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Klein-Gordon lattice

Klein-Gordon (KG) lattice models a chain of coupled anharmonic oscillators with
nearest-neighbour interactions

ün + V ′(un) = ǫ(un−1 − 2un + un+1),

where {un(t)}n∈Z : R → R
Z, dot represents time derivative, ǫ is the coupling

constant, and V : R → R is an on-site potential.

un un+1

V

u

V

Applications:

dislocations in crystals (e.g. Frenkel & Kontorova ’1938)

oscillations in biological molecules (e.g. Peyrard & Bishop ’1989)
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Anharmonic oscillator
We make the following assumptions:

V ′(u) = u ± u3 +O(u5), where +/− corresponds to hard/soft potential;

0 < ǫ≪ 1: oscillators are weakly coupled.

In the anti-continuum limit (ǫ = 0), each oscillator is governed by

ϕ̈+ V ′(ϕ) = 0, ⇒ 1

2
ϕ̇2 + V (ϕ) = E ,

where ϕ ∈ H2
per (0,T ).
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Figure : Period versus energy in
hard (magenta) and soft (blue) V .

The period of the oscillator is

T (E ) =
√

2

∫ a(E)

−a(E)

dx
√

E − V (x)
,

where a(E ), the amplitude, is the
smallest root of V (a) = E .
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Multi-breathers in the anti-continuum limit

Breathers are spatially localized time-periodic solutions to the Klein-Gordon
lattice. Multi-breathers are constructed by parameter continuation in ǫ from ǫ = 0.

For ǫ = 0 we take

u(0)(t) =
∑

k∈S

σkϕ(t)ek ∈ l2(Z,H2
per (0,T )),

where S ⊂ Z is the set of excited sites and ek is the unit vector in l2(Z) at the
node k. The oscillators are in phase if σk = +1 and out-of-phase if σk = −1.

a(E)

Z
−a(E)

σn 1 −1 1

Figure : An example of a multi-site discrete breather at ǫ = 0.
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Persistence of multi-breathers

Theorem (MacKay & Aubry ’1994)

Fix the period T 6= 2πn, n ∈ N and the T-periodic solution ϕ ∈ H2
per (0,T ) of the

anharmonic oscillator equation for T ′(E ) 6= 0. There exist ǫ0 > 0 and C > 0 such

that ∀ǫ ∈ (−ǫ0, ǫ0) there exists a solution u(ǫ) ∈ l2(Z,H2
per (0,T )) of the

Klein–Gordon lattice satisfying

∥

∥

∥
u(ǫ) − u(0)

∥

∥

∥

l2(Z,H2(0,T ))
≤ Cǫ.

The proof is based on the Implicit Function Theorem and uses invertibility of the
linearization operators

L0 = ∂2
t + 1 : H2

per (0,T ) → L2
per (0,T ), T 6= 2πn,

Le = ∂2
t + V ′′(ϕ(t)) : H2

per ,even(0,T ) → L2
per ,even(0,T ), T ′(E ) 6= 0.
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Three-site KG lattice

Consider a three-site KG lattice with a soft potential and Dirichlet boundary
conditions,







ü0 + u0 − u3
0 = 2ǫ(u1 − u0)

ü1 + u1 − u3
1 = ǫ(u0 − 2u1)

u−1 = u1,

Two limiting configurations are of interest:

u(0)(t) = ϕ(t)e0 u(0)(t) = ϕ(t)(e−1 + e1)

Fundamental breather Breather with a “hole”
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Breather solutions

Periodic solutions are computed with the shooting method for ǫ = 0.01
starting with the initial conditions:

u0(0) = a0(T ), u̇0(0) = 0, u1(0) = a1(T ), u̇1(0) = 0
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Fundamental breather

Fundamental breather with u(0)(t) = ϕ(t)e0 undertakes a pitchfork
(symmetry-breaking) bifurcation near T = 6π (1:3 resonance).
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Fundamental breather

The middle branch becomes unstable after the pitchfork bifurcation. Left and
right branches are born stable, but also become unstable for larger T .
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Figure : Real part of the Floquet multipliers versus period T .
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Asymptotic theory of pitchfork bifurcation
Recall the discrete Klein–Gordon equation

ün + V ′(un) = ǫ(un−1 − 2un + un+1).

When T 6= 2πn is fixed, breather solutions are represented by the expansion







u0(t) = ϕ(t)− 2ǫψ1(t) + OH2
per(0,T )(ǫ

2),

u±1(t) = + ǫϕ1(t) + OH2
per(0,T )(ǫ

2),

u±n(t) = + OH2
per(0,T )(ǫ

2), n ≥ 2,

where ϕ can be expanded in the Fourier series,

ϕ(t) =
∑

n∈Nodd

cn(T ) cos

(

2πnt

T

)

.

and the first-order correction is found from ϕ̈1 + ϕ1 = ϕ:

ϕ1(t) =
∑

n∈Nodd

T 2cn(T )

T 2 − 4π2n2
cos

(

2πnt

T

)

.
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
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cn(T ) cos

(
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)

.

and the first-order correction is found from ϕ̈1 + ϕ1 = ϕ:

ϕ1(t) =
∑

n∈Nodd

T 2cn(T )

T 2 − 4π2n2
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(

2πnt

T

)

.

