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The Problem

The Gross–Pitaevsky equation:

iut = −1

2
uxx + ε2x2u + |u|2u, ε � 1

◦ Frequency of oscillations (adiabatic dynamics of dark solitons)

◦ Amplitude of oscillations (radiative effects of dark solitons)
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Different Solutions of the Problem

◦ Collective coordinates (the Ehrenfest Theorem)
(1997: Reinhardt & Clark, Morgan et al.)

◦ Boundary-layer integrals (hydrodynamic formulation)
(2000: Busch & Anglin)

◦ Shallow-soliton theory (KdV formulation)
(2002: Huang et al.)

◦ Renormalized momentum (perturbation theory)
(2002-2004: Frantzeskakis et al.)

◦ Renormalized powers (perturbation theory)
(2003-2004 : Brazhnyi & Konotop, Konotop & Pitaevsky)

◦ Numerical simulations
(2003-2004 : Parker, Proukakis, et al.)
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Main Empiric Results

◦ The frequency of oscillations is independent of dark soliton amplitude.

◦ The amplitude of oscillations increases due to radiative losses.

Numerical simulations by N. Proukakis (2003)
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Plan of the Lecture

•Definition of the ground state, the first excited
state, and the dark soliton

•Failure of the formal adiabatic theory

•Adiabatic theory with dynamical scaling techniques

•Radiation of dark solitons with the asymptotic multi-
scale expansions

•Comparison of asymptotic and numerical results

•Other ideas and prospects
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Ground state of the GP equation

◦ Separation of variables

ugs(x, t) = Uε(x)e−iµεt+iθ0,

where µε ∈ D ⊂ R, θ0 ∈ R, and (Uε, µε) are found from

1

2
U ′′ − ε2x2U − U3 + µU = 0.
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ugs(x, t) = Uε(x)e−iµεt+iθ0,

where µε ∈ D ⊂ R, θ0 ∈ R, and (Uε, µε) are found from

1

2
U ′′ − ε2x2U − U3 + µU = 0.

◦ Linear ground state

Uε = exp

(
−εx2
√

2

)
, µε = µ0(ε) =

ε√
2
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Ground state of the GP equation

◦ Separation of variables

ugs(x, t) = Uε(x)e−iµεt+iθ0,

where µε ∈ D ⊂ R, θ0 ∈ R, and (Uε, µε) are found from

1

2
U ′′ − ε2x2U − U3 + µU = 0.

◦ Linear ground state

Uε = exp

(
−εx2
√

2

)
, µε = µ0(ε) =

ε√
2

◦ Local bifurcation (by Lyapunov-Schmidt reduction)

µ > µ0(ε) : U ′(0) = 0, lim
|x|→∞

U(x) = 0.
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Ground state: numerical approximation

◦ There exists a smooth one-parameter family of U(x) for a fixed value
of ε > 0, such that U(0) is increasing function of µ

Normalization

Uε(0) = 1
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Ground state: numerical approximation

◦ There exists a smooth one-parameter family of U(x) for a fixed value
of ε > 0, such that U(0) is increasing function of µ

Normalization

Uε(0) = 1

◦ Numerical approximations of ground state solutions
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Ground state: WKB approximation

◦ Reformulation of the ODE for Q(x) = U2(x):

Q(x) = µ− ε2x2 +
2QQ′′ − (Q′)2

8Q2
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Ground state: WKB approximation

◦ Reformulation of the ODE for Q(x) = U2(x):

Q(x) = µ− ε2x2 +
2QQ′′ − (Q′)2

8Q2

◦WKB asymptotic series

Q = µ2 −X2 +

∞∑
k=1

ε2kQk(X), X = εx,

which converges for |εx| < √
µ
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Ground state: WKB approximation

◦ Reformulation of the ODE for Q(x) = U2(x):

Q(x) = µ− ε2x2 +
2QQ′′ − (Q′)2

8Q2

◦WKB asymptotic series

Q = µ2 −X2 +

∞∑
k=1

ε2kQk(X), X = εx,

which converges for |εx| < √
µ

◦ Normalization condition

Q(0) = µ− ε2

2µ
+ O(ε4) = 1,

such that µε = 1 + O(ε2).
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First excited state of the GP equation

◦ Separation of variables

uexc(x, t) = Uε(x)e−iµεt+iθ0,

where µε ∈ D ⊂ R, θ0 ∈ R, and (Uε, µε) are found from

1

2
U ′′ − ε2x2U − U3 + µU = 0.
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First excited state of the GP equation

