Hamiltonian PT-symmetric chains of coupled pendula

Alexander Chernyavsky and Dmitry Pelinovsky

 $Department\ of\ Mathematics,\ McMaster\ University,\ Ontario,\ Canada$

SUNY Buffalo, April 2, 2016

PT-symmetric quantum mechanics

Consider the evolution problem

$$i\frac{du}{dt} = Hu, \quad u(t,\cdot) \in L^2, \quad t \in \mathbb{R},$$

where H is a linear operator with a domain in L^2 . If H is Hermitian, then $\sigma(H) \subset \mathbb{R}$ and e^{-itH} is unitary on L^2 .

PT-symmetric quantum mechanics

Consider the evolution problem

$$i\frac{du}{dt}=Hu,\quad u(t,\cdot)\in L^2,\quad t\in\mathbb{R},$$

where H is a linear operator with a domain in L^2 . If H is Hermitian, then $\sigma(H) \subset \mathbb{R}$ and e^{-itH} is unitary on L^2 .

Let us now assume that H is not Hermitian but PT-symmetric, where

- P stands for parity transformation
- T stands for time reversion and complex conjugation,

$$P^2u(t)=u(t), \quad Tu(t)=\bar{u}(-t).$$

Therefore, operators H and PT commute:

$$PTH = HPT$$
.

[C.M. Bender, 2007]

Dmitry Pelinovsky (McMaster University)

2 / 27

Properties of PT-symmetric systems

If u(t) is a solution of the evolution equation, then

$$v(t) = PTu(t) = P\overline{u}(-t)$$

is also a solution of the same system

$$iv'(t) = Hv \Rightarrow -iP\bar{u}'(-t) = HP\bar{u}(-t) \Rightarrow iu'(t) = Hu.$$

Properties of PT-symmetric systems

If u(t) is a solution of the evolution equation, then

$$v(t) = PTu(t) = P\overline{u}(-t)$$

is also a solution of the same system

$$iv'(t) = Hv \Rightarrow -iP\bar{u}'(-t) = HP\bar{u}(-t) \Rightarrow iu'(t) = Hu.$$

If E is an eigenvalue and U is an eigenfunction, then \bar{E} is also an eigenvalue with the eigenfunction $P\bar{U}$, because

$$u(t) = Ue^{-iEt} \quad \Rightarrow \quad v(t) = P\bar{U}e^{-i\bar{E}t}.$$

Properties of PT-symmetric systems

If u(t) is a solution of the evolution equation, then

$$v(t) = PTu(t) = P\overline{u}(-t)$$

is also a solution of the same system

$$iv'(t) = Hv \Rightarrow -iP\bar{u}'(-t) = HP\bar{u}(-t) \Rightarrow iu'(t) = Hu.$$

If E is an eigenvalue and U is an eigenfunction, then \bar{E} is also an eigenvalue with the eigenfunction $P\bar{U}$, because

$$u(t) = Ue^{-iEt} \quad \Rightarrow \quad v(t) = P\bar{U}e^{-i\bar{E}t}.$$

Bender's Conjecture: For many physically relevant PT-symmetric operators H_1 all eigenvalues are real and all eigenfunctions are PT-symmetric.

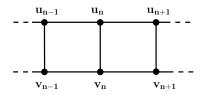
<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 る の へ ○ < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回

Examples of a PT-symmetric lattice

Dimer lattices in nonlinear optics (coupled waveguides):

$$\left\{ \begin{array}{l} i \dot{u}_n + v_n = \epsilon (u_{n+1} - 2u_n + u_{n-1}) + i \gamma u_n + |u_n|^2 u_n, \\ i \dot{v}_n + u_n = \epsilon (v_{n+1} - 2v_n + v_{n-1}) - i \gamma v_n + |v_n|^2 v_n, \end{array} \right.$$

where $\gamma>0$ is the gain-damping parameter and $\epsilon>0$ is lattice coupling.



