Multi-site breathers in Klein-Gordon lattices: bifurcations, stability, and resonances

Dmitry Pelinovsky, Anton Sakovich

Department of Mathematics and Statistics, McMaster University, Ontario, Canada
Workshop on Localization in Lattices; Seville, Spain, July 11, 2012

Klein-Gordon lattice

Klein-Gordon (KG) lattice models a chain of coupled anharmonic oscillators with a nearest-neighbour interactions

$$
\ddot{u}_{n}+V^{\prime}\left(u_{n}\right)=\epsilon\left(u_{n-1}-2 u_{n}+u_{n+1}\right)
$$

where $\left\{u_{n}(t)\right\}_{n \in \mathbb{Z}}: \mathbb{R} \rightarrow \mathbb{R}^{\mathbb{Z}}$, dot represents time derivative, ϵ is the coupling constant, and $V: \mathbb{R} \rightarrow \mathbb{R}$ is an on-site potential.

Applications:

- dislocations in crystals (e.g. Frenkel \& Kontorova '1938)
- oscillations in biological molecules (e.g. Peyrard \& Bishop '1989)

Anharmonic oscillator

We make the following assumptions:

- $V^{\prime}(u)=u \pm u^{3}+\mathcal{O}\left(u^{5}\right)$, where $+/$ - corresponds to hard/soft potential;
- $0<\epsilon \ll 1$: oscillators are weakly coupled.

In the anti-continuum limit $(\epsilon=0)$, each oscillator is governed by

$$
\ddot{\varphi}+V^{\prime}(\varphi)=0, \quad \Rightarrow \quad \frac{1}{2} \dot{\varphi}^{2}+V(\varphi)=E
$$

where $\varphi \in H_{p e r}^{2}(0, T)$.

Figure: Period versus energy in hard (magenta) and soft (blue) V.

The period of the oscillator is

$$
T(E)=\sqrt{2} \int_{-a(E)}^{a(E)} \frac{d x}{\sqrt{E-V(x)}},
$$

where $a(E)$, the amplitude, is the smallest root of $V(a)=E$.

Multi-breathers in the anti-continuum limit

Breathers are spatially localized time-periodic solutions to the Klein-Gordon lattice. Multi-breathers are constructed by parameter continuation in ϵ from $\epsilon=0$.
For $\epsilon=0$ we take

$$
\mathbf{u}^{(0)}(t)=\sum_{k \in S} \sigma_{k} \varphi(t) \mathbf{e}_{k} \quad \in \quad I^{2}\left(\mathbb{Z}, H_{p e r}^{2}(0, T)\right)
$$

where $S \subset \mathbb{Z}$ is the set of excited sites and \mathbf{e}_{k} is the unit vector in $I^{2}(\mathbb{Z})$ at the node k. The oscillators are in phase if $\sigma_{k}=+1$ and out-of-phase if $\sigma_{k}=-1$.

Figure: An example of a multi-site discrete breather at $\epsilon=0$.

Persistence of multi-breathers

Theorem (MacKay \& Aubry '1994)

Fix the period $T \neq 2 \pi n, n \in \mathbb{N}$ and the T-periodic solution $\varphi \in H_{p e r}^{2}(0, T)$ of the anharmonic oscillator equation for $T^{\prime}(E) \neq 0$. There exist $\epsilon_{0}>0$ and $C>0$ such that $\forall \epsilon \in\left(-\epsilon_{0}, \epsilon_{0}\right)$ there exists a solution $\mathbf{u}^{(\epsilon)} \in I^{2}\left(\mathbb{Z}, H_{\text {per }}^{2}(0, T)\right)$ of the Klein-Gordon lattice satisfying

$$
\left\|\mathbf{u}^{(\epsilon)}-\mathbf{u}^{(0)}\right\|_{I^{2}\left(\mathbb{Z}, H^{2}(0, T)\right)} \leq C \epsilon
$$

The proof is based on the Implicit Function Theorem and uses invertibility of the linearization operators

$$
\begin{aligned}
\mathcal{L}_{0} & =\partial_{t}^{2}+1: H_{p e r}^{2}(0, T) \rightarrow L_{p e r}^{2}(0, T), \quad T \neq 2 \pi n, \\
\mathcal{L}_{e} & =\partial_{t}^{2}+V^{\prime \prime}(\varphi(t)): H_{\text {per,even }}^{2}(0, T) \rightarrow L_{\text {per,even }}^{2}(0, T), \quad T^{\prime}(E) \neq 0 .
\end{aligned}
$$

