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Klein-Gordon lattice

Klein-Gordon (KG) lattice models a chain of coupled anharmonic oscillators with a
nearest-neighbour interactions

ün + V ′(un) = ǫ(un−1 − 2un + un+1),

where {un(t)}n∈Z : R → R
Z, dot represents time derivative, ǫ is the coupling

constant, and V : R → R is an on-site potential.

un un+1

V

u

V

Applications:

dislocations in crystals (e.g. Frenkel & Kontorova ’1938)

oscillations in biological molecules (e.g. Peyrard & Bishop ’1989)
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Anharmonic oscillator
We make the following assumptions:

V ′(u) = u ± u3 + O(u5), where +/− corresponds to hard/soft potential;

0 < ǫ≪ 1: oscillators are weakly coupled.

In the anti-continuum limit (ǫ = 0), each oscillator is governed by

ϕ̈+ V ′(ϕ) = 0, ⇒ 1

2
ϕ̇2 + V (ϕ) = E ,

where ϕ ∈ H2
per (0,T ).
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Figure: Period versus energy in hard
(magenta) and soft (blue) V .

The period of the oscillator is

T (E ) =
√

2

∫ a(E)

−a(E)

dx
√

E − V (x)
,

where a(E ), the amplitude, is the
smallest root of V (a) = E .
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Multi-breathers in the anti-continuum limit

Breathers are spatially localized time-periodic solutions to the Klein-Gordon
lattice. Multi-breathers are constructed by parameter continuation in ǫ from ǫ = 0.

For ǫ = 0 we take

u
(0)(t) =

∑

k∈S

σkϕ(t)ek ∈ l2(Z,H2
per (0,T )),

where S ⊂ Z is the set of excited sites and ek is the unit vector in l2(Z) at the
node k. The oscillators are in phase if σk = +1 and out-of-phase if σk = −1.

a(E)

Z
−a(E)

σn 1 −1 1

Figure: An example of a multi-site discrete breather at ǫ = 0.
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Persistence of multi-breathers

Theorem (MacKay & Aubry ’1994)

Fix the period T 6= 2πn, n ∈ N and the T-periodic solution ϕ ∈ H2
per (0,T ) of the

anharmonic oscillator equation for T ′(E ) 6= 0. There exist ǫ0 > 0 and C > 0 such

that ∀ǫ ∈ (−ǫ0, ǫ0) there exists a solution u
(ǫ) ∈ l2(Z,H2

per (0,T )) of the

Klein–Gordon lattice satisfying

∥

∥

∥
u

(ǫ) − u
(0)

∥

∥

∥

l2(Z,H2(0,T ))
≤ Cǫ.

The proof is based on the Implicit Function Theorem and uses invertibility of the
linearization operators

L0 = ∂2
t + 1 : H2

per (0,T ) → L2
per (0,T ), T 6= 2πn,

Le = ∂2
t + V ′′(ϕ(t)) : H2

per ,even(0,T ) → L2
per ,even(0,T ), T ′(E ) 6= 0.
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Stability of discrete breathers

Multibreathers in Klein–Gordon lattices:

Morgante, Johansson, Kopidakis, Aubry ’2002 - numerical results

Archilla, Cuevas, Sánchez-Rey, Alvarez ’2003 - Aubry’s spectral band theory

Koukouloyannis, Kevrekidis ’2009 - MacKay’s action-angle averaging

In this project:

no restriction to small-amplitude approximation

multi-site breathers with “holes”

Similar works:

Pelinovsky, Kevrekidis, Franzeskakis ’2005 - discrete NLS lattice

Youshimura ’2011 - Fermi-Pasta-Ulam bi-atomic lattice

Youshimura ’2012 - KG unharmonic lattice
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Floquet Multipliers

Linearize about the breather solution to the dKG by replacing u with u + w, where
w : R → R

Z is a small perturbation, and collect the terms linear in w:

ẅn + V ′′(un)wn = ǫ(wn−1 − 2wn + wn+1), n ∈ Z.