The PT symmetry is

$$P\left[egin{array}{c} u \\ v \end{array}
ight] = \left[egin{array}{c} v \\ u \end{array}
ight], \qquad T\left[egin{array}{c} u(t) \\ v(t) \end{array}
ight] = \left[egin{array}{c} ar{u}(-t) \\ ar{v}(-t) \end{array}
ight].$$

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 夕久で

Relevant questions

For a single site (say, $\epsilon=0$), the coupled system is referred to as a dimer. Linear stability analysis yields that the dimer is stable if $\gamma\in(0,1)$. Therefore, the linear system for $\gamma\in(0,1)$ satisfies Bender's conjecture. The threshold $\gamma=1$ is referred to as the PT phase transition.

Relevant questions

For a single site (say, $\epsilon=0$), the coupled system is referred to as a dimer. Linear stability analysis yields that the dimer is stable if $\gamma\in(0,1)$. Therefore, the linear system for $\gamma\in(0,1)$ satisfies Bender's conjecture. The threshold $\gamma=1$ is referred to as the PT phase transition.

Relevant questions:

- **①** Do the solutions stay bounded for all times if $\gamma \in (0,1)$?
- ② Do there exist linearly stable localized modes on the lattice for $\gamma \in (0,1)$?
- Are linearly stable localized modes also stable in the nonlinear dynamics of the lattice?

Unfortunately, many PT-symmetric systems are typically non-Hamiltonian.

Hamiltonian PT-symmetric dimer

A Hamiltonian example of a PT-symmetric dimer is

$$\begin{cases} i\dot{u}_n + v_n = i\gamma u_n + (|u_n|^2 + 2|v_n|^2)u_n + v_n^2 \bar{u}_n, \\ i\dot{v}_n + u_n = -i\gamma v_n + (2|u_n|^2 + |v_n|^2)v_n + u_n^2 \bar{v}_n. \end{cases}$$

where $\gamma > 0$ is the gain-damping parameter and n = 0 (a single site).

The Hamiltonian function

$$i\frac{du_n}{dt} = \frac{\partial H}{\partial \bar{v}_n}, \quad i\frac{dv_n}{dt} = \frac{\partial H}{\partial \bar{u}_n},$$

with

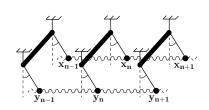
$$H = |u_n|^2 + |v_n|^2 + i\gamma(u_n\bar{v}_n - \bar{u}_nv_n) + (u_n\bar{v}_n + \bar{u}_nv_n)(|u_n|^2 + |v_n|^2).$$

Jørgensen-Christiansen (1998); Barashenkov-Gianfreda (2014); Barashenkov-Pelinovsky-Dubard (2015)

◆ロト ◆園ト ◆夏ト ◆夏ト 夏 めのの

Physical context - coupled pendula

A. Pikovsky, M. Rosenblum, J. Kurth *Synchronization* (2001) M. Bennett, M. Schatz, Rockwood, K. Wiesenfeld (2002) C. Bender, B. Berntson, D. Parker, E. Samuel (2013)



Newton's equations of motion:

$$\begin{cases} \ddot{x}_n + \sin(x_n) = C(x_{n+1} - 2x_n + x_{n-1}) + Dy_n, \\ \ddot{y}_n + \sin(y_n) = C(y_{n+1} - 2y_n + y_{n-1}) + Dx_n, \end{cases} \quad n \in \mathbb{Z}, \quad t \in \mathbb{R},$$

where ${\cal C}$ is the coupling constant for torsional springs and ${\cal D}$ is the coupling constant for rope tension of the common string. The model is Hamiltonian:

$$H = \sum_{n \in \mathbb{Z}} E(x_n) + E(y_n) + \frac{1}{2}C(x_{n+1} - x_n)^2 + \frac{1}{2}C(y_{n+1} - y_n)^2 - Dx_ny_n.$$

Reduction in the limit of small oscillations

Small coupling constants and periodic movement of the common strings with nearly resonant frequency:

$$C = \epsilon \mu^2$$
, $D(t) = 2\gamma \mu^2 \cos(2\omega t)$, $\omega^2 = 1 - \mu^2 \Omega$,

where μ is a formal small parameter.