Stability of discrete breathers

Multibreathers in Klein-Gordon lattices:

- Morgante, Johansson, Kopidakis, Aubry '2002 - numerical results
- Archilla, Cuevas, Sánchez-Rey, Alvarez '2003 - Aubry's spectral band theory
- Koukouloyannis, Kevrekidis '2009-MacKay's action-angle averaging

In this project:

- no restriction to small-amplitude approximation
- multi-site breathers with "holes"

Similar works:

- Pelinovsky, Kevrekidis, Franzeskakis '2005 - discrete NLS lattice
- Youshimura '2011 - Fermi-Pasta-Ulam bi-atomic lattice
- Youshimura '2012 - KG unharmonic lattice

Floquet Multipliers

Linearize about the breather solution to the dKG by replacing \mathbf{u} with $\mathbf{u}+\mathbf{w}$, where $\mathbf{w}: \mathbb{R} \rightarrow \mathbb{R}^{\mathbb{Z}}$ is a small perturbation, and collect the terms linear in \mathbf{w} :

$$
\ddot{w}_{n}+V^{\prime \prime}\left(u_{n}\right) w_{n}=\epsilon\left(w_{n-1}-2 w_{n}+w_{n+1}\right), \quad n \in \mathbb{Z}
$$

In the anti-continuum limit, it is easy to find the Floquet multipliers:

- on "holes", $n \in \mathbb{Z} \backslash S$,

$$
\ddot{w}_{n}+w_{n}=0, \quad\binom{w_{n}(T)}{\dot{w}_{n}(T)}=\left(\begin{array}{cc}
\cos T & \sin T \\
-\sin T & \cos T
\end{array}\right)\binom{w_{n}(0)}{\dot{w}_{n}(0)},
$$

Floquet multipliers are $\mu_{1,2}=e^{ \pm i T}$

- on excited sites, $n \in S$,

$$
\ddot{w}_{n}+V^{\prime \prime}(\varphi) w_{n}=0, \quad\binom{w_{n}(T)}{\dot{w}_{n}(T)}=\left(\begin{array}{cc}
1 & 0 \\
T^{\prime}(E)\left(V^{\prime}(a)\right)^{2} & 1
\end{array}\right)\binom{w_{n}(0)}{\dot{w}_{n}(0)},
$$

Floquet multipliers are $\mu_{1,2}=1$ of geometric multiplicity 1 and algebraic multiplicity 2.

Splitting of the unit Floquet multiplier

Introduce a limiting configuration $\mathbf{u}^{(0)}(t)$ that has M excited sites with $N-1$ "holes" in between them:

$$
\mathbf{u}^{(0)}(t)=\sum_{j=1}^{M} \sigma_{j} \varphi(t) \mathbf{e}_{j N}
$$

For $\epsilon>0$, Floquet multipliers split as follows:

Floquet exponents

A Floquet multiplier μ can be written as $\mu=e^{\lambda T}$.

Lemma

For small $\epsilon>0$ the linearized stability problem has $2 M$ small Floquet exponents $\lambda=\epsilon^{N / 2} \Lambda+\mathcal{O}\left(\epsilon^{(N+1) / 2}\right)$, where $\tilde{\lambda}$ is determined from the eigenvalue problem

$$
-\frac{T(E)^{2}}{2 T^{\prime}(E) K_{N}} \Lambda^{2} \mathbf{c}=\mathcal{S} \mathbf{c}, \quad \mathbf{c} \in \mathbb{C}^{M} .
$$

Here $\mathcal{S} \in \mathbb{R}^{M \times M}$ is a tridiagonal matrix with elements

$$
\mathcal{S}_{i, j}=-\sigma_{j}\left(\sigma_{j-1}+\sigma_{j+1}\right) \delta_{i, j}+\delta_{i, j-1}+\delta_{i, j+1}, \quad 1 \leq i, j \leq M,
$$

and K_{N} is defined by

$$
K_{N}=\int_{0}^{T} \dot{\varphi}(t) \dot{\varphi}_{N-1}(t) d t, \quad\left(\partial_{t}^{2}+1\right) \varphi_{k}=\varphi_{k-1}, \quad \varphi_{0}=\varphi
$$

Stability of multibreathers

Sandstede (1998) showed that the matrix \mathcal{S} has exactly n_{0} positive and $M-1-n_{0}$ negative eigenvalues in addition to the simple zero eigenvalue, where $n_{0}=\#\left(\operatorname{sign}\right.$ changes in $\left.\left\{\sigma_{n}\right\}\right)$.

