# Tight-binding approximation and nonlinear Schrödinger lattices 

Dmitry Pelinovsky ${ }^{1}$, Guido Schneider ${ }^{2}$, and Robert MacKay ${ }^{3}$

${ }^{1}$ Department of Mathematics, McMaster University, Canada
${ }^{2}$ Institute of Mathematics, University of Stuttgart, Germany
${ }^{3}$ Institute of Mathematics, University of Warwick, U.K.
Department of Mathematics, University of Kansas, May 1, 2008

## Introduction

Density waves in Bose-Einstein condensates are modeled by the Gross-Pitaevskii equation

$$
i u_{t}=-\nabla^{2} u+V(x) u+\sigma|u|^{2} u
$$

where $V(x)$ is a bounded real-valued potential on $\mathbb{R}^{N}, u(x, t)$ is a complex-valued wave function, and $\sigma= \pm 1$.

Examples of $V(x)$ :

- $V(x)=|x|^{2}$ models a parabolic trap
- $V\left(x+2 \pi e_{j}\right)=V(x)$ models an optical lattice

We would like to study localized states of the Gross-Pitaevskii equation residing in spectral gaps of the Schrödinger operators with periodic potentials. Such states are often called gap solitons.

## Gap solitons

Time-periodic solutions $u(x, t)=\phi(x) e^{-i \omega t}$ with $\omega \in \mathbb{R}$ satisfy a stationary elliptic problem with a periodic potential

$$
\omega \phi=-\nabla^{2} \phi+V(x) \phi+\sigma|\phi|^{2} \phi
$$

The associated Schrödinger operator is $L=-\nabla^{2}+V(x)$ and an example of its spectrum is computed for $V(x)=V_{0} \sin ^{2}(x)$ in one dimension.


## Existence of gap solitons

## Previous results:

- Construction of multi-humped gap solitons in Alama-Li (1992)
- Bifurcations of gap solitons from band edges in Kupper-Stuart (1990) and Heinz-Stuart (1992)
- Existence of critical points of energy in Stuart (1995) and Pankov (2005)
- Multiplicity of branches of gap solitons in Heinz (1995)
- Existence of critical points of energy with $L^{2}$-normalization in Buffoni-Esteban-Sere (2006)

Theorem:[Pankov, 2005] Let $V(x)$ be a real-valued bounded periodic potential. Let $\omega$ be in a finite gap of the spectrum of $L=-\nabla^{2}+V(x)$. There exists a non-trivial weak solution $U \in H^{1}\left(\mathbb{R}^{N}\right)$, which is continuous on $x \in \mathbb{R}^{N}$ and decays exponentially as $|x| \rightarrow \infty$.

## Illustration of solution branches

D.P., A. Sukhorukov, Yu. Kivshar, PRE 70, 036618 (2004) for $V(x)=V_{0} \sin ^{2}(x)$ with $V_{0}=1$ and $\sigma=-1$ :


## Illustration of solution branches

D.P., A. Sukhorukov, Yu. Kivshar, PRE 70, 036618 (2004) for $V(x)=V_{0} \sin ^{2}(x)$ with $V_{0}=1$ and $\sigma=+1$ :


## Asymptotic reductions

The stationary problem with a periodic potential can be reduced asymptotically to the following problems:

- Coupled-mode (Dirac) equations for small-amplitude potentials

$$
\left\{\begin{array}{c}
i a^{\prime}(x)+\Omega a+b=\sigma\left(|a|^{2}+2|b|^{2}\right) a \\
-i b^{\prime}(x)+\Omega b+a=\sigma\left(2|a|^{2}+|b|^{2}\right) b
\end{array}\right.
$$

- Envelope (NLS) equations for finite-amplitude potentials near band edges

$$
a^{\prime \prime}(x)+\Omega a+\sigma|a|^{2} a=0
$$

- Lattice (DNLS) equations for large-amplitude potentials

$$
a_{n+1}+a_{n-1}+\Omega a_{n}+\sigma\left|a_{n}\right|^{2} a_{n}=0
$$

Localized solutions of reduced equations exist in the analytic form.

