Justification of coupled-mode equations for optical lattices

Dmitry Pelinovsky

Institute of Analysis and Dynamics, University of Stuttgart, Germany Department of Mathematics, McMaster University, Canada

Joint work with Guido Schneider (University of Stuttgart)

Reference: Applicable Analysis, accepted (April, 2007)

Motivations

Gap solitons are localized stationary solutions of nonlinear PDEs with space-periodic coefficients which reside in the spectral gaps of associated linear operators.

Examples: Complex-valued Maxwell equation

$$
\nabla^{2} E-E_{t t}+\left(V(x)+\sigma|E|^{2}\right) E_{t t}=0
$$

and the Gross-Pitaevskii equation

$$
i E_{t}=-\nabla^{2} E+V(x) E+\sigma|E|^{2} E,
$$

where $E(x, t): \mathbb{R}^{N} \times \mathbb{R} \mapsto \mathbb{C}, V(x)=V\left(x+2 \pi e_{j}\right): \mathbb{R}^{N} \mapsto \mathbb{R}$, and $\sigma= \pm 1$.

Existence of stationary solutions

Stationary solutions $E(x, t)=U(x) e^{-i \omega t}$ with $\omega \in \mathbb{R}$ satisfies a nonlinear elliptic problem with a periodic potential

$$
\nabla^{2} U+\omega U=V(x) U+\sigma|U|^{2} U
$$

Theorem:[Pankov, 2005] Let $V(x)$ be a real-valued bounded periodic potential. Let ω be in a finite gap of the spectrum of $L=-\nabla^{2}+V(x)$. There exists a non-trivial weak solution $U(x) \in H^{1}\left(\mathbb{R}^{N}\right)$, which is (i) real-valued, (ii) continuous on $x \in \mathbb{R}^{N}$ and (iii) decays exponentially as $|x| \rightarrow \infty$.

Remark: Additionally, there exists a localized solution $U(x) \in H^{1}\left(\mathbb{R}^{N}\right)$ in the semi-infinite gap for $\sigma=-1$ (NLS soliton).

Asymptotic reductions

The nonlinear elliptic problem with a periodic potential can be reduced asymptotically to the following problems:

- Coupled-mode (Dirac) equations for small potentials

$$
\left\{\begin{array}{c}
i a^{\prime}(x)+\Omega a+\alpha b=\sigma\left(|a|^{2}+2|b|^{2}\right) a \\
-i b^{\prime}(x)+\Omega b+\alpha a=\sigma\left(2|a|^{2}+|b|^{2}\right) b
\end{array}\right.
$$

- Envelope (NLS) equations for finite potentials near band edges

$$
a^{\prime \prime}(x)+\Omega a+\sigma|a|^{2} a=0
$$

- Lattice (dNLS) equations for large or long-period potentials

$$
\alpha\left(a_{n+1}+a_{n-1}\right)+\Omega a_{n}+\sigma\left|a_{n}\right|^{2} a_{n}=0 .
$$

Localized solutions of reduced equations exist in the analytic form.

Full versus asymptotic solutions

Can we justify the use of the three approximations to classify localized solutions for $U(x)$?

We avoid consideration of time-dependent problems. For justification of Dirac and NLS equations on a finite time interval, see Schneider-Uecker (2001) and Busch et al. (2006).

Theorem:[Goodman,Weinstein,Holmes, 2001] Let $(a, b) \in C\left(\left[0, T_{0}\right], H^{3}\left(\mathbb{R}, \mathbb{C}^{2}\right)\right)$ be solutions of the time-dependent coupled-mode system for a fixed $T_{0}>0$. There exists $\epsilon_{0}, C>0$ such that for all $\epsilon \in\left(0, \epsilon_{0}\right)$ the Gross-Pitaevskii equation has a local solution $E(x, t)$ and
$\left\|E(x, t)-\sqrt{\epsilon}\left[a(\epsilon x, \epsilon t) e^{i(k x-\omega t)}+b(\epsilon x, \epsilon t) e^{i(-k x-\omega t)}\right]\right\|_{H^{1}(\mathbb{R})} \leq C \epsilon$
for some (k, ω) and any $t \in\left[0, T_{0} / \epsilon\right]$.