Near T = 6π, the norm ‖u±1‖H2
per(0,T ) is much larger than O(ǫ) if c3(6π) 6= 0.
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Lyapunov–Schmidt reduction (for V
′(u) = u − u

3)
Using the scaling transformation,

T =
6π

1 + δǫ2/3
, τ = (1 + δǫ2/3)t, un(t) = (1 + δǫ2/3)Un(τ),

where δ is ǫ-independent, U is 6π-periodic, and

Ün + Un − U3
n = βUn + γ(Un+1 + Un−1), n ∈ Z,

where

β = 1 − 1 + 2ǫ

(1 + δǫ2/3)2
= O(ǫ2/3), γ =

ǫ

(1 + δǫ2/3)2
= O(ǫ).

Hence we have at the central site:

Ü0 + U0 − U3
0 = βU0 + 2γU1

whereas at the first site:

Ü1 + U1 − U3
1 = βU1 + γU2 + γU0.
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Decomposition
Let us represent an even 6π-periodic function U0 by the Fourier series,

U0(τ) =
∑

n∈Nodd

bn cos
(nτ

3

)

.

If U0(τ) → ϕ(τ) as ǫ→ 0, then bn → cn(6π) as ǫ→ 0.

Applying the decomposition

Un(τ) = An cos(τ) + Vn(τ), 〈Vn, cos(·)〉L2
per(0,6π)

= 0,

we obtain for n = 1:

βA1 + γA2 + γb3 = − 1

3π

∫ 6π

0

cos(τ)(A1 cos(τ) + V1(τ))
3dτ

and

V̈1 + V1 = βV1 + γV2 + γ
∑

k∈Nodd\{3}

bk cos

(

kτ

3

)

+(A1 cos(τ) + V1)
3 − cos(τ)

〈cos(·), (A1 cos(·) + V1)
3〉L2

per(0,6π)

〈cos(·), cos(·)〉L2
per(0,6π)

.
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Reduction

By the Implicit Function Theorem, for small ǫ and small ‖A‖, there is C > 0 :

‖V‖l2(N,H2
per(0,6π))

≤ C (ǫ+ ‖A‖3
l∞(N)).

Then, Vn can be substituted in the system of algebraic equations, e.g. for n = 1,

βA1 + γA2 + γb3 = − 1

3π

∫ 6π

0

cos(τ)(A1 cos(τ) + V1(τ))
3dτ

Recall that β = 2δǫ2/3 − 2ǫ+O(ǫ4/3) and γ = ǫ+O(ǫ5/3) as ǫ→ 0. Using the
scaling transformation An = ǫ1/3an, we obtain

2δa1 +
3

4
a3
1 + b3 = ǫ1/3(2a1 − a2) +O(ǫ2/3),

2δan +
3

4
a3
n = ǫ1/3(2an − an+1 − an−1) +O(ǫ2/3), n ≥ 2.

If δ 6= 0, then for small ǫ and finite a1, there is C > 0 : ‖a‖l2(N\{1}) ≤ Cǫ1/3.
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Normal form for 1:3 resonance
Assume that U0(τ) → ϕ(τ) as ǫ→ 0, then bn → cn(6π) as ǫ→ 0. For fixed
δ 6= 0, let a(δ) be a root of the cubic equation

2δa(δ) +
3

4
a3(δ) + c3(6π) = 0,

and assume that 8δ + 9a2(δ) 6= 0.
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−3
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1
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We have thus obtained the periodic solution in the form of the expansion
{

U±1(τ) = ǫ1/3a(δ) cos(τ) +OH2
per(0,6π)

(ǫ2/3),

U±n(τ) = OH2
per(0,6π)

(ǫ2/3), n ≥ 2.
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Breather solutions

Periodic solutions are computed with the shooting method for ǫ = 0.01
starting with the initial conditions:

u0(0) = a0(T ), u̇0(0) = 0, u1(0) = a1(T ), u̇1(0) = 0
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6π-periodic solutions of the discrete Klein–Gordon equation
For any root a(δ), U0 is found from the Duffing oscillator with a periodic force:

Ü0 + U0 − U3
0 = βU0 + ν cos(τ)

where ν = 2γǫ1/3a(δ) = O(ǫ4/3) and β = O(ǫ2/3).