Hence, stability of multibreathers is determined by the sign of $T^{\prime}(E) K_{N}(T)$ and the phase parameters $\left\{\sigma_{k}\right\}_{k=1}^{M-1}$.

Theorem

If $T^{\prime}(E) K_{N}(T)>0$ the linearized problem for the multibreathers has exactly n_{0} pairs of "stable" Floquet exponents and $M-1-n_{0}$ pairs of "unstable" Floquet exponents counting their multiplicities. If $T^{\prime}(E) K_{N}(T)<0$ the conclusion changes to the opposite.

Stable configurations of multibreathers

$T^{\prime}(E) K_{N}(T)>0$: anti-phase breathers, $n_{0}=M-1$

Figure: Period versus energy in hard (magenta) and soft (blue) V.
$T^{\prime}(E)<0$ if $V^{\prime}(u)=u+u^{3}$ (hard potential).
$T^{\prime}(E)>0$ if $V^{\prime}(u)=u-u^{3}$ (soft potential).

Resonances of multibreathers

Let $\varphi(t)$ be expanded in the Fourier series,

$$
\varphi(t)=\sum_{n \in \mathbb{N}_{\text {odd }}} c_{n} \cos \left(\frac{2 \pi n t}{T}\right)
$$

Then, we compute explicitly

$$
K_{N}(T)=4 \pi^{2} \sum_{n \in \mathbb{N}_{\text {odd }}} \frac{T^{2 N-3}(E) n^{2}\left|c_{n}\right|^{2}}{\left[T^{2}-(2 \pi n)^{2}\right]^{N-1}}
$$

Hard potentials: $T(E)<2 \pi ; K_{N}(T)>0$ for odd N and $K_{N}(T)<0$ for even N. Soft potentials: $T(E)>2 \pi$; resonances occur for $T(E)=2 \pi(1+2 n), n \in \mathbb{N}$.

	N odd	N even
$V^{\prime}(u)=u+u^{3}$	in-phase	anti-phase
$V^{\prime}(u)=u-u^{3}$	anti-phase	anti: $2 \pi<T<T_{N}^{*}$ in: $T_{N}^{*}<T<6 \pi$

where $K_{N}(T)$ changes sign at T_{N}^{*}, e.g., $T_{2}^{*}=5.476 \pi$;

Three-site KG lattice

Consider a three-site KG lattice with a soft potential and Dirichlet boundary conditions,

$$
\left\{\begin{aligned}
\ddot{u}_{0}+u_{0}-u_{0}^{3} & =2 \epsilon\left(u_{1}-u_{0}\right) \\
\ddot{u}_{1}+u_{1}-u_{1}^{3} & =\epsilon\left(u_{0}-2 u_{1}\right) \\
u_{-1} & =u_{1}
\end{aligned}\right.
$$

Two limiting configurations are of interest:

$$
\mathbf{u}^{(0)}(t)=\varphi(t) \mathbf{e}_{0}
$$

$$
\mathbf{u}^{(0)}(t)=\varphi(t)\left(\mathbf{e}_{-1}+\mathbf{e}_{1}\right)
$$

Fundamental breather $(M=1) \quad$ Breather with a "hole" $(M=2, N=2)$

Breather solutions

Periodic solutions are computed with the shooting method.

$\epsilon=0.01: u_{0}(0)=a_{0}(T), \dot{u}_{0}(0)=0 ; u_{1}(0)=a_{1}(T), \dot{u}_{1}(0)=0$
Solid - fundamental breather ($M=1$)
Dashed - breather with a "hole" $(M=2, N=2)$.

Breather with a "hole" $(M=2, N=2)$

The breather $\mathbf{u}^{(0)}(t)=\varphi(t)\left(\mathbf{e}_{-1}+\mathbf{e}_{1}\right)$ is unstable for $T \in\left(2 \pi, T_{2}^{*}\right)$. It then remains stable until the symmetry-breaking bifurcation occurs.

Figure: Real part of the Floquet multipliers versus T.

Fundamental breather $(M=1)$

Fundamental breather with $\mathbf{u}^{(0)}(t)=\varphi(t) \mathbf{e}_{0}$ undertakes a pitchfork (symmetry-breaking) bifurcation near $T=6 \pi$ (1:3 resonance).

$\mathrm{T}=5.8002 \mathrm{pi}$

$\epsilon=0.01$

Fundamental breather $(M=1)$

The middle branch becomes unstable after the pitchfork bifurcation. Left and right branches are born stable, but also become unstable for larger T.

