Existence, stability and properties of dark solitons

Dmitry Pelinovsky (McMaster University, Canada)

References:

D.P., Yu. Kivshar, V. Afanasjev, Phys. Rev. E 54, 2015 (1996) D.P., D. Frantzeskakis, P. Kevrekidis, Phys. Rev. E 72, 016615 (2005)

Wolfgang Pauli Institute, Vienna, June 12-14, 2006

Definitions of dark solitons

Question: What are dark solitons?

Definitions of dark solitons

Question: What are dark solitons?

Answers:

- Physicists: Waves in defocusing systems with modulationally stable continuous wave (CW) background
- PDE analysts: Localized solutions of PDEs with non-zero boundary conditions and non-zero phase shift
- Applied mathematicians: A family of traveling waves from KdV solitons (*grey solitons*) to kinks (*black solitons*)

Reasons to dislike dark solitons

Physicists do not like dark solitons as

- dark solitons have infinite energy due to a background
- it is difficult to distinguish experimentally between the soliton and the background
- dark solitons have no direct engineering applications

Reasons to dislike dark solitons

Physicists do not like dark solitons as

- dark solitons have infinite energy due to a background
- it is difficult to distinguish experimentally between the soliton and the background
- dark solitons have no direct engineering applications

Mathematicians do not like dark solitons as

- tricky renormalization of all integral quantities is required
- two-wave radiation is similar to Boussinesq systems
- all results are formal so far and even formal results are too cumbersome in details

Main model for dark solitons

Defocusing one-dimensional NLS equation

$$iu_t = -\frac{1}{2}u_{xx} + f(|u|^2)u,$$

where f(s) is C^{∞} with f'(s) > 0 for some $0 \le s \le s_0$.

Main model for dark solitons

Defocusing one-dimensional NLS equation

$$iu_t = -\frac{1}{2}u_{xx} + f(|u|^2)u,$$

where f(s) is C^{∞} with f'(s) > 0 for some $0 \le s \le s_0$.

Examples:

- $f = |u|^2$ (integrable by inverse scattering)
- $f = |u|^2 \pm |u|^4$ (cubic-quintic)
- $f = -1/(1 + |u|^2)$ (saturable)

Conserved quantities

• Hamiltonian $[u(x,t) \mapsto u(x,t-t_0)]$

$$H = \frac{1}{2} \int_{\mathbb{R}} \left(|u_x|^2 + 2 \int_0^{|u|^2} f(s) ds \right) dx$$

• Power $[u \mapsto ue^{i\theta_0}]$ momentum $[u(x,t) \mapsto u(x-x_0,t)]$

$$N = \int_{\mathbb{R}} |u|^2 dx, \qquad P = \frac{i}{2} \int_{\mathbb{R}} \left(\bar{u}u_x - \bar{u}_x u \right) dx$$

• Phase shift

$$S = [\arg(u)]_{x \to -\infty}^{x \to +\infty} = \frac{i}{2} \int_{\mathbb{R}} \left(\frac{\bar{u}_x}{\bar{u}} - \frac{u_x}{u} \right) dx$$

ODE analysis of existence

Traveling stationary solutions

$$u(x,t) = U(x-vt)e^{i\omega t},$$

where (v, ω) are parameters and U(z), z = x - vt satisfies:

$$-\frac{1}{2}U''(z) + \omega U(z) + ivU'(z) + f(|U|^2)U = 0$$

Separation of variables $U(z) = \Phi(z)e^{i\Theta(z)}$ leads to

$$\frac{d}{dz} \left[\Phi^2(\Theta' - v) \right] = 0 \quad \Rightarrow \quad \Theta'(z) = v - \frac{c}{\Phi^2(z)},$$

where *c* is constant of integration.

Parameters of dark solitons

Recall the Galilei transformation

$$u(x,t) \mapsto u(x-kt,t)e^{ik(x-kt/2)}$$

The constant c can be chosen from the boundary conditions:

$$\lim_{z \to \pm \infty} \Phi(z) = \sqrt{q}, \qquad \lim_{z \to \pm \infty} \Theta(z) = \Theta_{\pm},$$

subject to the sufficient decay of $\Phi(z)$ and $\Theta(z)$ to constant values. Then,

$$c = vq, \qquad S = \Theta_+ - \Theta_-.$$

Reduction to the second-order ODE

After $\Theta'(z)$ is eliminated from the system, we obtain:

$$\Phi'' - 2(\omega + f(\Phi^2))\Phi + v^2 \frac{\Phi^4 - q^2}{\Phi^3} = 0$$

From existence of the equilibrium state $\Phi = \sqrt{q}$:

$$\omega = -f(q)$$

From the condition that $\Phi = \sqrt{q}$ is a hyperbolic point:

$$v^2 < qf'(q) \equiv c^2,$$

such that the family of dark solitons exist for -c < v < c.