## Formal derivation of the lattice equation

G. Alfimov, P. Kevrekidis, V. Konotop, M. Salerno, PRE 66, 046608 (2002)

Assume that the $l$-th spectral band of $L=-\nabla^{2}+V(x)$ is isolated from all other bands and fix $\omega_{0}$ at the central point of the band. Assume that there is a small parameter $\mu$, such that the size of the band is $O(\mu)$. Then, look for solutions of

$$
i u_{t}=-\nabla^{2} u+V(x) u+\sigma|u|^{2} u
$$

using the asymptotic multi-scale expansion

$$
u(x, t)=\mu^{1 / 2}\left(u_{0}(x, T)+\mu U(x, t)\right) e^{-i \omega_{0} t},
$$

with $T=\mu t$ and $U(x, t)$ is the residual term to the leading-order term

$$
u_{0}(x, T)=\sum_{n \in \mathbb{Z}} \phi_{n}(T) \hat{u}_{l, n}(x),
$$

where $\left\{\hat{u}_{, n}\right\}_{n \in \mathbb{Z}}$ is a complete set of Wannier functions for the $/$-th spectral band and $\left\{\phi_{n}\right\}_{n \in \mathbb{Z}}$ is a set of complex-valued amplitudes.

## The DNLS equation

The function $U(x, t)$ is not growing in $t$ if $\left\{\phi_{n}\right\}_{n \in \mathbb{Z}}$ satisfies the DNLS equation

$$
i \dot{\phi}_{n}=\alpha\left(\phi_{n+1}+\phi_{n-1}\right)+\sigma \beta\left|\phi_{n}\right|^{2} \phi_{n},
$$

for some $\mu$-independent constants $\alpha$ and $\beta$. This formal derivation can be extended to the space of any dimension $N \geq 1$.

## Recent results on justification of lattice equations:

- lattice equations for a nonlinear heat equation with a periodic diffusive term in Scheel-Van Vleck (2007)
- lattice equations for an infinite sequence of interacting pulses in reaction-diffusion equations in Zelik-Mielke (2007)
- finite-size lattice equations for the Gross-Pitaevskii equation with a multiple-well trapping potential in Bambusi-Sacchetti (2007)
- interaction of modulated pulses in periodic potentials in Giannoulis, Mielke and Sparber (2008)


## Fourier-Bloch transform for periodic potentials

Operator $L=-\partial_{x}^{2}+V(x)$ is extended to a self-adjoint operator which maps $H^{2}(\mathbb{R})$ to $L^{2}(\mathbb{R})$. Therefore, $\sigma(L)$ is purely continuous, real, and consists of the union of spectral bands. To define the spectral bands, consider Bloch functions $u(x ; k)=e^{i k x} w(x ; k)$, where $k \in[-1 / 2,1 / 2]$ and $w(x ; k)$ is a periodic eigenfunction of $L_{k} w=\omega w$, where

$$
L_{k}=e^{-i k x} L e^{i k x}=-\left(\partial_{x}^{2}+i k\right)^{2}+V(x)
$$

Let $\left(\omega_{l}, u_{l}\right)$ denote the $l$-th eigenvalue-eigenfunction pair. We normalize the amplitude and phase of the Bloch functions by two conditions:

$$
\int_{\mathbb{R}} \bar{u}_{l^{\prime}}\left(x, k^{\prime}\right) u_{l}(x, k) d x=\delta_{l, l} \delta\left(k-k^{\prime}\right)
$$

and

$$
u_{l}(x ;-k)=\bar{u}_{l}(x ; k)
$$

## Wannier functions

The Bloch decomposition generalizes the Fourier transform but it is inconvenient for a reduction of a continuous PDE to a lattice equation. Instead, we shall develop the Wannier decomposition.

