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The Discrete Nonlinear Schrédinger Equation

The 1D DNLS equation is

dib
% e (st + Dot — 20n) + |l = 0,

where ¥(t) = {n(t) }nez : R — CZ and € € R.

P.G. Kevrekidis, The Discrete Nonlinear Schrédinger Equation (Springer, 2009)



Discrete solitons (localized solutions)
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Methods to establish existence of such localized solutions:
¢ Continuation from the anticontinuum (e = 0)
e Dynamical methods (discrete maps)

e Calculus of variations (energy functionals)

D.E. Pelinovsky, Localization in Periodic Potentials: from Schrédinger operators to the
Gross—Pitaevskii equation (Cambridge University Press, 2011)



Continuation from the anticontinuum (e = 0)

Discrete solitons 1, (t) = ¢,e~* are found from:

€(Bnr1+ dn1—200) + (60> — 1) =0, neZ

With € = 0 the steady-state solutions have the form,
On = e or on =0

where 6,, € R is a phase.



Continuation from the anticontinuum (e = 0)

Discrete solitons 1, (t) = ¢,e~* are found from:

€ (D1 + bn1 — 26n) + (|90 — 1) =0, n€Z.

With € = 0 the steady-state solutions have the form,
On = e or on =0

where 6,, € R is a phase. In 1D: 6 € {£7,0}, hence ¢ € R.



Calculus of variations (energy functionals)

The stationary DNLS equation is the Euler-Lagrange equation
for the energy functional:

HW) = 3 € (@ntbnsr + ntinsr — 20enl?) + 5 hinl?

neL

e M. Weinstein (1999): minimization of H(v) subject to the
fixed Q(v) = 32,z [¥nl*.

e A. Pankov (2005): linking theorems to guarantee existence
of critical points of H (1))

e M. Hermann (2011): minimization of H(¢) for the class of
on-site and off-site solitons:

(on-site) 1, = ¥_y; (off-site) 1, = 1_p.



Variational Formulation of the DNLS

Consider the action functional S(¢),
to
S = Ldt,
0
with the Lagrangian:
i _
L) =Y 5 (Unditbn — Yndithn) + H(¥),

neL

where H (1)) is the DNLS energy functional.

The Euler-Lagrange equation recovers the DNLS equation:

l% € (a1 + Vn_1 — 2n) + |Unl*bn =0, t€[0,t0).



Variational Approximation (VA)

Reduce degrees of freedom by using a variational approximation
for a solution of the Euler-Lagrange equations.

We pose a trial configuration (ansatz),
wansatz _ Aeioe+iﬁ(n—s)€—n|n—s|
n
with real parameters A(t), a(t), B(t),n(t), s(t).

The sums in the Lagrangian can be explicitly computed to
define the “effective Lagrangian”,

£eﬂ(A> «, B? 7, S) = £(¢ansatz)

which produces reduced dynamical equations on A, «, 3,1, .



References on Variational Approximation

e Malomed (2002): review of variational methods in the
context of nonlinear optics (pdes)

e Malomed & Weinstein (1996); Kaup (2005): applications of
the VA to on-site and off-site solitons of the DNLS equation

e Carretero et al. (2006); Cuevas et al. (2009); Chong & P.
(2011); Chong et al. (2011); Susanto & Matthews (2011) :
applications of the VA to nonlinear lattice equations

e Kaup & Vogel (2007) : an attempt of “justification” of the
VA for nonlinear pdes

C. Chong, D.E. Pelinovsky, and G. Schneider, On the validity of the variational approximation
in discrete nonlinear Schrodinger equations, Physica D 241, 115-124 (2012)



Validity of the Approximation

Heuristically, VA should be better for small e:
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VA: stationary DNLS equation

Consider steady-state solutions of the form 1, = ¢, (1729,
where ¢ solves a stationary DNLS equation,

Ru(¢) =€ (pns1 + dn_1) + (¢2 — 1), =0, n€Z

The Lagrangian of this stationary DNLS equation is the energy:

H(6) = 3 [310nl* = 0nP + (Bntes + 6

neL

Let ¢, be an approximate solution of the stationary DNLS
equation such that

IR = O(@) as e—0

for some p > 0.



Justification Result

Lemma: Assume that there is a finite set S C Z and a binary
set {ontnes € {+1,—1} such that

gii% [+ — Z onenll;z =0,
nes
Then, there are eg > 0, C' > 0, and a unique solution of the
stationary DNLS equation with € € (0,€y) such that

16 = ulliz < CeP.



Justification Result

Lemma: Assume that there is a finite set S C Z and a binary
set {ontnes € {+1,—1} such that

lim [|¢« — Y _ oenllz =0,
e—0

nes

Then, there are eg > 0, C' > 0, and a unique solution of the
stationary DNLS equation with € € (0,€y) such that

16 = ulliz < CeP.

Proof: After the substitution ¢ = ¢, + ¢, we have
Lo = R(¢«) + N(p),

where L is a bounded invertible operator on I2(Z) for small ¢
and N (p) is quadratic in ¢.



VA - Simple Example
Consider the ansatz,

ansatz __ —n|n|
oy = Ae

and define 7 from the tail analysis:

1
1=¢("+e ) = n=arccosh (2)
€



VA - Simple Example

Consider the ansatz,
ansatz __ —n|n|
oy = Ae

and define 7 from the tail analysis:

€

1
1=¢("+e ) = n=arccosh (2)
The effective Lagrangian,

g — % A coth(2n) — A2 coth(n)
+2¢ A2 (coth(n) cosh(n) — sinh(n))

yields the only equation:
A% = (1 —2ee ") tanh(2n) = 1 + O(€?).



