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PT-symmetric quantum mechanics

Consider the evolution problem

.du

i = Hu, u(t,-)€l? teR,

where H is a linear operator with a domain in [2. If H is Hermitian, then
o(H) C R and e~ is unitary on L.
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PT-symmetric quantum mechanics

Consider the evolution problem

.du

i = Hu, u(t,-)€l? teR,

where H is a linear operator with a domain in [2. If H is Hermitian, then
o(H) C R and e~ is unitary on L.

Let us now assume that H is not Hermitian but PT-symmetric, where
@ P stands for parity transformation
@ T stands for time reversion and complex conjugation,
P?u(t) = u(t), Tu(t) = o(—t).

Therefore, operators H and PT commute:

PTH = HPT.

[C.M. Bender, 2007]
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Properties of PT-symmetric systems

If u(t) is a solution of the evolution equation, then
v(t) = PTu(t) = Pu(—t)
is also a solution of the same system

iv'(t) = Hv = —iPi7'(—t) = HPu(—t) = iJ/(t) = Hu.
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Properties of PT-symmetric systems

If u(t) is a solution of the evolution equation, then
v(t) = PTu(t) = Pu(—t)

is also a solution of the same system

iv'(t) = Hv = —iPi7'(—t) = HPu(—t) = iJ/(t) = Hu.

If E is an eigenvalue and U is an eigenfunction, then E is also an
eigenvalue with the eigenfunction PU, because

u(t) = Ue B = y(t) = PUe EL.
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Properties of PT-symmetric systems
If u(t) is a solution of the evolution equation, then

v(t) = PTu(t) = Pu(—t)
is also a solution of the same system

iv'(t) = Hv = —iPi7'(—t) = HPu(—t) = iJ/(t) = Hu.
If E is an eigenvalue and U is an eigenfunction, then E is also an
eigenvalue with the eigenfunction PU, because
u(t) = Ue Bt = y(t) = PUe Et.

Bender’s Conjecture: For many physically relevant PT-symmetric operators
H, all eigenvalues are real and all eigenfunctions are PT-symmetric.
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Examples of a PT-symmetric lattice

Dimer lattices in nonlinear optics (coupled waveguides):

{ i+ Vp = e(Uny1 — 2up + tn_1) + ivtn + |Up?un,
iV + Up = €(Vpy1 — 2Vp + V1) — iyVp + |v,,\2v,,,

where v > 0 is the gain-damping parameter and € > 0 is lattice coupling.

Up-1 Un Unt1

Vn-1 Vn Vn+1
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Relevant questions

For a single site (say, ¢ = 0), the coupled system is referred to as a dimer.
Linear stability analysis yields that the dimer is stable if v € (0, 1).
Therefore, the linear system for v € (0, 1) satisfies Bender's conjecture.
The threshold v = 1 is referred to as the PT phase transition.
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Relevant questions

For a single site (say, ¢ = 0), the coupled system is referred to as a dimer.
Linear stability analysis yields that the dimer is stable if v € (0, 1).
Therefore, the linear system for v € (0, 1) satisfies Bender's conjecture.
The threshold v = 1 is referred to as the PT phase transition.

Relevant questions:

© Do the solutions stay bounded for all times if v € (0,1)?

© Do there exist linearly stable localized modes on the lattice for
v €(0,1)7

© Are linearly stable localized modes also stable in the nonlinear
dynamics of the lattice?

Unfortunately, many PT-symmetric systems are typically non-Hamiltonian.
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Hamiltonian PT-symmetric dimer
A Hamiltonian example of a PT-symmetric dimer is
. _ - 2 2 2_
iUp + Vp = ivyup + (|unl® + 2|va|*)un + v Un,
Vi + tp = —ivvp + (2un|? + [Val?)vy + v20,.
where v > 0 is the gain-damping parameter and n = 0 (a single site).
The Hamiltonian function

du, OH  .dv, OH

9t " ov, 'dt  om,
with

H= |u,,\2 + \v,,|2 + iv(unVn — UnVn) + (UnVn + D,,v,,)(|u,,|2 + |v,,|2).

