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Definitions of dark solitons
Question: What are dark solitons?

Answers:

• Physicists: Waves in defocusing systems with modulationally
stable continuous wave (CW) background

• PDE analysts: Localized solutions of PDEs with non-zero
boundary conditions and non-zero phase shift

• Applied mathematicians: A family of traveling waves from
KdV solitons (grey solitons) to kinks (black solitons)
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Reasons to dislike dark solitons
Physicists do not like dark solitons as

• dark solitons have infinite energy due to a background
• it is difficult to distinguish experimentally between the soliton

and the background
• dark solitons have no direct engineering applications

Mathematicians do not like dark solitons as

• tricky renormalization of all integral quantities is required
• two-wave radiation is similar to Boussinesq systems
• all results are formal so far and even formal results are too

cumbersome in details
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Main model for dark solitons
Defocusing one-dimensional NLS equation

iut = −1

2
uxx + f(|u|2)u,

where f(s) is C∞ with f ′(s) > 0 for some 0 ≤ s ≤ s0.

Examples:
• f = |u|2 (integrable by inverse scattering)
• f = |u|2 ± |u|4 (cubic-quintic)
• f = −1/(1 + |u|2) (saturable)
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Conserved quantities
• Hamiltonian [u(x, t) 7→ u(x, t− t0)]

H =
1

2

∫

R

(
|ux|2 + 2

∫ |u|2

0

f(s)ds

)
dx

• Power [u 7→ ueiθ0] momentum [u(x, t) 7→ u(x− x0, t)]

N =

∫

R
|u|2dx, P =

i

2

∫

R
(ūux − ūxu) dx

• Phase shift

S = [arg(u)]x→+∞
x→−∞ =

i

2

∫

R

( ūx
ū
− ux

u

)
dx
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ODE analysis of existence
Traveling stationary solutions

u(x, t) = U(x− vt)eiωt,

where (v, ω) are parameters and U(z), z = x− vt satisfies:

−1

2
U ′′(z) + ωU(z) + ivU ′(z) + f(|U |2)U = 0

Separation of variables U(z) = Φ(z)eiΘ(z) leads to

d

dz

[
Φ2(Θ′ − v)

]
= 0 ⇒ Θ′(z) = v − c

Φ2(z)
,

where c is constant of integration.
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Parameters of dark solitons
Recall the Galilei transformation

u(x, t) 7→ u(x− kt, t)eik(x−kt/2).

The constant c can be chosen from the boundary conditions:

lim
z→±∞

Φ(z) =
√
q, lim

z→±∞
Θ(z) = Θ±,

subject to the sufficient decay of Φ(z) and Θ(z) to constant values.
Then,

c = vq, S = Θ+ −Θ−.
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Reduction to the second-order ODE
After Θ′(z) is eliminated from the system, we obtain:

Φ′′ − 2(ω + f(Φ2))Φ + v2 Φ4 − q2

Φ3
= 0

From existence of the equilibrium state Φ =
√
q:

ω = −f(q)

From the condition that Φ =
√
q is a hyperbolic point:

v2 < qf ′(q) ≡ c2,

such that the family of dark solitons exist for −c < v < c.
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Example
Cubic NLS with f(|u|2) = |u|2:

U(z) = Φ(z)eiΘ(z) = k tanh(kz) + iv,

where k =
√
q − v2 and v2 < q.

• When v → √q, the dark soliton approaches the KdV soliton

Φ(z) =
√
q − k2

2
√
q

sech2(kz) + O(k4).

• When v → 0, the dark soliton approaches the kink

U(z) =
√
q tanh(qz)
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Black soliton
Black soliton corresponds to v = 0, when

U(z) = Φ(z)eiΘ(z) ∈ R,

where U(z) satisfies:

U ′′ + 2(f(q)− f(U 2))U = 0

or

1

2
(U ′)

2
+ 2

∫ U2

q

(f(q)− f(s))ds = const = 0

Two solutions exist:
• Kink Φ(−z) = −Φ(z) and Φ(0) = 0 [S = π]
• Soliton on background Φ(−z) = Φ(z) and Φ(0) > 0 [S = 0]
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Variational principle for dark solitons
The same ODE for U(z) is obtained from the first variation of

Λ = H(U) + vP (U) + ωN(U) + CS(U),

where C is arbitrary and S(U) is a Casimir functional. We have
seen that ω = −f(q) and v is a free parameter.

Let

U = ΦeiΘ, Θ′ = v
(

1− q

Φ2

)
.

Then, the second-order ODE for Φ(z) is obtained from the first
variation of Λ in Φ only if C = vq.
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Miracle of renormalization
New variational principle for dark solitons:

Λ = Hr(U) + vPr(U) : H ′r(U) + vP ′r(U) = 0,

where

Hr =
1

2

∫

R

(
|ux|2 + 2

∫ |u|2

q

(f(s)− f(q))ds

)
dx

and

Pr =
i

2

∫

R
(ūux − ūxu)

(
1− q

|u|2
)
dx

Alternative picture on renormalization in
Yu. Kivshar and X. Yang, Phys. Rev. E 49, 1657 (1994)
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(
1− q

|u|2
)
dx

Alternative picture on renormalization in
Yu. Kivshar and X. Yang, Phys. Rev. E 49, 1657 (1994)

Existence, stability and properties of dark solitons – p. 12/25



Renormalized momentum
By construction,

Pr(v) = −v
∫

R
Φ2
(

1− q

Φ2

)2

dx = −vN(v) + qS(v).