In the anti-continuum limit, it is easy to find the Floquet multipliers:

on “holes", n ∈ Z\S ,

ẅn + wn = 0,

(

wn(T )
ẇn(T )

)

=

(

cos T sin T

− sin T cos T

) (

wn(0)
ẇn(0)

)

,

Floquet multipliers are µ1,2 = e±iT

on excited sites, n ∈ S ,

ẅn + V ′′(ϕ)wn = 0,

(

wn(T )
ẇn(T )

)

=

(

1 0

T ′(E ) (V ′(a))
2

1

)(

wn(0)
ẇn(0)

)

,

Floquet multipliers are µ1,2 = 1 of geometric multiplicity 1 and algebraic
multiplicity 2.
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Splitting of the unit Floquet multiplier

Introduce a limiting configuration u
(0)(t) that has M excited sites with N − 1

“holes" in between them:

u
(0)(t) =

M
∑

j=1

σjϕ(t)ejN
M = 3, N = 2

For ǫ > 0, Floquet multipliers split as follows:

Imµ

Reµ

e
iT

e
−iT

1

1 ǫ = 0 Imµ

Reµ

e
iT

e
−iT

1 ǫ > 0
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Floquet exponents

A Floquet multiplier µ can be written as µ = eλT .

Lemma

For small ǫ > 0 the linearized stability problem has 2M small Floquet exponents

λ = ǫN/2Λ + O
(

ǫ(N+1)/2
)

, where λ̃ is determined from the eigenvalue problem

− T (E)2

2T ′(E)KN
Λ2

c = Sc, c ∈ C
M .

Here S ∈ R
M×M is a tridiagonal matrix with elements

Si,j = −σj (σj−1 + σj+1) δi,j + δi,j−1 + δi,j+1, 1 ≤ i , j ≤ M,

and KN is defined by

KN =

∫ T

0

ϕ̇(t)ϕ̇N−1(t)dt,
(

∂2
t + 1

)

ϕk = ϕk−1, ϕ0 = ϕ.
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Stability of multibreathers

Sandstede (1998) showed that the matrix S has exactly n0 positive and
M − 1 − n0 negative eigenvalues in addition to the simple zero eigenvalue, where
n0 = #(sign changes in {σn}).

Hence, stability of multibreathers is determined by the sign of T ′(E )KN(T ) and
the phase parameters {σk}M−1

k=1 .

Theorem

If T ′(E )KN(T ) > 0 the linearized problem for the multibreathers has exactly n0

pairs of “stable” Floquet exponents and M − 1 − n0 pairs of “unstable” Floquet

exponents counting their multiplicities. If T ′(E )KN(T ) < 0 the conclusion

changes to the opposite.
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Stable configurations of multibreathers

T ′(E )KN(T ) > 0: anti-phase
breathers, n0 = M − 1

T ′(E )KN(T ) < 0: in-phase
breathers, n0 = 0
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Figure: Period versus energy in hard
(magenta) and soft (blue) V .

T ′(E ) < 0 if V ′(u) = u + u3

(hard potential).

T ′(E ) > 0 if V ′(u) = u − u3

(soft potential).
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Resonances of multibreathers
Let ϕ(t) be expanded in the Fourier series,

ϕ(t) =
∑

n∈Nodd

cn cos

(

2πnt

T

)

Then, we compute explicitly

KN(T ) = 4π2
∑

n∈Nodd

T 2N−3(E ) n2|cn|2

[T 2 − (2πn)2]
N−1

.

Hard potentials: T (E ) < 2π; KN(T ) > 0 for odd N and KN(T ) < 0 for even N.

Soft potentials: T (E ) > 2π; resonances occur for T (E ) = 2π(1 + 2n), n ∈ N.