Formal coupled-mode theory

Let $N=1$ and $V(x)=\epsilon(1-\cos x)$. The finite-band spectrum of $L=-\partial_{x}^{2}+V(x)$ is

Asymptotic multi-scale expansion:
$U(x)=\sqrt{\epsilon}\left[a(\epsilon x) e^{\frac{i x}{2}}+b(\epsilon x) e^{-\frac{i x}{2}}+\mathrm{O}(\epsilon)\right], \quad \omega=\frac{1}{4}+\epsilon \Omega+\mathrm{O}\left(\epsilon^{2}\right)$

Gap solitons in coupled-mode equations

The vector $(a, b): \mathbb{R} \mapsto \mathbb{C}^{2}$ satisfies asymptotically the coupled-mode system with parameter $\Omega \in \mathbb{R}$:

$$
\left\{\begin{array}{c}
i a^{\prime}+\Omega a+V_{2} b=\sigma\left(|a|^{2}+2|b|^{2}\right) a, \\
-i b^{\prime}+\Omega b+V_{-2} a=\sigma\left(2|a|^{2}+|b|^{2}\right) b,
\end{array}\right.
$$

where $V_{2}=\bar{V}_{-2}$ are Fourier coefficients of $V(x)$ and derivatives are taken with respect to $y=\epsilon x$. Gap solitons of the coupled-mode system are obtained in the explicit analytic form, e.g. for $\sigma=1$,

$$
a(y)=\bar{b}(y)=\frac{\sqrt{2}}{\sqrt{3}} \frac{\sqrt{\left|V_{2}\right|^{2}-\Omega^{2}}}{\sqrt{\left|V_{2}\right|-\Omega} \cosh (\kappa y)+i \sqrt{\left|V_{2}\right|+\Omega} \sinh (\kappa y)},
$$

where $\kappa=\sqrt{\left|V_{2}\right|^{2}-\Omega^{2}}$ and $|\Omega|<\left|V_{2}\right|$.

Definitions for the main theorem

Let $V(x)$ be a smooth 2π-periodic real-valued function with zero mean and symmetry $V(x)=V(-x)$ on $x \in \mathbb{R}$, such that

$$
V(x)=\sum_{m \in \mathbb{Z}} V_{2 m} e^{i m x}: \quad \sum_{m \in \mathbb{Z}}\left(1+m^{2}\right)^{s}\left|V_{2 m}\right|^{2}<\infty,
$$

for some $s \geq 0$, where $V_{0}=0$ and $V_{2 m}=V_{-2 m}=\bar{V}_{-2 m}$.
Definition: The gap soliton of the coupled-mode system is said to be a reversible non-degenerate homoclinic orbit if $a(y)=\bar{a}(-y)=\bar{b}(y)$ and $a(y)$ decays to zero as $|y| \rightarrow \infty$ exponentially fast.

Remark: If $V(x)=V(-x)$ and $U(x)$ is a solution of the nonlinear elliptic problem, then $U(-x)$ is also a solution.

Spaces for the main theorem

Let $U(x)$ be represented by the Fourier transform

$$
U(x)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \hat{U}(k) e^{i k x} d k, \quad \hat{U}(k)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} U(x) e^{-i k x} d x
$$

in the vector space

$$
\hat{U} \in L_{q}^{1}(\mathbb{R}): \quad\|\hat{U}\|_{L_{q}^{1}(\mathbb{R})}=\int_{\mathbb{R}}\left(1+k^{2}\right)^{q / 2}|\hat{U}(k)| d k<\infty .
$$

By the Riemann-Lebesque Lemma, if $\hat{U} \in L^{1}(\mathbb{R})$, then $U(x)$ decays to zero at infinity as $|x| \rightarrow \infty$ and $U(x)$ is n-times continuously differentiable on $x \in \mathbb{R}$ for $0 \leq n \leq[q]$.

Moreover, since $\|\hat{U}\|_{L_{q}^{2}} \leq\|\hat{U}\|_{L_{q}^{1}}$, then $U \in H^{q}(\mathbb{R})$.

Main Theorem in 1D

Let $V(x)$ satisfy the assumption and $V_{2 n} \neq 0$ for a fixed $n \in \mathbb{N}$. Let $\omega=\frac{n^{2}}{4}+\epsilon \Omega$ with $|\Omega|<\left|V_{2 n}\right|$. Let (a, b) be a reversible homoclinic orbit of the coupled-mode system. Then, there exists $\epsilon_{0}, C>0$ such that for all $\epsilon \in\left(0, \epsilon_{0}\right)$ the nonlinear elliptic problem has a non-trivial solution $U(x)$ and

$$
\left\|U(x)-\sqrt{\epsilon}\left[a(\epsilon x) e^{\frac{i n x}{2}}+b(\epsilon x) e^{-\frac{i n x}{2}}\right]\right\|_{H^{q}(\mathbb{R})} \leq C \epsilon^{5 / 6}
$$

for any $q \geq 0$. Moreover, the solution $U(x)$ is real-valued, continuous on $x \in \mathbb{R}$, and $\lim _{|x| \rightarrow \infty} U(x)=0$.
Remarks: 1) We do not prove that $U(x)$ decays exponentially at infinity. 2) The power of $\epsilon^{5 / 6}$ can be extended to any ϵ^{p} for $\frac{1}{2}<p<1$.