Theorem (D.P. & A. Sakovich ’12)

For small ǫ and any finite δ 6= 0, there exists a unique 6π-periodic solution of the

discrete Klein–Gordon equation satisfying

‖U0 − ϕ‖H2
per

≤ Cǫ4/3, ‖U‖l2(N,H2
per)

≤ Cǫ1/3.
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‖U0 − ϕ‖H2
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≤ Cǫ4/3, ‖U‖l2(N,H2
per)
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Nevertheless, for β = 0 and ν = 0.0002, we obtain three 6π-periodic solutions,
which are generated by the pitchfork bifurcation:
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Comparison of pitchfork bifurcations
Pitchfork bifurcation within the Duffing equation:
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Stability of discrete breathers

Discrete Klein–Gordon equation:

ün + V ′(un) = ǫ(un−1 − 2un + un+1),

Stability of multi-site breathers:

Morgante, Johansson, Kopidakis, Aubry ’2002 - numerical results

Archilla, Cuevas, Sánchez-Rey, Alvarez ’2003 - Aubry’s spectral band theory

Koukouloyannis, Kevrekidis ’2009 - MacKay’s action-angle averaging

Yoshimura ’2012 - KG unharmonic lattice

Rapti’ 2013 - next-neighbors interactions

In our work

no restriction to small-amplitude approximation

multi-site breathers with “holes”
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Floquet Multipliers

Linearize about the breather solution to the dKG by replacing u with u+w, where
w : R → R

Z is a small perturbation, and collect the terms linear in w:

ẅn + V ′′(un)wn = ǫ(wn−1 − 2wn + wn+1), n ∈ Z.

In the anti-continuum limit, it is easy to find the Floquet multipliers:

on “holes", n ∈ Z\S ,

ẅn + wn = 0,

(

wn(T )
ẇn(T )

)

=

(

cos T sin T

− sin T cos T

)(

wn(0)
ẇn(0)

)

,

Floquet multipliers are µ1,2 = e±iT

on excited sites, n ∈ S ,

ẅn + V ′′(ϕ)wn = 0,

(

wn(T )
ẇn(T )

)

=

(

1 0

T ′(E ) (V ′(a))
2

1

)(

wn(0)
ẇn(0)

)

,

Floquet multipliers are µ1,2 = 1 of geometric multiplicity 1 and algebraic
multiplicity 2.
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Splitting of the unit Floquet multiplier

Introduce a limiting configuration u(0)(t) that has M excited sites with N − 1
“holes" in between them:

u(0)(t) =
M
∑

j=1

σjϕ(t)ejN
M = 3, N = 2

For ǫ > 0, Floquet multipliers split as follows:

Imµ

Reµ

e
iT

e
−iT

1

1 ǫ = 0 Imµ

Reµ

e
iT

e
−iT

1 ǫ > 0
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Floquet exponents

A Floquet multiplier µ can be written as µ = eλT .

Theorem (D.P., A. Sakovich, 2012)

For small ǫ > 0 the linearized stability problem has 2M small Floquet exponents

λ = ǫN/2Λ +O
(

ǫ(N+1)/2
)

, where Λ is determined from the eigenvalue problem

− T (E)2

2T ′(E)KN

Λ2c = Sc, c ∈ C
M .

Here S ∈ R
M×M is a tridiagonal matrix with elements

Si,j = −σj (σj−1 + σj+1) δi,j + δi,j−1 + δi,j+1, 1 ≤ i , j ≤ M,

and KN is defined by

KN =

∫ T

0

ϕ̇(t)ϕ̇N−1(t)dt,
(

∂2
t + 1

)

ϕk = ϕk−1, ϕ0 = ϕ.
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Remarks on the analytical computations
Floquet multipliers µ = eλT are found from solutions W ∈ l2(Z,H2

per
(0,T )) of

the linear homogeneous equations

Ẅn + V ′′(un)Wn + 2λẆn + λ2Wn = ǫ(Wn+1 − 2Wn + Wn−1), n ∈ Z.
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Remarks on the analytical computations
Floquet multipliers µ = eλT are found from solutions W ∈ l2(Z,H2

per
(0,T )) of

the linear homogeneous equations

Ẅn + V ′′(un)Wn + 2λẆn + λ2Wn = ǫ(Wn+1 − 2Wn + Wn−1), n ∈ Z.

When N = 1 (all excited oscillators are adjacent), the perturbation theory is an
easy exercise with λ = ǫ1/2Λ and

W =

M
∑

j=1

cjσj ϕ̇ej − 2ǫ1/2Λ

M
∑

j=1

cjσj(L
−1
e ϕ̈)ej + ǫW̃.

