0. There existg,,C' > 0
such that for alk € (0, ¢y) the Gross—Pitaevskii equation has a loca

solution £ (x, t) and
|E(z,t) — V€ |a(ex, et)e! Tt | p(eg, et)ei(_k‘f”—w'ﬁ)} |mw) < Ce

for some(k,w) and anyt € [0, 7Tq/¢].



Formal coupled-mode theory

Let N = 1andV (z) = ¢(1 — cos x). The finite-band spectrum of
L=-0+V(x)is

Asymptotic multi-scale expansion:

1T 1T

U(z) = e |a(ex)e? +blex)e 2 + O(e)|, w= -+ eQ+ O(e?)



Gap solitons in coupled-mode equation

The vector(a,b) : R — C* satisfies asymptotically the
coupled-mode system with parametee R:

ia' + Qa + Vob = o(lal? + 2|b|*)a,
—ib' + Qb+ V_sa = o(2|al® + |b]?)0,

whereV, = V_, are Fourier coefficients df (x) and derivatives are
taken with respect tg = ex. Gap solitons of the coupled-mode
system are obtained in the explicit analytic form, e.g.dGE 1,

R S~
V3 \/|Va| — Q cosh(xy) z\/|V2] + Qsinh(ky)

wherex = /|V3]?2 — Q% and|Q| < |V4].



Definitions for the main theorem

LetV (x) be a smootl27-periodic real-valued function
with zero mean and symmetiy(z) = V(—x) onx € R, such that

V(z) =) Vome™ : Y (14+m)°|Vam|* < o0,

meZ meZ

for somes > 0, wherelV, = 0andVs,,, =V o5, = V_o,..

The gap soliton of the coupled-mode system is said to
a reversible non-degenerate homoclinic orbit if
a(y) = a(—y) = b(y) anda(y) decays to zero dg| — oo
exponentially fast.

If V(x) =V(—z)andU(x) is a solution of the nonlinear
elliptic problem, therU (—x) is also a solution.



Spaces for the main theorem

Let U(xz) be represented by the Fourier transform

A

U(z) = ¢L2_7T /R O(k)e*dk,  O(k) = ¢L27 /R U(z)e-*edg,

In the vector space

Ue LiR): |’[7|’L}](IR%) — 4(1 + E2)12\U(k)|dk < oo.

By the Riemann-Lebesque Lemmaljife L!(R), thenU (z)
decays to zero at infinity 48| — oo andU (x) is n-times
continuously differentiable om € R for 0 < n < [g].

Moreover, since|U||r2 < ||U||.:, thenU € H(R).



Main Theorem in 1D

Let V' (x) satisfy the assumption and,, ## 0 for a fixed

n € N. Letw = %2 + eQ with || < |V5,,|. Let(a,b) be a reversible
homoclinic orbit of the coupled-mode system. Then, therstgex
€0, C' > 0 such that for alk € (0, ¢g) the nonlinear elliptic problem
has a non-trivial solutio®/ (x) and

|U(z) — /€ [a(em)@”;‘” © blex)e —%} | ragy < CE/°,

for anyq > 0. Moreover, the solutio/(x) is real-valued,
continuous orx € R, and lim U(x) = 0.

|| =00

1) We do not prove thal’ (=) decays exponentially at

infinity. 2) The power o&°/¢ can be extended to amy for
% <p<l.



Steps of the proof

1. Convert the problem to the integral equation

(w — k2 = € Z ng Uk —m)
meZ
+eo / / (kU (ko) U (k — ky + ko) dleydles

2.1fV e Z, (Z)foranys > 3 andq > 0, then the vector field of

the integral equation is closed irf (R) such that

< Ullez) W23 w)
L1 (R)

/ U (k)W (k — ki )dk,

S Vonl(k—m)| < |UllyelV

meZ Lc1] (R)

2 ,
ls+q )




Steps of the proof

3. Decompose the solutidri(k) into three parts

A AN AN AN

U(k) = U+(k)XR’+(k) + U_(k)xr (k) + Uo(k)XRg)(k)
with a compact support on
R, = [+n/2 — ¥/? £n/2 + 3], Ry =R\(R, UR"),
whereinf e, |n?/4 — k?| > Ce*/?.

4. There exists a unique map : LL(R,) x LL(R.) — LL(R})
such that’y (k) = U.(U,,U_) and

Vel <eo: (0o lzyey < €°C (104 logeyy + 10 lzyeee )



Steps of the proof

5. Write projections to the new amplitudes for the singulant p

m(k):?}(k—n/z)’ ﬁ(k):%f}(km/z)

€

whereA(p), B(p) are defined op € Ry = [—¢ /3, ¢1/3] and

Ui lliry) < CllAllLymeys  NU-llni@ ) < ClBllzio)-

6. Prove persistence of gap soliton solutions in the coupiede
system o € Ry, e.g.

A

(Q — np) A(p) + VanB(p) — cConv.Int.



Steps of the proof

/. Analyze the reminder terms, e.g.

| Ballzamo) < Call Allzamoys €llp®Al) |l < €7 I1AD) | 22wo)s

AN AN

8. Solve the systemV(A) — R(A) for A = A — a by fixed-point
iterations

A

IA=R(E+A) - [N@a+A)-LA|, L=D:N@),

whereL is a linearized operator for the coupled-mode system.
9. Analyze the truncation terms, e.g.

A —allz,, @me < 1A —alln,, @ < €0 Rallym)-



Remarks

1. The method of the proafoes nowork in N > 2 since|k|* — w
IS not invertible on the sphere of radilis = \/w while resonances
occur in a finite number of points gh| = /w.

2. Persistence af-independent solutions of the coupled-mode
system is proved with a simple application of Lyapunov—Sichhm
reductions.

The nonlinear elliptic problem has a non-trivial
2m-periodic (or2m-antiperiodic) solutior/(x) in [, (R) for any
s > < and sufficiently smalt if and only if there exists a non-trivial

solution for(a, b) € C* of they-independent coupled-mode system.
In particular, there exists), C' > 0 such that for alk € (0, ¢)

|U(x) — ve |ae2 +be 2

H3.® < Ce”.



Extensions

We have justified approximations of gap solitons by the
coupled-mode equations femallone-dimensional potentials.

Coupled-mode equations in two dimensions lead to coupled
NLS equations, which are generalizations of the coupled NLS
equations derived neaend edges

Approximations of gap solitons in the coupled NLS equations
nearband edgeean be justified using the Fourier—Bloch
analysis.

Similarly, we can justify approximations of gap solitonghe
discrete NLS (lattice) equations farge potentials.

The last two results remain valid in one, two, and three
dimensions for a class eEparabldounded periodic potentials.
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