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Klein-Gordon lattice

Klein-Gordon (KG) lattice models a chain of coupled anharmonic oscillators with
nearest-neighbour interactions

Un + V'(up) = €(up_1 — 2up + Upy1),

where {u,(t)}nez : R — RZ, dot represents time derivative, € is the coupling
constant, and V : R — R is an on-site potential.

Applications:
o dislocations in crystals (e.g. Frenkel & Kontorova '1938)
@ oscillations in biological molecules (e.g. Peyrard & Bishop '1989)
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Anharmonic oscillator
We make the following assumptions:

@ V/(u) = u= u® + O(ud), where +/— corresponds to hard/soft potential;
@ 0 < e < 1: oscillators are weakly coupled.

In the anti-continuum limit (e = 0), each oscillator is governed by

. 1.
¢+ V'(p)=0, = §<p2 + V(p) = E,

where ¢ € H3,(0, T).

4

The period of the oscillator is

a(E) dx
—a(E) VE — V(X)’
where a(E), the amplitude, is the

Figure : Period versus energy in smallest root of V(a) =E.
hard (magenta) and soft (blue) V.
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Multi-breathers in the anti-continuum limit

Breathers are spatially localized time-periodic solutions to the Klein-Gordon
lattice. Multi-breathers are constructed by parameter continuation in € from ¢ = 0.

For ¢ = 0 we take

uO(t) = owp(tlex € P(Z Hze (0, T)),
keS

where S C Z is the set of excited sites and ey is the unit vector in [?(Z) at the

node k. The oscillators are in phase if o = +1 and out-of-phase if o = —1.
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Figure : An example of a multi-site discrete breather at e = 0.
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Persistence of multi-breathers

Theorem (MacKay & Aubry '1994)
Fix the period T # 2mn, n € N and the T-periodic solution ¢ € H2.,(0, T) of the

per
anharmonic oscillator equation for T'(E) # 0. There exist g > 0 and C > 0 such
that Ve € (—eo, €0) there exists a solution u(®) € [2(Z, H2,,(0, T)) of the
Klein—Gordon lattice satisfying

Hu(f) —u©® < Ce.

12(2,H?(0,T))

The proof is based on the Implicit Function Theorem and uses invertibility of the
linearization operators

Lo = 0;+1:H.(0,T)— L2.,.(0,T), T # 27n,
‘Ce = at% + V”(‘/’(t)) : ngr,even(07 T) - Lier,even(oa T)7 T/(E) 7& 0
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Three-site KG lattice

Consider a three-site KG lattice with a soft potential and Dirichlet boundary
conditions,

g + up — u§ = 2¢(ur — up)
in +u — v} = e(ug — 2uy)
u_1=u,

Two limiting configurations are of interest:
u@(t) = p(t)eo  uO(t) = p(t)(e-1 +e1)

Fundamental breather Breather with a “hole”
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Breather solutions

Periodic solutions are computed with the shooting method for e = 0.01
starting with the initial conditions:

uo(0) = ao(T), o(0) =0,

Solid — fundamental breather. Dashed — breather with a “hole”.
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Fundamental breather

Fundamental breather with u(®)(t) = ¢(t)ey undertakes a pitchfork
(symmetry-breaking) bifurcation near T = 67 (1:3 resonance).
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Fundamental breather

The middle branch becomes unstable after the pitchfork bifurcation. Left and
right branches are born stable, but also become unstable for larger T.
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Figure : Real part of the Floquet multipliers versus period T.
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Asymptotic theory of pitchfork bifurcation

Recall the discrete Klein—Gordon equation
U + V'(up) = €(Up—1 — 2up + Upy1).