At the excited sites n = j for j ∈ {1, 2, ...,M}, we obtain linear inhomogeneous
equations

¨̃
Wj + V ′′(ϕ)W̃j = (cj+1 + cj−1)ϕ̇− σj(σj+1 + σj−1)cjV

′′′(ϕ)ψ1ϕ̇

+Λ2cj(4
˙L−1

e ϕ̈− ϕ̇) +O(ǫ1/2),

which yield

− T (E)2

2T ′(E)K1
Λ2c = Sc, c ∈ C

M .
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Remarks on the (general) analytical computations
Recall again the problem of finding W ∈ l2(Z,H2

per
(0,T )) and λ from solutions of

the linear homogeneous equations

Ẅn + V ′′(un)Wn + 2λẆn + λ2Wn = ǫ(Wn+1 − 2Wn + Wn−1), n ∈ Z.

When N > 1, the perturbative expansion with λ = ǫN/2Λ involves too many
computations of powers of ǫ1/2.
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(0,T )) and λ from solutions of

the linear homogeneous equations

Ẅn + V ′′(un)Wn + 2λẆn + λ2Wn = ǫ(Wn+1 − 2Wn + Wn−1), n ∈ Z.

When N > 1, the perturbative expansion with λ = ǫN/2Λ involves too many
computations of powers of ǫ1/2.

Fundamental breather is a solution u(ǫ) ∈ l2(Z,H2
e (0,T )) of the discrete

Klein–Gordon equation for small ǫ > 0 for a given u(0)(t) = ϕ(t)e0.

u(ǫ) = φ(ǫ,N) +Ol2(Z,H2
per(0,T ))(ǫ

N+1).

Then, we write

W =

M
∑

j=1

cjτjN∂tφ
(ǫ,N) + ǫN/2Λ

M
∑

j=1

cjτjNµ
(ǫ,N) + ǫNW̃,

and perform perturbation computations at the order O(ǫN).
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Stability theorem

Theorem (D.P., A. Sakovich, 2012)

For small ǫ > 0 the linearized stability problem has 2M small Floquet exponents

λ = ǫN/2Λ +O
(

ǫ(N+1)/2
)

, where Λ is determined from the eigenvalue problem

− T (E)2

2T ′(E)KN

Λ2c = Sc, c ∈ C
M .

where

Si,j = −σj (σj−1 + σj+1) δi,j + δi,j−1 + δi,j+1, 1 ≤ i , j ≤ M,

and KN is a numerical coefficient.
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For small ǫ > 0 the linearized stability problem has 2M small Floquet exponents

λ = ǫN/2Λ +O
(

ǫ(N+1)/2
)

, where Λ is determined from the eigenvalue problem

− T (E)2

2T ′(E)KN

Λ2c = Sc, c ∈ C
M .

where

Si,j = −σj (σj−1 + σj+1) δi,j + δi,j−1 + δi,j+1, 1 ≤ i , j ≤ M,

and KN is a numerical coefficient.

Theorem (B. Sandstede, 1998)

Let n0 be the numbers of negative elements in the sequence {σjσj+1}M−1
j=1 . Matrix

S has exactly n0 positive and M − 1 − n0 negative eigenvalues counting their

multiplicities, in addition to the simple zero eigenvalue.
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Stable configurations of multibreathers

T ′(E )KN(T ) > 0: anti-phase
breathers, n0 = M − 1

T ′(E )KN(T ) < 0: in-phase
breathers, n0 = 0

N odd N even
V ′(u) = u + u3,

T ′(E ) < 0
in-phase anti-phase

V ′(u) = u − u3,
T ′(E ) > 0

anti-phase
anti: 2π < T < T

∗

N

in: T
∗

N < T < 6π

where KN(T ) changes sign at T ∗
N , e.g., T ∗

2 = 5.476π.
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Breather solutions

Periodic solutions are computed with the shooting method for ǫ = 0.01
starting with the initial conditions:

u0(0) = a0(T ), u̇0(0) = 0, u1(0) = a1(T ), u̇1(0) = 0
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Solid – fundamental breather. Dashed – breather with a “hole”.
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Breather with a “hole”

The breather u(0)(t) = ϕ(t)(e−1 + e1) is unstable for T ∈ (2π,T ∗
2 ). It then

remains stable until the symmetry-breaking bifurcation occurs.
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Figure : Real part of the Floquet multipliers versus T .
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Conclusions

We have constructed rigorous asymptotic theory for 1 : 3 resonance of
periodic orbits by reduction to the forced Duffing oscillator.

We have fully characterized the criterion for spectral stability/instability of
multi-site breathers of the discrete KG equation near the anti-continuum limit
with the reduced linear eigenvalue problem.

We have discovered new phenomena for soft potentials:

◮ Disconnection between solution branches across the resonant periods
◮ Symmetry-breaking bifurcation of periodic orbits near the resonant periods
◮ Change of stability for breathers with holes
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