VA - Simple Example

Explicit computation shows that R(¢*52%%) = O(¢?) and hence

||¢ _ qbansan:zHl2 < 063.
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This approximation is good for on-site solitons.



VA - Another Example

Consider the ansatz with two parameters A and B,

ansatz = __

B n =0,
n - Aefn(|n|71) ’n’ (= N,
The effective Lagrangian yields now two equations:

A3

1_76_417—14(1—66_77)‘*’6.8:0

and
(B> —1)B +2¢A =0.

There exists solutions for A and B such that

A=e+0() and B=1+0O().



VA - Another Example

Explicit computation shows that R(¢*52%%) = O(¢%) and hence
H¢ . ¢ansatz||l2 < 066.
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Similar approximations can be constructed for off-site and
twisted solitons (supported on two sites as € — 0).



VA - Kaup’s approximation

Consider the ansatz with two parameters A and s,
(bznsatz — Aefn\nfs\’ nez.
The effective Lagrangian yield two equations:
sinh(2
either Y =0 or A%= GL(T’)
cosh(nx)

and inh(20)
sinh(2n _

2e B (coshi(ny) — e

Ecosh(277)<) (COS (nx) —e )’

where x =2s — 1€ [-1,1] if s € [0,1].

(a) (b)
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VA - Kaup’s approximation

Explicit computation shows that R(¢*52%%) = O(¢?) and hence
||¢ _ qsansatzHlQ < 063.
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The coalescence point at n =~ 0.69 (e ~ 0.4) is an artefact of the
VA for large values of e.



Time-dependent VAs

Using the trial function,

ansatz __ ia+iB(n—s) ,—n|n—s|
P = Ae e

we obtain the effective Lagrangian

ﬁeff(Aa a, 57 X) = E(wansahZ%

which produces an integral of motion for A, an uncoupled
equation for «, and a planar Hamiltonian system of equations
for § and ~:

a8 _

dx
dt _F(ﬁaX)7 rn _G(/B7X)

dt



Time-dependent VAs
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Time-dependent VAs
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Figure: Comparison between the VA and the numerical solutions of
the DNLS equation for the on-site (left) and off-site (right) solitons.



Justification of the time-dependent VAs

Theorem: Fiz ey > 0 and let (3,%) € C(R,R?) be a family of
periodic solutions of the planar system such that for all
€ € (0,€0), there exists Cy > 0 such that

sup B[+ nlx(t) +1]) < Co.

For all e € (0,€p) and a given Ty > 0, there exists Ty-dependent
constant C > 0 such that a time-dependent solution ¥ of the
DNLS equation with 1|—o = *"%%|,_q satisfies

sup sup [ (t) — ¢¥p"*(t)| < Ce.
te[0,Tp) n€Z



Improved result

Corollary: Under the conditions of Theorem, if
(B,x) € C(R,R?) satisfies

sup (|6(6)] + nlx(t) + 1)) < Coe?,
teR

then the VA satisfies the bound

sup sup [ (t) — YR"(1)] < Ce’.
tel0,Tp] n€Z

x10™

f(g)=0.16e"%* f(e)=1.39>%0

sup Error
=

0 0.01 0.02 0.03 0.04 0.05 [ 0.01 0.02 0.03 0.04 0.05



Remarks

e Near the center point (0, xo) = (0, —1), the frequency of
oscillations is near \/5, which is different from the
frequency of oscillations of linear oscillators (= 1).

e The period of the periodic oscillations is O(1) as € — 0,
whereas |xo + 1| = O(e?) as € — 0.

e The proof is based on the decomposition v = 1353t 1 [J:
iU = F(U) + Res (1587,

where ||[Res(1?"%%)|;c = O(€) as € — 0. By Gronwall’s
inequality, we have

sup ||U(t)|i= < CTy sup ||Res(xp*5%)]|;00.
t€[0,T0] t€[0,To]



Cubic-Quintic DNLS Equations

The DNLS equation is:

dipn
z% + € (Vi1 + Yn1 — 20 4 2|Un 200 — [n] e, =0,

Same game: Start with steady states 1, = ¢,e~ ! by using the

ansatz
(bznsatz (t) _ Aei(a—f—k(n—s)—l—ﬂ(n—g)?)e_n\n—s\ ]

Note: two parameters (u, €) exist. Snaking behavior is
obtained by fixing € = 0.1 in the plane (u, P), where P = ||¢]%.

R. Carretero-Gonzalez, J.D. Talley, C. Chong and B.A. Malomed. Multistable solitons of the
cubic-quintic discrete nonlinear Schrédinger equation Physica D 216 (2006) 77-89.



Cubic-Quintic DNLS Equations
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Cubic-Quintic DNLS Equations
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Cubic-Quintic DNLS Equations
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Cubic-Quintic DNLS Equations
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VA for the CQ DNLS

Using the VA, we find the solutions for parameters x = 2s — 1
and n:
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VA for the CQ DNLS

All lower energy states are captured by the VA:
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VA for the CQ DNLS
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C. Chong and D.E. Pelinovsky. Variational approximations of bifurcations of asymmetric
solitons in cubic-quintic nonlinear Schrédinger lattices. DCDS S 4 1019-1032 (2011)



Summary

In the context of DNLS equations, the variational
approximation

e is simple,

e yields very good qualitative results,

e makes functional dependencies clear,

e can be used for a host of problems,

e has an Approximation Property

but the variational approximation

e gets complicated quickly

e is not always necessary if numerical approximations are
easy and clear.
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