The band function $\omega_{l}(k)$ and the Bloch function $u_{l}(x ; k)$ are periodic with respect to $k$ with period 1. Therefore, we can use the Fourier series

$$
\omega_{l}(k)=\sum_{n \in \mathbb{Z}} \hat{\omega}_{l, n} e^{i 2 \pi n k}, \quad u_{l}(x ; k)=\sum_{n \in \mathbb{Z}} \hat{u}_{l, n}(x) e^{i 2 \pi n k}
$$

Because of the phase normalization of $u_{l}(x ; k)$, the functions $\left\{\hat{u}_{, n}\right\}$ are real-valued. Because of the Floquet theorem, we have

$$
u_{l}(x+2 \pi ; k)=u_{l}(x ; k) e^{i 2 \pi k} \Rightarrow \hat{u}_{l, n}(x)=\hat{u}_{l, n-1}(x-2 \pi)=\hat{u}_{l, 0}(x-2 \pi n) .
$$

The functions in the set $\left\{\hat{u}_{l, n}\right\}$ are called the Wannier functions.

## Properties of Wannier functions

W. Kohn, Phys. Rev. 115, 809 (1959)

- Orthogonality

$$
\left\langle\hat{u}_{\prime^{\prime}, n^{\prime}}, \hat{u}_{l, n\rangle}\right\rangle:=\int_{\mathbb{R}} \hat{u}_{l^{\prime}, n^{\prime}}(x) \hat{u}_{l, n}(x) d x=\delta_{l, l^{\prime}} \delta_{n, n^{\prime}}
$$

- Basis and unitary transformation in $L^{2}(\mathbb{R})$

$$
\forall u \in L^{2}(\mathbb{R}): \quad u(x)=\sum_{l \in \mathbb{N}} \sum_{n \in \mathbb{Z}} c_{l, n} \hat{u}_{l, n}(x), \quad c_{l, n}=\left\langle\hat{u}_{l, n}, u(x)\right\rangle .
$$

- If the $l$-th spectral band is disjoint from other spectral bands, then

$$
\left|\hat{u}_{l, n}(x)\right| \leq C_{l} e^{-\eta_{l}|x-2 \pi n|}, \quad \forall n \in \mathbb{Z}, \quad \forall x \in \mathbb{R} .
$$

## New properties of Wannier functions

Assume that $V$ is real-valued, piecewise-continuous, and $2 \pi$-periodic potential. Fix $I \in \mathbb{N}$ and assume that the $l$-th spectral band is disjoint from other spectral bands.

- If $\overrightarrow{\mathbf{c}} \in I^{1}(\mathbb{Z})$ and $u(x)=\sum_{n \in \mathbb{Z}} c_{n} \hat{u}_{l, n}(x)$, then $u \in H^{1}(\mathbb{R})$, such that the function $u(x)$ is bounded, continuous, and decaying to zero as $|x| \rightarrow \infty$.

Proof:

$$
\|u\|_{H^{1}(\mathbb{R})} \leq \sum_{n \in \mathbb{Z}}\left|c_{n}\right|\left\|\hat{u}_{l, n}\right\|_{H^{1}(\mathbb{R})}=\left\|\hat{u}_{l, 0}\right\|_{H^{1}(\mathbb{R})}\|\overrightarrow{\mathbf{c}}\|_{H^{\prime}(\mathbb{Z})},
$$

where

$$
\left\|\hat{u}_{l, 0}\right\|_{H^{1}(\mathbb{R})}^{2} \leq \int_{\mathbb{R}}\left(\left|\hat{u}_{l, 0}^{\prime}(x)\right|^{2}+(1+V(x))\left|\hat{u}_{l, 0}(x)\right|^{2}\right) d x=1+\hat{\omega}_{l, 0} .
$$

- If $\hat{u}_{l, n}(x)$ satisfies the exponential decay and $\left|c_{n}\right| \leq \mathrm{Cr}^{|n|}$ uniformly on $n \in \mathbb{Z}$ for some $C>0$ and $0<r<1$, then $u(x)$ decays to zero exponentially fast as $|x| \rightarrow \infty$.