Using expansions like

$$\begin{cases} x_n(t) = \mu \left[A_n(\mu^2 t) e^{i\omega t} + \bar{A}_n(\mu^2 t) e^{-i\omega t} \right] + \mathcal{O}(\mu^3) \\ y_n(t) = \mu \left[B_n(\mu^2 t) e^{i\omega t} + \bar{B}_n(\mu^2 t) e^{-i\omega t} \right] + \mathcal{O}(\mu^3), \end{cases}$$

we obtain the reduced system

$$\begin{cases} 2i\dot{A}_{n} + \Omega A_{n} = \epsilon (A_{n+1} - 2A_{n} + A_{n-1}) + \gamma \bar{B}_{n} + \frac{1}{2}|A_{n}|^{2}A_{n}, \\ 2i\dot{B}_{n} + \Omega B_{n} = \epsilon (B_{n+1} - 2B_{n} + B_{n-1}) + \gamma \bar{A}_{n} + \frac{1}{2}|B_{n}|^{2}B_{n}. \end{cases}$$

The model is Hamiltonian and autonomous.

◆ロト ◆園ト ◆園ト ◆園ト ■ めので

Reduction to the *PT*-symmetric dNLS equation

Using the choice

$$u_n := \frac{1}{4} \left(A_n - i \bar{B}_n \right), \quad v_n := \frac{1}{4} \left(A_n + i \bar{B}_n \right),$$

we obtain the coupled PT-dNLS equation

$$\left\{ \begin{array}{l} i\dot{u}_{n} + \Omega v_{n} = \epsilon \left(v_{n+1} - 2v_{n} + v_{n-1}\right) + i\gamma u_{n} + \left(2|u_{n}|^{2} + |v_{n}|^{2}\right)v_{n} + u_{n}^{2}\bar{v}_{n}, \\ i\dot{v}_{n} + \Omega u_{n} = \epsilon \left(u_{n+1} - 2u_{n} + u_{n-1}\right) - i\gamma v_{n} + \left(|u_{n}|^{2} + 2|v_{n}|^{2}\right)u_{n} + \bar{u}_{n}v_{n}^{2}, \end{array} \right.$$

The model is Hamiltonian and PT-symmetric with the energy function

$$H = \sum_{n \in \mathbb{Z}} (|u_n|^2 + |v_n|^2)^2 + (u_n \bar{v}_n + \bar{u}_n v_n)^2 - \Omega(|u_n|^2 + |v_n|^2)$$
$$-\epsilon |u_{n+1} - u_n|^2 - \epsilon |v_{n+1} - v_n|^2 + i\gamma(u_n \bar{v}_n - \bar{u}_n v_n).$$

Another conserved quantity is related to gauge symmetry:

$$Q = \sum_{n \in \mathbb{Z}} (u_n \bar{v}_n + \bar{u}_n v_n).$$

◆ロト ◆@ ト ◆ 差 ト ◆ 差 ・ 釣 へ ②

Relevant questions

Let us reiterate the same questions for the main model:

$$\left\{ \begin{array}{l} i\dot{u}_{n} + \Omega v_{n} = \epsilon \left(v_{n+1} - 2v_{n} + v_{n-1}\right) + i\gamma u_{n} + \left(2|u_{n}|^{2} + |v_{n}|^{2}\right)v_{n} + u_{n}^{2}\bar{v}_{n}, \\ i\dot{v}_{n} + \Omega u_{n} = \epsilon \left(u_{n+1} - 2u_{n} + u_{n-1}\right) - i\gamma v_{n} + \left(|u_{n}|^{2} + 2|v_{n}|^{2}\right)u_{n} + \bar{u}_{n}v_{n}^{2}, \end{array} \right.$$

The linear system at zero equilibrium is stable for $\gamma \in (0, |\Omega|)$ (at $\epsilon = 0$).

- **1** Do the solutions stay bounded for all times if $\gamma \in (0, |\Omega|)$?
- ② Do there exist linearly stable localized modes on the lattice for $\gamma \in (0, |\Omega|)$?
- Are linearly stable localized modes also stable in the nonlinear dynamics of the lattice?

Now we can explore the Hamiltonian structure of the *PT* lattice to give answers to these questions.