When T # 27n is fixed, breather solutions are represented by the expansion

w(t) = ¢(t) = 2ep1(t) + Oz 0,1)(€%),
up(t) = +epr(t) + Ongr(o,T)(€2),
usn(t) = + O om)(€), n=>2,

where ¢ can be expanded in the Fourier series,

o) = 3 a(T)cos (27;’”) .

n€Noaa

and the first-order correction is found from ¢ + ¢1 = ¢:
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where ¢ can be expanded in the Fourier series,

o) = 3 a(T)cos (27;’”) .

n€Noaa

and the first-order correction is found from ¢ + ¢1 = ¢:

e1(t) = T2C"(7TT37 cos (ant) :

T
nENyaa

n>?2

)

Near T = 6m, the norm |lus1||Hz_ (0,7 is much larger than O(e) if c3(6m) # 0.

per
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Lyapunov—-Schmidt reduction (for V'(u) = u — u?)
Using the scaling transformation,

61w

T
1+ 0e2/3’

= (1406¥3)t, up(t) = (14 5e¥/3)Un(7),
where § is e-independent, U is 67-periodic, and

Un + Un - U,?; == ﬂUn +'7(Un+1 + Un—l)) ne Za

where
1+ 2¢ 5 €
—1- 0@, = s = O(0).
P roenp =) 7= gy =00
Hence we have at the central site:
Uo + Ug — Ug = pUy +2vUq
whereas at the first site:
Uy + Uy — U2 = BUL +yUs + 7 Up.
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Decomposition
Let us represent an even 67-periodic function Uy by the Fourier series,

Uo(T) = Z b, cos (%) .

n€Noda
If Up(7) — ¢(7) as € = 0, then b, — ¢,(67) as € — 0.
Applying the decomposition
Un(7) = Ancos(7) + Va(r), (Vi cos())iz,.0.6m = 0.

we obtain for n = 1:

1 6
BAL+ A2 + by = — / cos(r)(Ar cos(r) + Vi (r))3dr
0

and

i+ v

k
BVL +yVo + Z bkCOS<T)

kENodd\{3} 3

+(Ay cos(7) + V4)? — cos(7) {cos(:), (A cos() + V1) >L?>er(0767r)'

(cos(-), cos(+)) 2 (0,67)

per
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Reduction

By the Implicit Function Theorem, for small € and small ||A||, there is C >0 :

IVIlr2y, k2, 0.6m)) < Cle+ A )

Then, V,, can be substituted in the system of algebraic equations, e.g. for n =1,

1 6
B+ s+ by = 5 / cos()(As cos(r) + Va(r))3dr
0

Recall that 8 = 20¢2/3 — 2¢ + O(¢*/3) and v = € + O(€%/3) as € — 0. Using the
scaling transformation A, = €!/3a,, we obtain

3
20a; + Za% +b3 = 61/3(231 — 32) + 0(62/3),

3
20a, + Za?, = 61/3(23,, —ap+1 —an—1) + (’)(62/3), n>2.

If § # 0, then for small € and finite a1, there is C >0 : [|a]|za (1}) < Cel/3.
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Normal form for 1:3 resonance

Assume that Up(1) — ¢(7) as € — 0, then b, — c,(67) as € — 0. For fixed
0 # 0, let a(d) be a root of the cubic equation

20a(6) + 233(5) + c3(6m) =0,
and assume that 80 + 9a%(8) # 0.

e
7 |

) -1 0 1 2
5

We have thus obtained the periodic solution in the form of the expansion

{ Usi(t) = €M3a(6)cos(r) + Opz_(0.6m(€*3),

per

Uin(T) = Oz (o,ﬁﬂ)(ez/z'), n>2.

per
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Breather solutions

Periodic solutions are computed with the shooting method for e = 0.01
starting with the initial conditions:

uo(0) = ao(T), o(0) =0,

Solid — fundamental breather. Dashed — breather with a “hole”.