## Class of potentials

Let us consider $V$ in the form

$$
V(x)=\left\{\begin{array}{cc}
\varepsilon^{-2}, & x \in(0, a) \bmod (2 \pi) \\
0, & x \in(a, 2 \pi) \bmod (2 \pi)
\end{array}\right.
$$



Trace of the monodromy matrix for $0<\omega<\varepsilon^{-2}$ :
$2 \cosh (a \sqrt{b-\omega}) \cos [(2 \pi-a) \sqrt{\omega}]+\frac{b-2 \omega}{\sqrt{\omega(b-\omega)}} \sinh (a \sqrt{b-\omega}) \sin [(2 \pi-a) \sqrt{\omega}]$

## Properties of spectral bands and Wannier functions

- (band separation) $\inf _{\forall m \in \mathbb{N} \backslash\{/\}} \inf _{\forall k \in \mathbb{T}}\left|\omega_{m}(k)-\hat{\omega}_{/, 0}\right| \geq 1$
- (band boundness) $\left|\hat{\omega}_{l, 0}\right| \lesssim 1$
- (tight-binding approximation) $\left|\hat{\omega}_{l, n}\right| \leq C_{n} \varepsilon^{n} e^{-\frac{n a}{\varepsilon}}$
- (boundness of norms) $\left\|\hat{u}_{l, 0}\right\|_{H^{1}(\mathbb{R})} \lesssim 1$
- (compact support) $\left|\hat{u}_{l, 0}(x)-\hat{u}_{0}(x)\right| \lesssim \varepsilon$, where $\hat{u}_{0}=\frac{\sqrt{2}}{\sqrt{2 \pi-a}} \sin \frac{\pi /(2 \pi-x)}{2 \pi-a}$ supported on $[a, 2 \pi]$
- (exponential decay) $\left|\hat{u}_{l, 0}(x)\right| \leq C_{n} \varepsilon^{n} e^{-\frac{n a}{\varepsilon}}$ on $[-2 \pi n,-2 \pi(n-1)] \cup[2 \pi n, 2 \pi(n+1)]$


## Numerical illustration of Wannier functions



## Main results

Theorem 1: Denote $\mu=\varepsilon e^{-\frac{a}{\varepsilon}}$. Let $\left\{\phi_{n}\right\}_{n \in \mathbb{Z}}$ define a vector solution $\vec{\phi} \in I^{1}(\mathbb{Z})$ of the lattice equation

$$
\alpha\left(\phi_{n+1}+\phi_{n-1}\right)+\sigma \beta\left|\phi_{n}\right|^{2} \phi_{n}=\Omega \phi_{n}
$$

with $\alpha=\hat{\omega}_{l, 1} / \mu, \beta=\left\|\hat{u}_{l, 0}\right\|_{L^{4}(\mathbb{R})}^{4}$, and $\Omega=\left(\omega-\hat{\omega}_{l, 0}\right) / \mu$. Assume that the linearized lattice equation at $\vec{\phi}$ has a one-dimensional kernel in $I^{2}(\mathbb{Z})$ spanned by the eigenmode $\{i \vec{\phi}\}$ and the rest of the spectrum is bounded away from zero. There exist $\mu_{0}, \boldsymbol{C}>0$, such that the stationary elliptic problem

$$
-\phi^{\prime \prime}+V(x) \phi+\sigma|\phi|^{2} \phi=\omega \phi
$$

has a solution $\phi(x)$ in $H^{1}(\mathbb{R})$ with

$$
\forall 0<\mu<\mu_{0}: \quad\left\|\phi(x)-\mu^{1 / 2} \sum_{n \in \mathbb{Z}} \phi_{n} \hat{u}_{l, n}(x)\right\|_{H^{1}(\mathbb{R})} \leq C \mu^{3 / 2}
$$

Moreover, $\phi(x)$ decays to zero exponentially fast as $|x| \rightarrow \infty$ if $\left\{\phi_{n}\right\}$ decays to zero exponentially fast as $|n| \rightarrow \infty$.