1. Do the solutions stay bounded for all times?

Consider the Hamiltonian function

$$H = \sum_{n \in \mathbb{Z}} (|u_n|^2 + |v_n|^2)^2 + (u_n \bar{v}_n + \bar{u}_n v_n)^2 - \Omega(|u_n|^2 + |v_n|^2)$$
$$-\epsilon |u_{n+1} - u_n|^2 - \epsilon |v_{n+1} - v_n|^2 + i\gamma(u_n \bar{v}_n - \bar{u}_n v_n).$$

If $\Omega < 0$ and $|\gamma| < |\Omega| - 4\epsilon$, then

$$H \ge (|\Omega| - |\gamma| - 4\epsilon) (||u||_{\ell^2}^2 + ||v||_{\ell^2}^2).$$

Therefore, there is a positive constant C that depends on γ, ϵ, Ω and the initial data in $\ell^2(\mathbb{Z})$ such that

$$||u(t)||_{\ell^2}^2 + ||v(t)||_{\ell^2}^2 \le C$$
, for every $t \in \mathbb{R}$.

The condition $|\gamma| < |\Omega| - 4\epsilon$ for $\Omega < 0$ coincides with the condition of linear stability of the zero equilibrium.

What if $\Omega > 0$?

Consider the Hamiltonian function

$$-H = \sum_{n \in \mathbb{Z}} -(|u_n|^2 + |v_n|^2)^2 - (u_n \bar{v}_n + \bar{u}_n v_n)^2 + \Omega(|u_n|^2 + |v_n|^2)$$

$$+\epsilon |u_{n+1} - u_n|^2 + \epsilon |v_{n+1} - v_n|^2 - i\gamma(u_n \bar{v}_n - \bar{u}_n v_n).$$

If $\Omega > 0$ and $|\gamma| < \Omega$, then

$$-H \ge (\Omega - |\gamma|) \left(\|u\|_{\ell^2}^2 + \|v\|_{\ell^2}^2 \right) - \left(\|u\|_{\ell^2}^2 + \|v\|_{\ell^2}^2 \right)^2,$$

where we have used $||u||_{\ell^4} \le ||u||_{\ell^2}$. For sufficiently small initial data in $\ell^2(\mathbb{Z})$, we still have

$$||u(t)||_{\ell^2}^2 + ||v(t)||_{\ell^2}^2 \le C$$
, for every $t \in \mathbb{R}$.

The condition $|\gamma|<\Omega$ for $\Omega>0$ coincides with the condition of linear stability of the zero equilibrium.

2. Do there exist linearly stable localized modes?

Stationary PT-symmetric localized modes:

$$u(t) = Ue^{-iEt}, \quad v(t) = Ve^{-iEt}, \quad V = \bar{U},$$

where U satisfies the stationary PT-symmetric DNLS equation

$$EU_{n} + \Omega \bar{U}_{n} = \epsilon \left(\bar{U}_{n+1} - 2\bar{U}_{n} + \bar{U}_{n-1} \right) + i\gamma U_{n} + 3|U_{n}|^{2}\bar{U}_{n} + U_{n}^{3}.$$

2. Do there exist linearly stable localized modes?

Stationary PT-symmetric localized modes:

$$u(t) = Ue^{-iEt}, \quad v(t) = Ve^{-iEt}, \quad V = \bar{U},$$

where U satisfies the stationary PT-symmetric DNLS equation

$$EU_{n} + \Omega \bar{U}_{n} = \epsilon \left(\bar{U}_{n+1} - 2\bar{U}_{n} + \bar{U}_{n-1} \right) + i\gamma U_{n} + 3|U_{n}|^{2}\bar{U}_{n} + U_{n}^{3}.$$

Local bifurcation from the central dimer at $\epsilon = 0$:

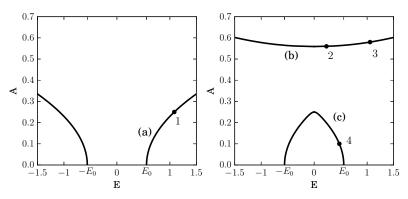
$$(E - i\gamma)U_0 + \Omega \bar{U}_0 = 3|U_0|^2 \bar{U}_0 + U_0^3.$$

In the polar form $U_0=Ae^{i heta}$, we obtain the parameterization

$$E^2 = (\Omega - 4A^2)^2 \left[1 - \frac{\gamma^2}{(\Omega - 2A^2)^2} \right].$$

If
$$A=0$$
, then $E=\pm E_0$ with $E_0:=\sqrt{\Omega^2-\gamma^2}>0$.