Example

Cubic NLS with $f(|u|^2) = |u|^2$:

$$U(z) = \Phi(z)e^{i\Theta(z)} = k \tanh(kz) + iv,$$

where $k = \sqrt{q - v^2}$ and $v^2 < q$.

• When $v \to \sqrt{q}$, the dark soliton approaches the KdV soliton

$$\Phi(z) = \sqrt{q} - \frac{k^2}{2\sqrt{q}}\operatorname{sech}^2(kz) + \mathcal{O}(k^4).$$

• When $v \rightarrow 0$, the dark soliton approaches the kink

$$U(z) = \sqrt{q} \tanh(qz)$$

Black soliton

Black soliton corresponds to v = 0, when

 $U(z) = \Phi(z)e^{i\Theta(z)} \in \mathbb{R},$

where U(z) satisfies:

$$U'' + 2(f(q) - f(U^2))U = 0$$

or

$$\frac{1}{2}(U')^2 + 2\int_q^{U^2} (f(q) - f(s))ds = \text{const} = 0$$

Two solutions exist:

- Kink $\Phi(-z) = -\Phi(z)$ and $\Phi(0) = 0$ [$S = \pi$]
- Soliton on background $\Phi(-z) = \Phi(z)$ and $\Phi(0) > 0$ [S = 0]

Variational principle for dark solitons

The same ODE for U(z) is obtained from the first variation of

 $\Lambda = H(U) + vP(U) + \omega N(U) + CS(U),$

where C is arbitrary and S(U) is a Casimir functional. We have seen that $\omega = -f(q)$ and v is a free parameter.

Variational principle for dark solitons

The same ODE for U(z) is obtained from the first variation of

 $\Lambda = H(U) + vP(U) + \omega N(U) + CS(U),$

where C is arbitrary and S(U) is a Casimir functional. We have seen that $\omega = -f(q)$ and v is a free parameter.

Let

$$U = \Phi e^{i\Theta}, \qquad \Theta' = v\left(1 - \frac{q}{\Phi^2}\right).$$

Then, the second-order ODE for $\Phi(z)$ is obtained from the first variation of Λ in Φ only if C = vq.

Miracle of renormalization

New variational principle for dark solitons:

 $\Lambda = H_r(U) + vP_r(U) : \quad H'_r(U) + vP'_r(U) = 0,$

where

$$H_r = \frac{1}{2} \int_{\mathbb{R}} \left(|u_x|^2 + 2 \int_q^{|u|^2} (f(s) - f(q)) ds \right) dx$$

and

$$P_r = \frac{i}{2} \int_{\mathbb{R}} \left(\bar{u}u_x - \bar{u}_x u \right) \left(1 - \frac{q}{|u|^2} \right) dx$$

Miracle of renormalization

New variational principle for dark solitons:

 $\Lambda = H_r(U) + vP_r(U) : \quad H'_r(U) + vP'_r(U) = 0,$

where

$$H_r = \frac{1}{2} \int_{\mathbb{R}} \left(|u_x|^2 + 2 \int_q^{|u|^2} (f(s) - f(q)) ds \right) dx$$

and

$$P_r = \frac{i}{2} \int_{\mathbb{R}} \left(\bar{u}u_x - \bar{u}_x u \right) \left(1 - \frac{q}{|u|^2} \right) dx$$

Alternative picture on renormalization in Yu. Kivshar and X. Yang, Phys. Rev. E **49**, 1657 (1994)

Renormalized momentum

By construction,

$$P_r(v) = -v \int_{\mathbb{R}} \Phi^2 \left(1 - \frac{q}{\Phi^2}\right)^2 dx = -vN(v) + qS(v).$$

Two solutions as $v \to 0$:

- Kink with $\lim_{v \to 0} P_r(v) = \pi q$
- Soliton on background with $\lim_{v\to 0} P_r(v) = 0$

Stability of black solitons

Linearization at the black soliton $U(z)e^{-if(q)t}$ with v = 0:

$$u = e^{-if(q)t} \left[U(z) + (u(z) + iw(z))e^{\lambda t} + (\bar{u}(z) + i\bar{w}(z))e^{\bar{\lambda}t} \right]$$

Spectral stability problem:

$$L_+u = -\lambda w, \qquad L_-w = \lambda u,$$

where

$$L_{+} = -\frac{1}{2}\partial_{x}^{2} + f(U^{2}) - f(q) + 2\Phi^{2}f'(\Phi^{2}),$$

$$L_{-} = -\frac{1}{2}\partial_{x}^{2} + f(U^{2}) - f(q).$$

Spectra of L_{\pm} in $L^2(\mathbb{R})$

Continuous spectra σ_c :

- $\sigma_c(L_+) \ge 2c^2 > 0$
- $\sigma_c(L_-) \geq 0$, with $L_-U(z) = 0$

Kernel and negative eigenvalues in $L^2(\mathbb{R})$:

- Kink with $S = \pi$:
 - $L_+U'(z) = 0$ and L_+ has no negative eigenvalues
 - L_{-} has exactly one negative eigenvalue and no kernel
- Soliton on background with S = 0:
 - $L_+U'(z) = 0$ and L_+ has exactly one negative eigenvalue
 - L_{-} has no negative eigenvalues and no kernel.