## Main results

Theorem 2: Let $\vec{\phi}(T) \in C^{1}\left(\left[0, T_{0}\right], I^{1}(\mathbb{Z})\right)$ be a solution of the DNLS equation with initial data $\vec{\phi}_{0}$ satisfying the bound

$$
\left\|\phi_{0}-\mu^{1 / 2} \sum_{n \in \mathbb{Z}} \phi_{n}(0) \hat{u}_{l, n}(x)\right\|_{\mathcal{H}^{1}(\mathbb{R})} \leq C_{0} \mu^{3 / 2}
$$

for some $C_{0}>0$. Then, for any $\mu \in\left(0, \mu_{0}\right)$ with sufficiently small $\mu_{0}>0$, there exists a $\mu$-independent constant $C>0$ such that the GP equation has a solution $u(t) \in C^{1}\left(\left[0, T_{0} / \mu\right], \mathcal{H}^{1}(\mathbb{R})\right)$ satisfying the bound

$$
\forall t \in\left[0, T_{0} / \mu\right]: \quad\left\|\phi(\cdot, t)-\mu^{1 / 2} \sum_{n \in \mathbb{Z}} \phi_{n}(T) \hat{u}_{l, n}\right\|_{\mathcal{H}^{1}(\mathbb{R})} \leq C \mu^{3 / 2} .
$$

## Justification of stationary equations

Let $\omega=\hat{\omega}_{1,0}+\mu \Omega$ and consider a decomposition

$$
\phi(x)=\mu^{1 / 2}(\varphi(x)+\mu \psi(x))
$$

where

$$
\varphi(x)=\sum_{n \in \mathbb{Z}} \phi_{n} \hat{u}_{l, n}(x)
$$

and $\psi$ is orthogonal to all $\hat{u}_{l, n}$ in $L^{2}(\mathbb{R})$. Then, $\psi$ solves

$$
-\psi^{\prime \prime}+V(x) \psi-\hat{\omega}_{l, 0} \psi=\mu \Omega \psi-\sigma \mu Q|\varphi+\mu \psi|^{2}(\varphi+\mu \psi)
$$

while $\vec{\phi}$ satisfies
$\frac{1}{\mu} \sum_{m \in \mathbb{N}} \hat{\omega}_{l, m}\left(\phi_{n+m}+\phi_{n-m}\right)=\Omega \phi_{n}-\sigma \sum_{\left(n_{1}, n_{2}, n_{3}\right)} K_{n, n_{1}, n_{2}, n_{3}} \phi_{n_{1}} \bar{\phi}_{n_{2}} \phi_{n_{3}}-\sigma \mu P_{n}(\varphi+\mu \psi)$
where

$$
K_{n, n_{1}, n_{2}, n_{3}}=\int_{\mathbb{R}} \hat{u}_{l, n}(x) \hat{u}_{l, n_{1}}(x) \hat{u}_{l, n_{2}}(x) \hat{u}_{l, n_{3}}(x) d x
$$

## Examples of localized solutions in one dimension

Stationary lattice equation in one dimension:

$$
\left(\Omega-\sigma \beta \phi_{n}^{2}\right) \phi_{n}=\alpha\left(\phi_{n+1}+\phi_{n-1}\right) .
$$

- All solutions in $I^{1}(\mathbb{Z})$ are real-valued.
- Solutions can be classified from the compact solutions at $\alpha=0$ by the number of non-zero nodes:

$$
\lim _{\alpha \rightarrow 0} \phi_{n}=\left\{\begin{array}{c} 
\pm(\sigma \Omega / \beta)^{1 / 2}, \quad n \in U_{ \pm} \\
0, \quad n \in U_{0}
\end{array}\right.
$$

where $\operatorname{dim}\left(U_{0}\right)=\infty$ and $\operatorname{dim}\left(U_{ \pm}\right)<\infty$.

- The linearized lattice equation for real-valued solutions

$$
\left(L_{\alpha} \overrightarrow{\boldsymbol{\psi}}\right)_{n}=\left(\Omega-3 \sigma \phi_{n}^{2}\right) \psi_{n}-\alpha\left(\psi_{n+1}+\psi_{n-1}\right)
$$

has no zero eigenvalues for small $\alpha$.