Jorgensen—Christiansen (1998); Barashenkov—Gianfreda (2014);
Barashenkov—Pelinovsky—Dubard (2015)
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Physical context - coupled pendula

A. Pikovsky, M. Rosenblum, J.
Kurth Synchronization (2001)
M. Bennett, M. Schatz, Rock-
wood, K. Wiesenfeld (2002)
C. Bender, B. Berntson, D.
Parker, E. Samuel (2013)

Newton's equations of motion:

neZ, teR,

{ Xp +sin(xp) = C (xpt1 — 2Xxp + Xp—1) + Dyn,
Yn tsin(yn) = C(¥nt1 — 2¥n + yn-1) + Dxn,

where C is the coupling constant for torsional springs and D is the coupling
constant for rope tension of the common string. The model is Hamiltonian:

1 1
H= Z E(Xﬂ) + E(Yﬂ) + EC(XnJrI - Xn)2 + EC(}’nJrl - }’n)2 — Dxayn.
nez

Dmitry Pelinovsky (McMaster University) Hamiltonian PT-symmetric chains April 2, 2016 7 /27



Reduction in the limit of small oscillations

Small coupling constants and periodic movement of the common strings
with nearly resonant frequency:

C=eu?, D(t)=2yp?cos(2wt), w?=1—1%Q,

where 1 is a formal small parameter.

Using expansions like

{ xn(t) = p [An(ﬂzt)el:wt + ’_ﬁn(ﬂz t)e_l:wt] +0(1?)
yo(t) = po [Ba(1Pt)e'™" + By(u*t)e ™| + O(1%),

we obtain the reduced system

{ 2iAn+QAq = €(Ans1 — 2An + Ap 1) + 7B + 5|AdPA,,
2iBy, + QBj = € (Bpy1 — 2By + Bn_1) + A, + 3| Ba|?Bn.

The model is Hamiltonian and autonomous.
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Reduction to the PT-symmetric dNLS equation
Using the choice
1 .5
un = 7 (A,, — IB,,) . Vpi=
we obtain the coupled PT-dNLS equation

i+ Qp = € (Var1 — 2Va + Va—1) + it + (2|tn]® + [Va|?) Vi + 13V,
iVp + Qup = € (Uns1 — 2Up + Up—1) — ivVp + (Jun|? + 2|Va|?) up + TpV2,

The model is Hamiltonian and PT-symmetric with the energy function

H = Z(‘”n‘z + |Vn‘2)2 + (UnVp + D,,v,,)2 - Q(\u,,|2 + |Vn‘2)
nezZ

—€|upy1 — u,,\z — €|Var1 — Va2 + i7(UnVn — UnVn).
Another conserved quantity is related to gauge symmetry:

Q= Z(Unvn + anVn)'

neZ
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Relevant questions

Let us reiterate the same questions for the main model:

il + Qv = € (Vap1 — 2V + Va—1) + ivtn + (2|tn]? + [Va|?) va + U2V,
iVp 4+ Qup = € (Upt1 — 2Up + Up—1) — iyve + (|u,,|2 + 2|v,,|2) Up + T2,

The linear system at zero equilibrium is stable for v € (0, |Q2|) (at € = 0).

© Do the solutions stay bounded for all times if v € (0, |2])?

© Do there exist linearly stable localized modes on the lattice for
v €(0,19()?

© Are linearly stable localized modes also stable in the nonlinear
dynamics of the lattice?

Now we can explore the Hamiltonian structure of the PT lattice to give
answers to these questions.
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1. Do the solutions stay bounded for all times?

Consider the Hamiltonian function

H = Z(‘”n‘z + |Vn‘2)2 + (UnVn + DnVn)2 - Q(\u,,|2 + |Vn‘2)
neZ

—€lupr1 — u,,|2 — €|Vpy1 — v,,|2 + iy(upvp — Upvp).
If Q <0and |y| < || — 4¢, then

H > (19| = Il —4€) (lulZz + lIvIi) -

Therefore, there is a positive constant C that depends on ~, ¢, Q and the
initial data in £2(Z) such that

lu(t))2 + lv(e)||?2 < C, for every t € R.

The condition |y| < [Q2] — 4e for Q < 0 coincides with the condition of
linear stability of the zero equilibrium.
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What if Q > 07

Consider the Hamiltonian function

—H =S —(Junl + ValP) = (Un¥n + Bava) + QJun + Vi)
nez
teltunt1 — Unl? + €|Vatr1 — Val? — iv(UnVn — TpVa).

If Q>0 and |y| < Q, then
2
—H > (Q~ ) (lellf + IvIIZ) = (lulz +1Iviz),

where we have used ||ul|;2 < ||u||s2. For sufficiently small initial data in
0%(Z), we still have

lu(t))|2 + lv(e)||22 < C, for every t € R.