Stationary modes of the central dimer for $|\gamma| < |\Omega|$



Assume $\gamma \neq 0$. Then,

- (a) $\Omega<-|\gamma|$ two symmetric unbounded branches exist for $\pm E>E_0$,
- (b) $\Omega > |\gamma|$ an unbounded branch exists for every $E \in \mathbb{R}$,
- (c) $\Omega > |\gamma|$ a bounded branch exists for $-E_0 < E < E_0$,

4□ **1 1 2 1 3 4**

Continuation of the localized mode in ϵ

The stationary PT-symmetric localized mode with spatial symmetry

$$U_{-n}(\epsilon) = U_n(\epsilon), \quad n \in \mathbb{Z}, \quad \epsilon \in \mathbb{R},$$

such that $U_n(\epsilon) \to 0$ as $\epsilon \to 0$ for $n \neq 0$.

Theorem

Fix $\gamma \neq 0$, $\Omega \neq 2|\gamma|$, and $E \neq \pm E_0$, where $E_0 := \sqrt{\Omega^2 - \gamma^2} > 0$ and $|\gamma| < |\Omega|$. There exists $\epsilon_0 > 0$ sufficiently small and $C_0 > 0$ such that for every $\epsilon \in (-\epsilon_0, \epsilon_0)$, there exists a unique localized mode $U(\epsilon) \in l^2(\mathbb{Z})$ such that

$$\left| U_0(\epsilon) - Ae^{i\theta} \right| + \sup_{n \in \mathbb{N}} |U_n(\epsilon)| \le C_0 |\epsilon|.$$

Moreover, the solution U is smooth in ϵ .

◆ロ → ◆母 → ◆ き → き め へ で

Variational characterization of localized modes

From the two conserved quantities H and Q, let us define

$$H_E := H - EQ$$
.

Then, the stationary PT-symmetric mode (U, V) with $V = \bar{U}$ is a critical point of the energy function H_E .

Variational characterization of localized modes

From the two conserved quantities H and Q, let us define

$$H_E := H - EQ.$$

Then, the stationary PT-symmetric mode (U, V) with $V = \bar{U}$ is a critical point of the energy function H_E .

Using expansion

$$H_E(U+u) - H_E(U) = \frac{1}{2} \left\langle \mathcal{H}_E'' u, u \right\rangle_{\ell^2} + \mathcal{O}(\|u\|_{\ell^2}^3),$$

we obtain the Hessian (self-adjoint) operator defined on $\ell^2(\mathbb{Z})$ by

$$\mathcal{H}_{\mathsf{E}}^{"} = \mathcal{L} + \epsilon \Delta,$$

where \mathcal{L} is block-diagonal into 4-by-4 blocks at each lattice site $n \in \mathbb{Z}$.

◆ロト ◆部ト ◆注ト ◆注ト 注 りへで

Count of eigenvalues of $\mathcal{H}_{E}^{''}$

Lemma

Fix $\gamma \neq 0$, $|\Omega| > |\gamma|$, and $E \neq \pm E_0$. For every $\epsilon > 0$ sufficiently small, the operator $\mathcal{H}_E^{''}$ admits a one-dimensional kernel in $\ell^2(\mathbb{Z})$ spanned by the eigenvector $i\sigma\Phi$ due to the gauge invariance,

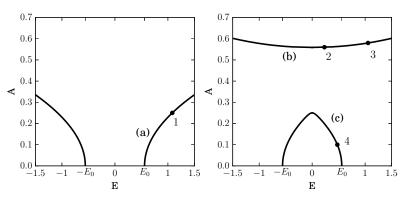
$$(i\sigma\Phi)_n:=(iU_n,-i\bar{U}_n,iV_n,-i\bar{V}_n).$$

In addition,

- If $|E| > E_0$, the spectrum of \mathcal{H}_E'' in $\ell^2(\mathbb{Z})$ includes infinite-dimensional positive and negative parts.
- If $|E| < E_0$ and $\Omega > |\gamma|$, the spectrum of \mathcal{H}_E'' in $\ell^2(\mathbb{Z})$ includes an infinite-dimensional negative part and either three [branch (b)] or one [branch (c)] simple positive eigenvalues.