## Profiles of localized solutions

D.P., P. Kevrekidis, D. Franzeskakis, Physica D 212, 1-19 (2005)




Left: $U_{+}=\{0\}$; Middle: $U_{+}=\{0,1\}$; Right: $U_{+}=\{1\}, U_{-}=\{0\}$




Left: $U_{+}=\{-1,0,1\}$; Middle: $U_{+}=\{-1,0\}, U_{-}=\{1\}$; Right: $U_{+}=\{-1,1\}$, $U_{-}=\{0\}$

## Justification of time-dependent equations

After the substitution

$$
u(x, t)=\sqrt{\mu}(\varphi(x, T)+\mu \psi(x, t)) e^{-i \omega \hat{\omega}, 0 t}
$$

with

$$
\varphi(x, T)=\sum_{n \in \mathbb{Z}} \phi_{n}(T) \hat{u}_{l, n}(x), \quad T=\mu t,
$$

we obtain the time-evolution problem

$$
i \psi_{t}=\left(L-\hat{\omega}_{l, 0}\right) \psi+\mu R(\vec{\phi})+\mu \sigma N(\vec{\phi}, \psi),
$$

where

$$
\|R(\vec{\phi})\|_{\mathcal{H}^{1}(\mathbb{R})} \leq C_{R}\|\vec{\phi}\|_{\mu^{\prime}(\mathbb{Z})}
$$

and

$$
\|N(\overrightarrow{\boldsymbol{\phi}}, \psi)\|_{\mathcal{H}^{1}(\mathbb{R})} \leq C_{N}\left(\|\overrightarrow{\boldsymbol{\phi}}\|_{r^{1}(\mathbb{Z})}+\|\psi\|_{\mathcal{H}^{1}(\mathbb{R})}\right) .
$$

## Local well-posedness and energy estimate

- Let $\vec{\phi}(T) \in C^{1}\left(\mathbb{R}, I^{1}(\mathbb{Z})\right)$ and $\psi_{0} \in \mathcal{H}^{1}(\mathbb{R})$. Then, there exists a $t_{0}>0$ and a unique solution $\psi(t) \in C^{1}\left(\left[0, t_{0}\right], \mathcal{H}^{1}(\mathbb{R})\right)$.
- Let $\vec{\phi}_{0} \in I^{1}(\mathbb{Z})$. Then, there exist a $T_{0}>0$ and a unique solution $\vec{\phi}(T) \in C^{1}\left(\left[0, T_{0}\right], I^{1}(\mathbb{Z})\right)$ of the DNLS equation.
- For any $\mu \in[0,1]$ and every $M>0$, there exist a $\mu$-independent constant $C_{E}>0$ such that

$$
\begin{equation*}
\left|\frac{d}{d t}\|\psi(t)\|_{\mathcal{H}^{1}}\right| \leq \mu C_{E}\left(\|\overrightarrow{\boldsymbol{\phi}}\|_{\mu^{1}(\mathbb{Z})}+\|\psi(t)\|_{\mathcal{H}^{1}}\right) \tag{1}
\end{equation*}
$$

as long as $\|\psi\|_{\mathcal{H}^{1}} \leq M$.

- By Gronwall's inequality, we thus have

$$
\sup _{t \in\left[0, T_{0} / \mu\right]}\|\psi(t)\|_{\mathcal{H}^{1}(\mathbb{R})} \leq\left(\|\psi(0)\|_{\mathcal{H}^{1}(\mathbb{R})}+C_{E} T_{0} \sup _{T \in\left[0, T_{0}\right]}\|\vec{\phi}(T)\|_{\mu^{1}(\mathbb{Z})}\right) e^{C_{E} T_{0}}
$$

## Other extensions

- Results can be extended to the space of two and three dimensions for a class of separable potentials

$$
V\left(x_{1}, x_{2}, x_{3}\right)=V_{1}\left(x_{1}\right)+V_{2}\left(x_{2}\right)+V_{3}\left(x_{3}\right) .
$$

Assumption of non-degeneracy for linearized lattice equations is satisfied for many localized solutions, such as 2D and 3D discrete vortices.

- Results can be extended for piecewise constant potentials of the form

$$
V(x+L)=V(x)
$$

in the limit of large $L$.

- It is more challenging to extend the problem to non-separable and non-constant potentials, for instance to the potential

$$
V(x)=\epsilon^{-2} \sin ^{2}(x)
$$

The distance between spectral bands diverge as $\epsilon \rightarrow 0$ but so are the values of $\hat{\omega}_{l, 0}$.