The condition |y| < Q for Q > 0 coincides with the condition of linear
stability of the zero equilibrium.
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2. Do there exist linearly stable localized modes?

Stationary PT-symmetric localized modes:
u(t) = Ue B y(t)= Ve B, V=0,
where U satisfies the stationary PT-symmetric DNLS equation

EUn + QUp = € (Unp1 — 2Up + Un—1) + iU + 3|Ua? U, + U2,
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2. Do there exist linearly stable localized modes?

Stationary PT-symmetric localized modes:
u(t) = Ue B y(t)= Ve B, V=0,
where U satisfies the stationary PT-symmetric DNLS equation

EUn + QUp = € (Unp1 — 2Up + Un—1) + iU + 3|Ua? U, + U2,

Local bifurcation from the central dimer at € = 0:
(E — i’y)Uo + QUO = 3|U0|200 + Ug.

In the polar form Uy = Ae’®, we obtain the parameterization
2

E2 = (Q — 4A%)? [1— (Q—VW] .

If A=0, then E = £Ey with Ey := /02 —~2 > 0.
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Stationary modes of the central dimer for |y| < |Q]

0.7 0.7
061 ] O‘GV
05} E 05} (b) 2 3|

0.0 . .
—-15 -1 —E 0 -1 —Ep 0 Ey 1 1.5

Assume v # 0. Then,

(a) Q < —|v| - two symmetric unbounded branches exist for £E > Ey,
(b) Q> |y| - an unbounded branch exists for every E € R,

(c) Q> |v| - a bounded branch exists for —Ey < E < Ep,

Dmitry Pelinovsky (McMaster University) Hamiltonian PT-symmetric chains April 2, 2016 14 / 27



Continuation of the localized mode in €

The stationary PT-symmetric localized mode with spatial symmetry
U_n(e) = Un(e), neZ, ec€R,

such that Up(€) — 0 as € — 0 for n # 0.

Theorem

Fix v #0, Q # 2|y|, and E # +Ey, where Ey :== \/Q? —~2 > 0 and
|v| < |2|. There exists eg > 0 sufficiently small and Cy > 0 such that for

every € € (—¢o, €0), there exists a unique localized mode U(e) € I1*(Z) such
that

Uo(€) — Ae™| + sup |Un(€)] < Golel.
neN

Moreover, the solution U is smooth in €.

Dmitry Pelinovsky (McMaster University) Hamiltonian PT-symmetric chains April 2, 2016 15 / 27



Variational characterization of localized modes

From the two conserved quantities H and Q, let us define

He .= H - EQ.

Then, the stationary PT-symmetric mode (U, V) with V = U is a critical
point of the energy function Hg.
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Variational characterization of localized modes

From the two conserved quantities H and Q, let us define
He .= H - EQ.

Then, the stationary PT-symmetric mode (U, V) with V = U is a critical
point of the energy function Hg.

Using expansion
He(U + u) — He(U) = 5 (Hiu ) +O(ull%)
we obtain the Hessian (self-adjoint) operator defined on ¢2(Z) by
Hp = L+ €A,

where L is block-diagonal into 4-by-4 blocks at each lattice site n € Z.
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Count of eigenvalues of H

Lemma

Fix v #0, || > |v|, and E # £Ey. For every € > 0 sufficiently small, the
operator HE admits a one-dimensional kernel in (>(Z) spanned by the
eigenvector ic® due to the gauge invariance,

(io®), := (iUp, —iUp, iV, —i V).

In addition,
o If|E| > Ey, the spectrum of Hy in (*(Z) includes infinite-dimensional
positive and negative parts.
o If|E| < Ey and Q > ||, the spectrum of Hy in £?(Z) includes an
infinite-dimensional negative part and either three [branch (b)] or one
[branch (c)] simple positive eigenvalues.
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Vakhitov-Kolokolov criterion for branch (c)

0.7 T T T T T 0.7

05} 1 o5t (b) 2 3

0.2 ©

01} 4

00 L L L 00 L L L
—-15 -1 —Ep 0 Ey 1 1.5 —-15 -1 —E 0 Ey 1 1.5

E E
The slope criterion
dQ B 2 dA? Qv
de|_, = A - D [l oA —ap

For branch (c), Q'(E) > 0 for every E € (0, Ep) if Q > 2v/2||.
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Orbital stability of branch (c)

Theorem

Fix v #0, Q > |v|, and E € (—Eg, Ey). For every € > 0 sufficiently small,
the stationary state (U, V) is orbitally stable in ¢>(Z) if Q > 2\/2|y|. For
every Q € (|v],2v2|7]), there exists a value Es € (0, Ey) such that the
stationary state (U, V) is orbitally stable in (?(Z) if Es < |E| < Eg and
unstable if |[E| < Es.