Constrained L²-space

Consider for $|\lambda| \ge \epsilon > 0$:

$$L_+u = -\lambda w, \qquad L_-w = \lambda u,$$

If $w \in L^2(\mathbb{R})$, then w(z) must be orthogonal to $\ker(L_+) = \{U'(z)\}$. Define the constrained space

$$X_c = \left\{ w \in L^2(\mathbb{R}) : \quad (U', w) = 0 \right\}$$

For $\lambda \neq 0$, the stability problem is equivalent to the generalized eigenvalue problem in X_c :

$$L_-w = \gamma L_+^{-1}w, \qquad \gamma = -\lambda^2$$

Analysis for kinks only

Theorem: Operator L_{-} has no negative eigenvalues in X_{c} if $P'_{r}(v)|_{v=0} > 0$ and exactly one negative eigenvalue if $P'_{r}(v)|_{v=0} < 0$.

A delicate detail in the proof: The inhomogeneous equation

 $L_-w = U'(z)$

have two solutions:

- w = -zU(z) linearly growing in z
- $w = \partial_v U(z)|_{v \to 0}$ bounded but non-decaying in z

If the second (bounded) solution is selected, then

$$(U', L_{-}^{-1}U') = (U', \partial_v U|_{v \to 0}) = P'_r(v)|_{v \to 0}$$

and the statement follows by the variational theory in X_c .

Application of Pontryagin Theorem

Theorem: Eigenvalues of the problem $L_+L_-w = -\lambda^2 w$ in X_c satisfy:

 $N_{\text{unst}}(L_{+}L_{-}) + N_{\text{negKrein}}(L_{+}L_{-}) = N_{\text{neg}}(L_{+}) + N_{\text{neg}}(L_{-})$

Then,

- Kink with $S = \pi$: stable for $P'_r(0) > 0$ and unstable with one real positive eigenvalue for $P'_r(0) < 0$
- Soliton on background with S = 0: always unstable

"Pioneer" results:

- I. Barashenkov, Phys. Rev. Lett. 77, 1193-1197 (1996)
- D.P., Yu. Kivshar, Phys. Rev. E 54, 2015-2032 (1996)
- Y. Chen, M. Mitchell (1996) unpublished

Stability of dark solitons

Stability analysis of black solitons can be extended for the complete family of dark solitons in constrained space associated to $P'_r[u] = 0$, where

$$P_r[u] = \frac{i}{2} \int_{\mathbb{R}} \left(\bar{u}u_x - \bar{u}_x u \right) \left(1 - \frac{q}{|u|^2} \right) dx$$

and

$$P'_r[U] = -i(U', u) + i(\bar{U}', \bar{u}) = 0.$$

Dark solitons are stable when $P'_r(v) > 0$ and unstable when $P'_r(v) < 0$ at the solution family $P_r(v) = P_r[U]$.

Cubic-quintic NLS:

$$f(|u|^2) = -2|u|^2 + 1.2|u|^4$$

Note that at q = 1, $c^2 = qf'(q) = 0.4 > 0$. The limit of black soliton v = 0 corresponds to the soliton on background.

Two scenario of dynamics

Normal form for instability dynamics (1996):

$$M_r(v_*)\dot{V} + \frac{1}{2}P_r''(v_*)V^2 = 0,$$

where $V = v(t) - v_*$, $P'_r(v_*) = 0$, and $M_r(v_*) > 0$.

When $P_r''(v_*) > 0$, the bounded scenario occurs when V(0) > 0 and the unbounded scenario occurs when V(0) < 0.

Saturable NLS:

$$f(|u|^2) = -\frac{1}{(1+12|u|^2)^2}$$

The limit of black soliton v = 0 corresponds to the kink.

Review of other results

Evans functions for dark solitons

T. Kapitula and J. Rubin, Nonlinearity 13, 77 (2000)

 Completeness of eigenfunctions in the cubic NLS equation X.Chen, N.Huang, J.Phys.A: Math.Gen. 31, 6929 (1998)

• Perturbation theory for dark solitons

- V.Konotop, V.Vekslerchik, Phys. Rev. E 49, 2397 (1994)
- Yu. Kivshar and X. Yang, Phys. Rev. E 49, 1657 (1994)
- V.Lashkin (2004); N. Bilas and N. Pavloff (2005)
- Transverse instability of dark solitons

E.A. Kuznetsov and S. Turitsyn, JETP 67, 1583 (1988)

Work in progress

- Asymptotic stability of dark solitons
- Persistence and dynamics of dark solitons in external potentials
 Talk "Oscillations of dark BEC solitons in a parabolic trap" on Wednesday June 14 at 9:00-10:00
- Normal form analysis of slow dynamics of dark solitons