◦ Separation of variables

uexc(x, t) = Uε(x)e−iµεt+iθ0,

where µε ∈ D ⊂ R, θ0 ∈ R, and (Uε, µε) are found from

1

2
U ′′ − ε2x2U − U3 + µU = 0.

◦ Linear excited state

Uε(x) = x exp

(
−εx2
√

2

)
, µε = µ1(ε) =

3ε√
2
.
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First excited state of the GP equation

◦ Separation of variables

uexc(x, t) = Uε(x)e−iµεt+iθ0,

where µε ∈ D ⊂ R, θ0 ∈ R, and (Uε, µε) are found from

1

2
U ′′ − ε2x2U − U3 + µU = 0.

◦ Linear excited state

Uε(x) = x exp

(
−εx2
√

2

)
, µε = µ1(ε) =

3ε√
2
.

◦ Local bifurcation (by Lyapunov-Schmidt reduction)

µ > µ1(ε) : U(0) = 0, lim
|x|→∞

U(x) = 0,

such that it exists for µ ≥ 1.

9



Dark solitons on the ground state

◦ Analytical representation for ε = 0

uds(x, t) = [k tanh(k(x− vt− s0)) + iv] e−it+iθ0,

where k =
√

1− v2 < 1 and (s0, θ0) ∈ R2.

◦ Boundary conditions for ε = 0

|uds|2 = 1− k2sech2(k(x− vt− s)) → 1 as |x| → ∞
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Dark solitons on the ground state

◦ Analytical representation for ε = 0

uds(x, t) = [k tanh(k(x− vt− s0)) + iv] e−it+iθ0,

where k =
√

1− v2 < 1 and (s0, θ0) ∈ R2.

◦ Boundary conditions for ε = 0

|uds|2 = 1− k2sech2(k(x− vt− s)) → 1 as |x| → ∞

◦When ε 6= 0, the stationary solution persists only for v = 0 and
s0 = 0, when uds(x, t) = uexc(x, t) with zero boundary conditions as
|x| → ∞. Dark soliton solutions with v 6= 0 and s0 6= 0 undertake
nonstationary dynamics in the parabolic trap.

10



Numerical solution : nearly shallow soliton

ε = 0.05, s(0) = 0, v(0) = 0.5
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Starting transformation

◦ The original GP equation

iut = −1

2
uxx + ε2x2u + |u|2u, ε � 1

◦ Transformation of the GP equation

u(x, t) = Uε(x)w(x, t)e−iµεt,

where (Uε, µε) is the ground state pair with Uε(0) = 1

◦ Perturbed NLS equation (Frantzeskakis et al, 2002):

iwt +
1

2
wxx + U2

ε (x)(1− |w|2)w = −U ′ε(x)

Uε(x)
wx

where U2
ε = 1− ε2x2 + O(ε2) for ε|x| = O(1) and ε|x| < 1.
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Failure of formal adiabatic theory

◦ Formal perturbed NLS equation

iwt +
1

2
wxx + (1− |w|2)w = R(w, w̄),

where

R(w, w̄) = ε2x2(1− |w|2)w +
ε2x

1− ε2x2
wx
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Failure of formal adiabatic theory

◦ Formal perturbed NLS equation

iwt +
1

2
wxx + (1− |w|2)w = R(w, w̄),

where

R(w, w̄) = ε2x2(1− |w|2)w +
ε2x

1− ε2x2
wx

◦ First-order balance for renormalized momentum
ds

dt
= v, P ′r(v)

dv

dt
= −

∫ ∞

−∞
w′0(x)

(
R + R̄

)
(w0, w̄0)dx,

where w0 = w0(x− s) is the exact dark soliton for ε = 0 and P ′r(v) =
4k is the renormalized momentum.
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Failure of formal adiabatic theory

◦ Formal perturbed NLS equation

iwt +
1

2
wxx + (1− |w|2)w = R(w, w̄),

where

R(w, w̄) = ε2x2(1− |w|2)w +
ε2x

1− ε2x2
wx

◦ First-order balance for renormalized momentum
ds

dt
= v, P ′r(v)

dv

dt
= −

∫ ∞

−∞
w′0(x)

(
R + R̄

)
(w0, w̄0)dx,

where w0 = w0(x− s) is the exact dark soliton for ε = 0 and P ′r(v) =
4k is the renormalized momentum.