Steps of the proof

1. Convert the problem to the integral equation

$$
\begin{array}{r}
\left(\omega-k^{2}\right) \hat{U}(k)=\epsilon \sum_{m \in \mathbb{Z}} V_{2 m} \hat{U}(k-m) \\
+\epsilon \sigma \iint \hat{U}\left(k_{1}\right) \hat{U}\left(k_{2}\right) \hat{U}\left(k-k_{1}+k_{2}\right) d k_{1} d k_{2}
\end{array}
$$

2. If $\mathbf{V} \in l_{s+q}^{2}(\mathbb{Z})$ for any $s>\frac{1}{2}$ and $q \geq 0$, then the vector field of the integral equation is closed in $L_{q}^{1}(\mathbb{R})$ such that

$$
\begin{aligned}
\left\|\int_{\mathbb{R}} \hat{U}\left(k_{1}\right) \hat{W}\left(k-k_{1}\right) d k_{1}\right\|_{L_{q}^{1}(\mathbb{R})} & \leq\|\hat{U}\|_{L_{q}^{1}(\mathbb{R})}\|\hat{W}\|_{L_{q}^{1}(\mathbb{R})} \\
\left\|\sum_{m \in \mathbb{Z}} V_{2 m} \hat{U}(k-m)\right\|_{L_{q}^{1}(\mathbb{R})} & \leq\|\hat{U}\|_{L_{q}^{1}(\mathbb{R})}\|V\|_{l_{s+q}^{2}(\mathbb{Z})} .
\end{aligned}
$$

Steps of the proof

3. Decompose the solution $\hat{U}(k)$ into three parts

$$
\hat{U}(k)=\hat{U}_{+}(k) \chi_{\mathbb{R}_{+}^{\prime}}(k)+\hat{U}_{-}(k) \chi_{\mathbb{R}_{-}^{\prime}}(k)+\hat{U}_{0}(k) \chi_{\mathbb{R}_{0}^{\prime}}(k)
$$

with a compact support on

$$
\mathbb{R}_{ \pm}^{\prime}=\left[\pm n / 2-\epsilon^{2 / 3}, \pm n / 2+\epsilon^{2 / 3}\right], \quad \mathbb{R}_{0}^{\prime}=\mathbb{R} \backslash\left(\mathbb{R}_{+}^{\prime} \cup \mathbb{R}_{-}^{\prime}\right)
$$

where $\inf _{k \in \mathbb{R}_{0}^{\prime}}\left|n^{2} / 4-k^{2}\right| \geq C \epsilon^{2 / 3}$.
4. There exists a unique map $\hat{U}_{\epsilon}: L_{q}^{1}\left(\mathbb{R}_{+}^{\prime}\right) \times L_{q}^{1}\left(\mathbb{R}_{-}^{\prime}\right) \mapsto L_{q}^{1}\left(\mathbb{R}_{0}^{\prime}\right)$ such that $\hat{U}_{0}(k)=\hat{U}_{\epsilon}\left(\hat{U}_{+}, \hat{U}_{-}\right)$and
$\forall|\epsilon|<\epsilon_{0}: \quad\left\|\hat{U}_{0}(k)\right\|_{L_{q}^{1}\left(\mathbb{R}_{0}^{\prime}\right)} \leq \epsilon^{1 / 3} C\left(\left\|\hat{U}_{+}\right\|_{L_{q}^{1}\left(\mathbb{R}_{+}^{\prime}\right)}+\left\|\hat{U}_{-}\right\|_{L_{q}^{1}\left(\mathbb{R}_{-}^{\prime}\right)}\right)$.

Steps of the proof

5. Write projections to the new amplitudes for the singular part

$$
\hat{U}_{+}(k)=\frac{1}{\epsilon} \hat{A}\left(\frac{k-n / 2}{\epsilon}\right), \quad \hat{U}_{-}(k)=\frac{1}{\epsilon} \hat{B}\left(\frac{k+n / 2}{\epsilon}\right),
$$

where $\hat{A}(p), \hat{B}(p)$ are defined on $p \in \mathbb{R}_{0}=\left[-\epsilon^{-1 / 3}, \epsilon^{-1 / 3}\right]$ and

$$
\left\|\hat{U}_{+}\right\|_{L_{q}^{1}\left(\mathbb{R}_{+}^{\prime}\right)} \leq C\|\hat{A}\|_{L_{q}^{1}\left(\mathbb{R}_{0}\right)}, \quad\left\|\hat{U}_{-}\right\|_{L_{q}^{1}\left(\mathbb{R}_{-}^{\prime}\right)} \leq C\|\hat{B}\|_{L_{q}^{1}\left(\mathbb{R}_{0}\right)}
$$