Multi-site breathers Geneva, 2014

Dmitry Pelinovsky (McMaster University)

15 / 28



6m-periodic solutions of the discrete Klein—Gordon equation
For any root a(4), Up is found from the Duffing oscillator with a periodic force:

U + U — Ug = BUp + v cos(T)
where v = 2v€'/33(8) = O(¢*/3) and 8 = O(€¥/3).
Theorem (D.P. & A. Sakovich '12)

For small € and any finite 0 # 0, there exists a unique 6m-periodic solution of the
discrete Klein—-Gordon equation satisfying

[Uo — @llmz,. < Ce*2, ||U|lpqu,pz.y < Ce'/3.

per per
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per per

Nevertheless, for 5 = 0 and v = 0.0002, we obtain three 6m-periodic solutions,
which are generated by the pitchfork bifurcation:

v=2x10"*
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Comparison of pitchfork bifurcations
Pitchfork bifurcation within the Duffing equation:
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Stability of discrete breathers
Discrete Klein—Gordon equation:

in+ V'(up) = €(up_1 — 2up + tny1),

Stability of multi-site breathers:

Morgante, Johansson, Kopidakis, Aubry '2002 - numerical results

Archilla, Cuevas, Sanchez-Rey, Alvarez '2003 - Aubry's spectral band theory
Koukouloyannis, Kevrekidis '2009 - MacKay's action-angle averaging
Yoshimura '2012 - KG unharmonic lattice

Rapti’ 2013 - next-neighbors interactions

¢ 6 ¢ ¢ ¢

In our work

@ no restriction to small-amplitude approximation

@ multi-site breathers with “holes”
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Floquet Multipliers

Linearize about the breather solution to the dKG by replacing u with u 4 w, where
w : R — RZ is a small perturbation, and collect the terms linear in w:

Wy + V" (un)wy = €(Wn—1 — 2wy + Wpi1), neZ.

In the anti-continuum limit, it is easy to find the Floquet multipliers:
@ on “holes", n € Z\S,

, B wo(T)\ [ cosT sinT\ [wy(0)
Wn + Wn =0, (v’v,,(T)) o (— sin T cos T) <v'v,,(0) ’
Floquet multipliers are yi1» = e*'T
@ on excited sites, n € S,

Wn + V" (p)wn = 0, (%EB) - (T’(E) (lV’(c‘f'))2 (1)> (:::Eg;) |

Floquet multipliers are p11 > = 1 of geometric multiplicity 1 and algebraic
multiplicity 2.
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Splitting of the unit Floquet multiplier

Introduce a limiting configuration u(®)(t) that has M excited sites with N — 1
“holes" in between them:

u©@(r) = iaj@(t)em T — T T

For € > 0, Floquet multipliers split as follows:
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Floquet exponents

A Floquet multiplier 1 can be written as H.

Theorem (D.P., A. Sakovich, 2012)

For small € > 0 the linearized stability problem has 2M small Floquet exponents
A=A+ 0 (e(NH)/z), where N is determined from the eigenvalue problem

2T7'—EE—;2 A’c=S8c, ceCM.

Here S € RM*M s 3 tridiagonal matrix with elements
Sij==0j(0j1+0j11)0ij+bij1+0ij, 1<ij<M,

and Ky is defined by

)
K = / HOpn-a(t)dt, (2 +1) ok = 1. 9o = .
0
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Remarks on the analytical computations
Floquet multipliers yo = e* are found from solutions W € 1*(Z, H2.,(0, T)) of
the linear homogeneous equations

Wiy + V" () Wiy + 2AW,, + N2 W, = e(W,y1 — 2W, + W,_1), neZ.
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Remarks on the analytical computations
Floquet multipliers yo = e* are found from solutions W € 1*(Z, H2.,(0, T)) of
the linear homogeneous equations

Wiy 4 V" () Wy + 2AW, + X2W,, = €(Wpy1 — 2W, + W,_1), neZ.

When N =1 (all excited oscillators are adjacent), the perturbation theory is an
easy exercise with A = €/?A and

M M
W = Z cjajgbej — 261/2/\2 CjUj(Lglgb)ej‘ + EW.
j=1 j=1

At the excited sites n = j for j € {1,2, ..., M}, we obtain linear inhomogeneous
equations

W+ V(@)W = (Gs1+G-1)¢ — 0j(ojs1 + 07-1)G V" (9)h1¢
+NG (AL — ¢) + O(e/?),
which yield
T(E) A2c—Sc, ceCM.