Figure: Real part of the Floquet multipliers versus period T.

Asymptotic theory of pitchfork bifurcation

When $T \neq 2 \pi n$ is fixed, persistence of breathers implies that

$$
\left\{\begin{array}{lll}
u_{0}(t) & = & \varphi(t)-2 \epsilon \psi_{1}(t) \\
+\mathcal{O}_{H_{\mathrm{per}}^{2}(0, T)}\left(\epsilon^{2}\right) \\
u_{ \pm 1}(t) & = & +\epsilon \varphi_{1}(t) \\
u_{ \pm n}(t) & = & \mathcal{O}_{H_{\mathrm{per}}^{2}(0, T)}\left(\epsilon^{2}\right) \\
& +\mathcal{O}_{H_{\mathrm{per}}^{2}(0, T)}\left(\epsilon^{2}\right), \quad n \geq 2
\end{array}\right.
$$

where φ can be expanded in the Fourier series,

$$
\varphi(t)=\sum_{n \in \mathbb{N}_{\text {odd }}} c_{n}(T) \cos \left(\frac{2 \pi n t}{T}\right)
$$

and the first-order correction is found from $\ddot{\varphi}_{1}+\varphi_{1}=\varphi$:

$$
\varphi_{1}(t)=\sum_{n \in \mathbb{N}_{\text {odd }}} \frac{T^{2} c_{n}(T)}{T^{2}-4 \pi^{2} n^{2}} \cos \left(\frac{2 \pi n t}{T}\right)
$$

Near $T=6 \pi$, the norm $\left\|u_{ \pm 1}\right\|_{H_{\text {per }}^{2}(0, T)}$ is much larger than $\mathcal{O}(\epsilon)$ if $c_{3}(6 \pi) \neq 0$.

Lyupunov-Schmidt reduction

Using the scaling transformation,

$$
T=\frac{6 \pi}{1+\delta \epsilon^{2 / 3}}, \quad \tau=\left(1+\delta \epsilon^{2 / 3}\right) t, \quad u_{n}(t)=\left(1+\delta \epsilon^{2 / 3}\right) U_{n}(\tau),
$$

where δ is ϵ-independent, U is 6π-periodic, and

$$
\ddot{U}_{n}+U_{n}-U_{n}^{3}=\beta U_{n}+\gamma\left(U_{n+1}+U_{n-1}\right), \quad n \in \mathbb{Z},
$$

where

$$
\beta=1-\frac{1+2 \epsilon}{\left(1+\delta \epsilon^{2 / 3}\right)^{2}}=\mathcal{O}\left(\epsilon^{2 / 3}\right), \quad \gamma=\frac{\epsilon}{\left(1+\delta \epsilon^{2 / 3}\right)^{2}}=\mathcal{O}(\epsilon)
$$

Hence we have at the central site:

$$
\ddot{U}_{0}+U_{0}-U_{0}^{3}=\beta U_{0}+2 \gamma U_{1}
$$

whereas at the first sites:

$$
U_{-1}(\tau)=U_{1}(\tau)=\epsilon^{1 / 3} a \cos (\tau)+\mathcal{O}\left(\epsilon^{2 / 3}\right) .
$$

Normal form for 1:3 resonance

As $\epsilon \rightarrow 0$ (δ is fixed), a is a root of the cubic equation

$$
2 \delta a(\delta)+\frac{3}{4} a^{3}(\delta)+c_{3}(6 \pi)=0
$$

For any root $a(\delta), U_{0}$ is found from the Duffing oscillator with a periodic force:

$$
\ddot{U}_{0}+U_{0}-U_{0}^{3}=\beta U_{0}+\nu \cos (\tau)
$$

where $\nu=2 \gamma \epsilon^{1 / 3} a(\delta)=\mathcal{O}\left(\epsilon^{4 / 3}\right)$.

Pitchfork bifurcation of 6π-periodic solutions

$$
\ddot{U}_{0}+U_{0}-U_{0}^{3}=\beta U_{0}+\nu \cos (\tau)
$$

Conclusions

- We have fully characterized the criterion for spectral stability/instability of multi-site breathers of the discrete KG equation near the anti-continuum limit.
- We have discovered new phenomena for soft potentials:
- Change of stability for breathers with holes (even N)
- Disconnection between solution branches across the resonant periods
- Symmetry-breaking bifurcation of periodic orbits near the resonant periods
- We have constructed rigorous asymptotic theory for $1: 3$ resonance of periodic orbits.