Two solutions as v → 0:
• Kink with lim

v→0
Pr(v) = πq

• Soliton on background with lim
v→0

Pr(v) = 0
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Stability of black solitons
Linearization at the black soliton U(z)e−if(q)t with v = 0:

u = e−if(q)t
[
U(z) + (u(z) + iw(z))eλt + (ū(z) + iw̄(z))eλ̄t

]

Spectral stability problem:

L+u = −λw, L−w = λu,

where

L+ = −1

2
∂2
x + f(U2)− f(q) + 2Φ2f ′(Φ2),

L− = −1

2
∂2
x + f(U2)− f(q).
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Spectra of L± in L2(R)

Continuous spectra σc:
• σc(L+) ≥ 2c2 > 0

• σc(L−) ≥ 0, with L−U(z) = 0

Kernel and negative eigenvalues in L2(R):

• Kink with S = π:
• L+U

′(z) = 0 and L+ has no negative eigenvalues
• L− has exactly one negative eigenvalue and no kernel

• Soliton on background with S = 0:
• L+U

′(z) = 0 and L+ has exactly one negative eigenvalue
• L− has no negative eigenvalues and no kernel.
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Constrained L2-space
Consider for |λ| ≥ ε > 0:

L+u = −λw, L−w = λu,

If w ∈ L2(R), then w(z) must be orthogonal to ker(L+) = {U ′(z)}.

Define the constrained space

Xc =
{
w ∈ L2(R) : (U ′, w) = 0

}

For λ 6= 0, the stability problem is equivalent to the generalized
eigenvalue problem in Xc:

L−w = γL−1
+ w, γ = −λ2
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Analysis for kinks only
Theorem: Operator L− has no negative eigenvalues in Xc if
P ′r(v)|v=0 > 0 and exactly one negative eigenvalue if P ′r(v)|v=0 < 0.

A delicate detail in the proof: The inhomogeneous equation

L−w = U ′(z)

have two solutions:
• w = −zU(z) - linearly growing in z
• w = ∂vU(z)|v→0 - bounded but non-decaying in z

If the second (bounded) solution is selected, then

(U ′, L−1
− U

′) = (U ′, ∂vU |v→0) = P ′r(v)|v→0

and the statement follows by the variational theory in Xc.
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Application of Pontryagin Theorem
Theorem: Eigenvalues of the problem L+L−w = −λ2w in Xc

satisfy:

Nunst(L+L−) +NnegKrein(L+L−) = Nneg(L+) +Nneg(L−)

Then,
• Kink with S = π: stable for P ′r(0) > 0 and unstable with one

real positive eigenvalue for P ′r(0) < 0

• Soliton on background with S = 0: always unstable

"Pioneer" results:
• I. Barashenkov, Phys. Rev. Lett. 77, 1193-1197 (1996)
• D.P., Yu. Kivshar, Phys. Rev. E 54, 2015-2032 (1996)
• Y. Chen, M. Mitchell (1996) - unpublished
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Stability of dark solitons
Stability analysis of black solitons can be extended for the complete
family of dark solitons in constrained space associated to P ′r[u] = 0,
where

Pr[u] =
i

2

∫

R
(ūux − ūxu)

(
1− q

|u|2
)
dx

and

P ′r[U ] = −i(U ′, u) + i(Ū ′, ū) = 0.

Dark solitons are stable when P ′r(v) > 0 and unstable when
P ′r(v) < 0 at the solution family Pr(v) = Pr[U ].
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Example
Cubic-quintic NLS:

f(|u|2) = −2|u|2 + 1.2|u|4

Note that at q = 1, c2 = qf ′(q) = 0.4 > 0. The limit of black
soliton v = 0 corresponds to the soliton on background.
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Two scenario of dynamics
Normal form for instability dynamics (1996):

Mr(v∗)V̇ +
1

2
P ′′r (v∗)V

2 = 0,

where V = v(t)− v∗, P ′r(v∗) = 0, and Mr(v∗) > 0.
When P ′′r (v∗) > 0, the bounded scenario occurs when V (0) > 0 and
the unbounded scenario occurs when V (0) < 0.
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Example
Saturable NLS:

f(|u|2) = − 1

(1 + 12|u|2)2

The limit of black soliton v = 0 corresponds to the kink.
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Review of other results
• Evans functions for dark solitons

T. Kapitula and J. Rubin, Nonlinearity 13, 77 (2000)

• Completeness of eigenfunctions in the cubic NLS equation

X.Chen, N.Huang, J.Phys.A: Math.Gen. 31, 6929 (1998)

• Perturbation theory for dark solitons
• V.Konotop, V.Vekslerchik, Phys. Rev. E 49, 2397 (1994)
• Yu. Kivshar and X. Yang, Phys. Rev. E 49, 1657 (1994)
• V.Lashkin (2004); N. Bilas and N. Pavloff (2005)

• Transverse instability of dark solitons

E.A. Kuznetsov and S. Turitsyn, JETP 67, 1583 (1988)
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Work in progress
• Asymptotic stability of dark solitons

• Persistence and dynamics of dark solitons in external potentials

Talk "Oscillations of dark BEC solitons in a parabolic trap"
on Wednesday June 14 at 9:00-10:00

• Normal form analysis of slow dynamics of dark solitons
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