T 2T ()R
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Remarks on the (general) analytical computations

Recall again the problem of finding W € /?(Z, H3,,(0, T)) and X from solutions of
the linear homogeneous equations

Wiy 4+ V" (up) Wy + 2AW,y + X2 W, = €(Wpy1 — 2W, + W,_1), neZ.

When N > 1, the perturbative expansion with A = €"'/2A involves too many
computations of powers of €!/2.
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Remarks on the (general) analytical computations

Recall again the problem of finding W € /?(Z, H3,,(0, T)) and X from solutions of
the linear homogeneous equations

Wiy + V" () Wy + 2XW,, + N2 W, = e(Wjy1 — 2W, + W,_1), neZ.

When N > 1, the perturbative expansion with A = €"'/2A involves too many
computations of powers of €!/2.

Fundamental breather is a solution u(®) € />(Z, H2( T)) of the discrete
Klein—Gordon equation for small € > 0 for a given u(®)(t) = ¢(t)eo.

U(E) — d)(e N) + 012 LMz (0, T))(€ )

pcr

Then, we write

M M
W = Z ¢ind: M) 4 eN2A Z grinple™) + VW,
j=1 j=1

and perform perturbation computations at the order O(eV).
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Stability theorem
Theorem (D.P., A. Sakovich, 2012)

For small ¢ > 0 the linearized stability problem has 2M small Floquet exponents
A= V2N + O (eN+1)/2), where A is determined from the eigenvalue problem

T(E)? M
—%A2C:SC, ceC™.

where

Sy = =eylen o A opalioh g 4 G 0 A G 1<i,j< M,

and Ky is a numerical coefficient.

Dmitry Pelinovsky (McMaster University)

Multi-site breathers

Geneva, 2014 24 / 28




Stability theorem
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For small ¢ > 0 the linearized stability problem has 2M small Floquet exponents
A=A+ O (e(N+1)/2), where N is determined from the eigenvalue problem

zr/§5—§2 ANc=S8c, ceCM.
where

Sy = =eylen o A opalioh g 4 G 0 A G 1<i,j< M,

P

and Ky is a numerical coefficient.

Theorem (B. Sandstede, 1998)

Let ng be the numbers of negative elements in the sequence {cjoj 1 }inII- Matrix
S has exactly ny positive and M — 1 — ng negative eigenvalues counting their
multiplicities, in addition to the simple zero eigenvalue.

v
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Stable configurations of multibreathers

I N B A

T'(E)Kn(T) > 0: anti-phase T'(E)Kn(T) < 0: in-phase
breathers, np = M —1 breathers, ng =0
N odd N even
Ty — 3
v (#)(E)u<+0u ' in-phase anti-phase
V'(u) = u— 3, . anti: 27 < T < Ty
T(E)>0 anti-phase in: Tpy < T < 6

where Ky(T) changes sign at Ty, e.g., T3 = 5.4767.
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Breather solutions

Periodic solutions are computed with the shooting method for e = 0.01
starting with the initial conditions:

uo(0) = ao(T), o(0) =0,

Solid — fundamental breather. Dashed — breather with a “hole”.
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Breather with a “hole”

The breather u(®(t) = (t)(e_1 + ;) is unstable for T € (2, T). It then
remains stable until the symmetry-breaking bifurcation occurs.

10

Figure : Real part of the Floquet multipliers versus T.
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Conclusions

@ We have constructed rigorous asymptotic theory for 1 : 3 resonance of
periodic orbits by reduction to the forced Duffing oscillator.

@ We have fully characterized the criterion for spectral stability/instability of
multi-site breathers of the discrete KG equation near the anti-continuum limit
with the reduced linear eigenvalue problem.

@ We have discovered new phenomena for soft potentials:

» Disconnection between solution branches across the resonant periods
» Symmetry-breaking bifurcation of periodic orbits near the resonant periods
» Change of stability for breathers with holes
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