◆ロト ◆部ト ◆恵ト ◆恵ト 恵 めらで

Vakhitov-Kolokolov criterion for branch (c)



The slope criterion

$$\left. \frac{dQ}{dE} \right|_{\epsilon=0} = 4(4A^2 - \Omega) \frac{dA^2}{dE^2} \left[1 + \frac{\Omega \gamma^2}{(2A^2 - \Omega)^3} \right].$$

For branch (c), Q'(E) > 0 for every $E \in (0, E_0)$ if $\Omega > 2\sqrt{2}|\gamma|$.

. 4 4 bl 4 5 b 5 4 3 d (4

Orbital stability of branch (c)

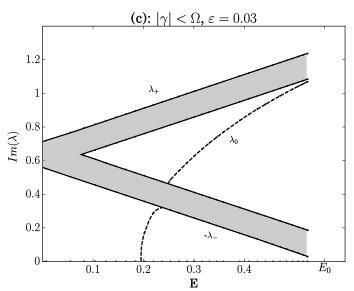
Theorem

Fix $\gamma \neq 0$, $\Omega > |\gamma|$, and $E \in (-E_0, E_0)$. For every $\epsilon > 0$ sufficiently small, the stationary state (U, V) is orbitally stable in $\ell^2(\mathbb{Z})$ if $\Omega > 2\sqrt{2}|\gamma|$. For every $\Omega \in (|\gamma|, 2\sqrt{2}|\gamma|)$, there exists a value $E_s \in (0, E_0)$ such that the stationary state (U, V) is orbitally stable in $\ell^2(\mathbb{Z})$ if $E_s < |E| < E_0$ and unstable if $|E| < E_s$.

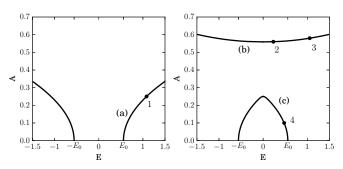
Orbital stability of a localized mode is understood in the following sense: If the initial data is close to (U, V) in $\ell^2(\mathbb{Z})$, then the solution remains close to $\{(U, V)e^{i\theta}\}_{\theta\in\mathbb{R}}$ for all times.

◆ロト ◆部 ◆ をき ◆ を ・ を ・ りへ○

Numerical results on spectral stability - branch (c)



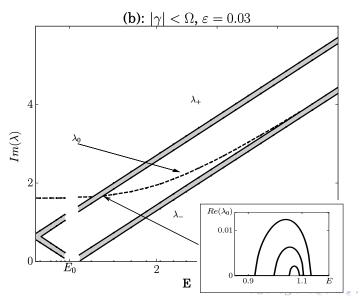
Negative index theory for branch (b)



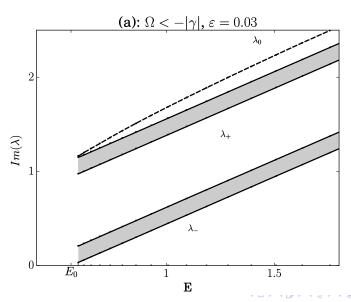
For branch (b), Q'(E) > 0 for every $E \in (0, E_0)$, whereas the spectrum of \mathcal{H}_F'' in $\ell^2(\mathbb{Z})$ includes only three positive eigenvalues. Then,

- Either the localized mode is spectrally stable with exactly one pair of stable eigenvalues of positive Krein signature;
- Or the localized mode is spectrally unstable either with a quartet of complex eigenvalues or two pairs of real eigenvalues.

Numerical results on spectral stability - branch (b)



Numerical results on spectral stability - branch (a)



Long-time stability result

Branch (a) for $\gamma \neq 0$, $\Omega < -|\gamma|$, and $E \in (-\infty, -E_0) \cup (E_0, \infty)$.