Orbital stability of a localized mode is understood in the following sense:
If the initial data is close to (U, V) in ¢?(Z), then the solution remains
close to {(U, V)e?}gcr for all times.
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Numerical results on spectral stability - branch (c)

(c): |y <Q,e=0.03

Ey

Dmitry Pelinovsky (McMaster University) Hamiltonian PT-symmetric chains April 2, 2016 20 / 27



Negative index theory for branch (b)

0.7 — ‘ — 0.7

06} 1 M — e
05} {1 os} (b) 2 3]
04f 1 oaf ,

<
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01t 01t 4 ]
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0.0 :
—-15 -1 —E 0 -15 -1 —Ey 0 Ey 1 15
E E

For branch (b), Q' (E) > 0 for every E € (0, Ep), whereas the spectrum of
Hp in (2(Z) includes only three positive eigenvalues. Then,
@ Either the localized mode is spectrally stable with exactly one pair of
stable eigenvalues of positive Krein signature;

@ Or the localized mode is spectrally unstable either with a quartet of
complex eigenvalues or two pairs of real eigenvalues.
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Numerical results on spectral stability - branch (b)

(©): 7] <, e=0.03

Im(\)

I\
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Numerical results on spectral stability - branch (a)

(@): 2 < —|9][,=10.03

Im(\)

15
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Long-time stability result

Branch (a) for v # 0, Q < —|v|, and E € (—o0, —Ep) U (Ep, 00).

Theorem

For every v > 0 suthiciently small, there exists eg > 0 and § > 0 such that
for every € € (0,¢p) the following is true. If )(0) € (*(Z) satisfies

|1(0) — ®||2 < &, then there exist a positive time ty < e 1/2 and a C?
function a(t) : [0, to] — R/(27Z) such that the unique solution

Y(t) : [0, tg] — £3(Z) satisfies the bound

|e*7y(t) = ®lla < v, for every ¢t € [0, o],

Moreover, there exists a positive constant C such that |& — E| < Cv, for
every t € [0, to].
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3. Are linearly stable localized modes also stable in the
nonlinear dynamics of the lattice

0.7 — ‘ — 0.7
0.6 10— e
05k i 05k (b) 2 3]
04f 1 o4}

<
03P 03}
02k 02} (©
01} 01} 4
0.0 s 0.0 s

. .
-15 -1 —Ey 0 Ey 1 15

.
—15 -1 —E 0

(c) Yes, from standard orbital stability theory.
(b) No, generally.
(a) Yes, for long but finite times.
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Another system of coupled oscillators

AR %
" Yn-1 " Yn " ¥Yn+1

Newton's equations of motion:

{ Xn +sin(xn) = C (Xp41 — 2Xn + Xn—1) + D(t)(¥n — Xn),
Yn +sin(yn) = C(Ynt1 — 2V + yYn—1) + D(t)(xn — yn),

where C and D are the coupling constant for torsional springs.

Small coupling constants and periodic movement of the common strings
with nearly resonant frequency:

C=ep?, D(t)=2yu?cos(2wt), w?=1-p%Q, p<1.
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Reduction to the PT-symmetric dNLS equation
Asymptotic expansions yield the system

2iAn + QA, = €(Ant1 — 245 + An1) +7(Bn — Ap) + 31402 An,
2iBy + QBp = € (Bpy1 — 2By + Bn1) + 7(An — Bn) + 5|Bn|?By.

Using the choice

we obtain the coupled PT-dNLS equation

ity 4+ Qv = € (Vap1 — 2V + V1) + ivtp — Vg + (2|un]? + |[Va|?) va + 027y,
iV + Qup = € (Unt1 — 2Up + Un—1) — iV — YVn + (|Un|* + 2|Va|?) Up + TpV2,

The model is Hamiltonian, PT-symmetric, but it is not gauge-invariant.
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