6. Prove persistence of gap soliton solutions in the coupled-mode system on $p \in \mathbb{R}_{0}$, e.g.

$$
\begin{aligned}
& (\Omega-n p) \hat{A}(p)+V_{2 n} \hat{B}(p)-\sigma \text { Conv.Int. } \\
& \quad=\epsilon p^{2} \hat{A}(p)+\epsilon^{1 / 3} \hat{R}_{a}\left(\hat{A}, \hat{B}, \hat{U}_{\epsilon}(\hat{A}, \hat{B})\right) .
\end{aligned}
$$

Steps of the proof

7. Analyze the reminder terms, e.g.

$$
\left\|\hat{R}_{a}\right\|_{L_{q}^{1}\left(\mathbb{R}_{0}\right)} \leq C_{a}\|\hat{A}\|_{L_{q}^{1}\left(\mathbb{R}_{0}\right)}, \quad \epsilon\left\|p^{2} \hat{A}(p)\right\|_{L_{q}^{1}\left(\mathbb{R}_{0}\right)} \leq \epsilon^{1 / 3}\|\hat{A}(p)\|_{L_{q}^{1}\left(\mathbb{R}_{0}\right)},
$$

8. Solve the system $\hat{\mathbf{N}}(\hat{\mathbf{A}})=\hat{\mathbf{R}}(\hat{\mathbf{A}})$ for $\hat{\tilde{A}}=\hat{A}-\hat{a}$ by fixed-point iterations

$$
\hat{L} \hat{\tilde{\mathbf{A}}}=\hat{\mathbf{R}}(\hat{\mathbf{a}}+\hat{\tilde{\mathbf{A}}})-[\hat{\mathbf{N}}(\hat{\mathbf{a}}+\hat{\tilde{\mathbf{A}}})-\hat{\mathbf{L}} \hat{\tilde{\mathbf{A}}}], \quad \hat{\mathbf{L}}=\mathbf{D}_{\hat{\mathbf{a}}} \hat{\mathbf{N}}(\hat{\mathbf{a}})
$$

where \hat{L} is a linearized operator for the coupled-mode system. 9. Analyze the truncation terms, e.g.

$$
\|\hat{A}-\hat{a}\|_{L_{q+1}^{1}\left(\mathbb{R} \backslash \mathbb{R}_{0}\right)} \leq\|\hat{A}-\hat{a}\|_{L_{q+1}^{1}(\mathbb{R})} \leq \epsilon^{1 / 3} C\left\|\hat{R}_{a}\right\|_{L_{q}^{1}(\mathbb{R})}
$$

Remarks

1. The method of the proof does not work in $N \geq 2$ since $|k|^{2}-\omega$ is not invertible on the sphere of radius $|k|=\sqrt{\omega}$ while resonances occur in a finite number of points on $|k|=\sqrt{\omega}$.
2. Persistence of y-independent solutions of the coupled-mode system is proved with a simple application of Lyapunov-Schmidt reductions.

Theorem: The nonlinear elliptic problem has a non-trivial 2π-periodic (or 2π-antiperiodic) solution $U(x)$ in $H_{\text {per }}^{s}(\mathbb{R})$ for any $s>\frac{1}{2}$ and sufficiently small ϵ if and only if there exists a non-trivial solution for $(a, b) \in \mathbb{C}^{2}$ of the y-independent coupled-mode system. In particular, there exists $\epsilon_{0}, C>0$ such that for all $\epsilon \in\left(0, \epsilon_{0}\right)$

$$
\left\|U(x)-\sqrt{\epsilon}\left[a e^{\frac{i n x}{2}}+b e^{-\frac{i n x}{2}}\right]\right\|_{H_{\mathrm{p} e r}(\mathbb{R})} \leq C \epsilon^{3 / 2} .
$$

Extensions

- We have justified approximations of gap solitons by the coupled-mode equations for small one-dimensional potentials.
- Coupled-mode equations in two dimensions lead to coupled NLS equations, which are generalizations of the coupled NLS equations derived near band edges.
- Approximations of gap solitons in the coupled NLS equations near band edges can be justified using the Fourier-Bloch analysis.
- Similarly, we can justify approximations of gap solitons in the discrete NLS (lattice) equations for large potentials.
- The last two results remain valid in one, two, and three dimensions for a class of separable bounded periodic potentials.