Theorem

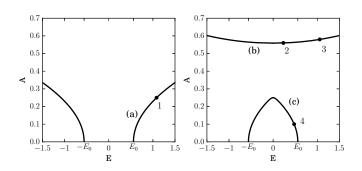
For every $\nu>0$ sufficiently small, there exists $\epsilon_0>0$ and $\delta>0$ such that for every $\epsilon\in(0,\epsilon_0)$ the following is true. If $\psi(0)\in\ell^2(\mathbb{Z})$ satisfies $\|\psi(0)-\Phi\|_{\ell^2}\leq \delta$, then there exist a positive time $t_0\lesssim \epsilon^{-1/2}$ and a C^1 function $\alpha(t):[0,t_0]\to\mathbb{R}/(2\pi\mathbb{Z})$ such that the unique solution $\psi(t):[0,t_0]\to\ell^2(\mathbb{Z})$ satisfies the bound

$$\|e^{i\alpha(t)\sigma}\psi(t)-\Phi\|_{\ell^2}\leq \nu,\quad \text{for every } t\in[0,t_0].$$

Moreover, there exists a positive constant C such that $|\dot{\alpha} - E| \leq C\nu$, for every $t \in [0, t_0]$.

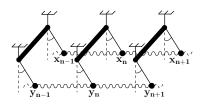
- 4 ロト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - からぐ

3. Are linearly stable localized modes also stable in the nonlinear dynamics of the lattice



- (c) Yes, from standard orbital stability theory.
- (b) No, generally.
- (a) Yes, for long but finite times.

Another system of coupled oscillators



Newton's equations of motion:

$$\begin{cases} \ddot{x}_n + \sin(x_n) = C(x_{n+1} - 2x_n + x_{n-1}) + D(t)(y_n - x_n), \\ \ddot{y}_n + \sin(y_n) = C(y_{n+1} - 2y_n + y_{n-1}) + D(t)(x_n - y_n), \end{cases}$$

where C and D are the coupling constant for torsional springs.

Small coupling constants and periodic movement of the common strings with nearly resonant frequency:

$$C = \epsilon \mu^2, \quad D(t) = 2\gamma \mu^2 \cos(2\omega t), \quad \omega^2 = 1 - \mu^2 \Omega, \quad \mu \ll 1.$$

Dmitry Pelinovsky (McMaster University) Hamiltonian PT-symmetric chains April 2, 2016 26 / 27

Reduction to the PT-symmetric dNLS equation

Asymptotic expansions yield the system

$$\begin{cases} 2i\dot{A}_{n} + \Omega A_{n} = \epsilon (A_{n+1} - 2A_{n} + A_{n-1}) + \gamma (\bar{B}_{n} - \bar{A}_{n}) + \frac{1}{2}|A_{n}|^{2}A_{n}, \\ 2i\dot{B}_{n} + \Omega B_{n} = \epsilon (B_{n+1} - 2B_{n} + B_{n-1}) + \gamma (\bar{A}_{n} - \bar{B}_{n}) + \frac{1}{2}|B_{n}|^{2}B_{n}. \end{cases}$$

Using the choice

$$u_n := \frac{1}{4} \left(A_n - i \bar{B}_n \right), \quad v_n := \frac{1}{4} \left(A_n + i \bar{B}_n \right),$$

we obtain the coupled PT-dNLS equation

$$\left\{ \begin{array}{l} i \dot{u}_n + \Omega v_n = \epsilon \left(v_{n+1} - 2 v_n + v_{n-1} \right) + i \gamma u_n - \gamma \overline{u}_n + \left(2 |u_n|^2 + |v_n|^2 \right) v_n + u_n^2 \overline{v}_n, \\ i \dot{v}_n + \Omega u_n = \epsilon \left(u_{n+1} - 2 u_n + u_{n-1} \right) - i \gamma v_n - \gamma \overline{v}_n + \left(|u_n|^2 + 2 |v_n|^2 \right) u_n + \overline{u}_n v_n^2, \end{array} \right.$$

The model is Hamiltonian, PT-symmetric, but it is not gauge-invariant.

4□ > 4□ > 4□ > 4□ > 4□ > 4□