N odd N even
V ′(u) = u + u3 in-phase anti-phase

V ′(u) = u − u3 anti-phase
anti: 2π < T < T

∗

N

in: T
∗

N < T < 6π

where KN(T ) changes sign at T ∗
N , e.g., T ∗

2 = 5.476π.
Dmitry Pelinovsky (McMaster University) Breathers in Klein-Gordon lattices Seville, Spain 12 / 22



Three-site KG lattice

Consider a three-site KG lattice with a soft potential and Dirichlet boundary
conditions,







ü0 + u0 − u3
0 = 2ǫ(u1 − u0)

ü1 + u1 − u3
1 = ǫ(u0 − 2u1)

u−1 = u1,

Two limiting configurations are of interest:

u
(0)(t) = ϕ(t)e0 u

(0)(t) = ϕ(t)(e−1 + e1)

Fundamental breather (M = 1) Breather with a “hole” (M = 2, N = 2)
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Breather solutions

Periodic solutions are computed with the shooting method.
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Solid – fundamental breather (M = 1)

Dashed – breather with a “hole” (M = 2, N = 2).
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Breather with a “hole” (M = 2, N = 2)

The breather u
(0)(t) = ϕ(t)(e−1 + e1) is unstable for T ∈ (2π,T ∗

2 ). It then
remains stable until the symmetry-breaking bifurcation occurs.
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Figure: Real part of the Floquet multipliers versus T .
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Fundamental breather (M = 1)

Fundamental breather with u
(0)(t) = ϕ(t)e0 undertakes a pitchfork

(symmetry-breaking) bifurcation near T = 6π (1:3 resonance).
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Fundamental breather (M = 1)

The middle branch becomes unstable after the pitchfork bifurcation. Left and
right branches are born stable, but also become unstable for larger T .
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Figure: Real part of the Floquet multipliers versus period T .
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Asymptotic theory of pitchfork bifurcation

When T 6= 2πn is fixed, persistence of breathers implies that







u0(t) = ϕ(t) − 2ǫψ1(t) + OH2
per(0,T )(ǫ

2),

u±1(t) = + ǫϕ1(t) + OH2
per(0,T )(ǫ

2),

u±n(t) = + OH2
per(0,T )(ǫ

2), n ≥ 2,

where ϕ can be expanded in the Fourier series,

ϕ(t) =
∑

n∈Nodd

cn(T ) cos

(

2πnt

T

)

.

and the first-order correction is found from ϕ̈1 + ϕ1 = ϕ:

ϕ1(t) =
∑

n∈Nodd

T 2cn(T )

T 2 − 4π2n2
cos

(

2πnt

T

)

.

Near T = 6π, the norm ‖u±1‖H2
per(0,T ) is much larger than O(ǫ) if c3(6π) 6= 0.
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Lyupunov–Schmidt reduction
Using the scaling transformation,

T =
6π

1 + δǫ2/3
, τ = (1 + δǫ2/3)t, un(t) = (1 + δǫ2/3)Un(τ),

where δ is ǫ-independent, U is 6π-periodic, and

Ün + Un − U3
n = βUn + γ(Un+1 + Un−1), n ∈ Z,

where

β = 1 − 1 + 2ǫ

(1 + δǫ2/3)2
= O(ǫ2/3), γ =

ǫ

(1 + δǫ2/3)2
= O(ǫ).

Hence we have at the central site:

Ü0 + U0 − U3
0 = βU0 + 2γU1

whereas at the first sites:

U−1(τ) = U1(τ) = ǫ1/3a cos(τ) + O(ǫ2/3).
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Normal form for 1:3 resonance
As ǫ→ 0 (δ is fixed), a is a root of the cubic equation

2δa(δ) +
3

4
a3(δ) + c3(6π) = 0.

−2 −1 0 1 2
−3

−2

−1

0

1

2

3

δ

a

For any root a(δ), U0 is found from the Duffing oscillator with a periodic force:

Ü0 + U0 − U3
0 = βU0 + ν cos(τ)

where ν = 2γǫ1/3a(δ) = O(ǫ4/3).
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Pitchfork bifurcation of 6π-periodic solutions

Ü0 + U0 − U3
0 = βU0 + ν cos(τ)
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Conclusions

We have fully characterized the criterion for spectral stability/instability of
multi-site breathers of the discrete KG equation near the anti-continuum limit.

We have discovered new phenomena for soft potentials:

◮ Change of stability for breathers with holes (even N)
◮ Disconnection between solution branches across the resonant periods
◮ Symmetry-breaking bifurcation of periodic orbits near the resonant periods

We have constructed rigorous asymptotic theory for 1 : 3 resonance of
periodic orbits.
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