◦ Formal computations give a wrong dynamical equation:

s̈ +
(3− s2)(1− ṡ2)

3(1− s2)
s = O(ε2)
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The main equation for perturbation theory

◦ Scaling of dark solitons for adiabatic dynamics

T = εt, v = v(T ) = ṡ(T ),

implies that w0 = w0(x− s/ε) ≡ w0(η), such that

ε2x2 = s2 + 2εsη + ε2η2, η = O(1).

The perturbation theory fails since R(w, w̄) is not small.
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The main equation for perturbation theory

◦ Scaling of dark solitons for adiabatic dynamics

T = εt, v = v(T ) = ṡ(T ),

implies that w0 = w0(x− s/ε) ≡ w0(η), such that

ε2x2 = s2 + 2εsη + ε2η2, η = O(1).

The perturbation theory fails since R(w, w̄) is not small.

◦ Let w = w(η, t) with η = x− s(T )/ε and rewrite the perturbed NLS
equation in the form

iwt − ivwη +
1

2
wηη + U2

ε (s)(1− |w|2)w = R(w, w̄),

where

R = −ε

(
U ′ε(s)

Uε(s)
wη + 2Uε(s)U ′ε(s)η(1− |w|2)w

)
+ O(ε2)
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Dynamical rescaling of the main equation

◦ Let w = w(z, t) with z = ηUε(s(T )) and let

ṡ(T ) = v(T ) = ν(T )Uε(s(T )),

such that the final perturbed NLS equation is

iwt + U2
ε (s)

[
−iνwz +

1

2
wzz + (1− |w|2)w

]
+ εR1(w, w̄) = O(ε2),

where
R1 = U ′ε(s)

[
iνzwz + wz + 2z(1− |w|2)w

]
.
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Dynamical rescaling of the main equation

◦ Let w = w(z, t) with z = ηUε(s(T )) and let

ṡ(T ) = v(T ) = ν(T )Uε(s(T )),

such that the final perturbed NLS equation is

iwt + U2
ε (s)

[
−iνwz +

1

2
wzz + (1− |w|2)w

]
+ εR1(w, w̄) = O(ε2),

where
R1 = U ′ε(s)

[
iνzwz + wz + 2z(1− |w|2)w

]
.

◦ An asymptotic solution is sought in the form:

w(z, t) =
[
w0(z) + εw1(z, t) + O(ε2)

]
eiθ,

where w0(z) = κ tanh(κz) + iν, κ =
√

1− ν2, and parameters θ(T )
and s(T ) are independent.
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The first-order correction: the inhomogeneous problem

◦ First-order linearization problem

i∂tσ3w1 + U2
ε (s)Hw1 = θ̇w0 − i∂Tσ3w0 −R1(w0, w̄0),

where

H = −iνσ3∂z + σ0

(
1

2
∂2
z + 1

)
−
(

2|w0|2 w2
0

w̄2
0 2|w0|2

)
and

w0 =

(
w0
w̄0

)
, w1 =

(
w1
w̄1

)
,
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The first-order correction: the inhomogeneous problem

◦ First-order linearization problem

i∂tσ3w1 + U2
ε (s)Hw1 = θ̇w0 − i∂Tσ3w0 −R1(w0, w̄0),

where

H = −iνσ3∂z + σ0

(
1

2
∂2
z + 1

)
−
(

2|w0|2 w2
0

w̄2
0 2|w0|2

)
and

w0 =

(
w0
w̄0

)
, w1 =

(
w1
w̄1

)
,

◦ Completeness of eigenfunctions of H (Chen et al, 1998)

◦ Continuous spectrum on λ ∈ iR
◦ Embedded kernel at λ = 0 with

Hw′0 = 0, H (iσ3w0) = 0
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The first-order correction: inner part

◦ Orthogonality of R1 to w′0(z) produces the main equation for adiabatic
dynamics of a dark soliton:

s̈ + s = 0.
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The first-order correction: inner part

◦ Orthogonality of R1 to w′0(z) produces the main equation for adiabatic
dynamics of a dark soliton:

s̈ + s = 0.

◦ The first-order solution w1(z, t) is decomposed into eigenfunctions of
the continuous spectrum of H. By the stationary phase method, the
first-order solution w1(z, t) becomes stationary as t →∞:

w1s =
q(T )

U2
ε (s)

(izw0 − ∂νw0) +
3νq(T )− θ̇(T )

2κU2
ε (s)

∂κw0 + w̃1s(z, T ),

where q(T ) is arbitrary parameter.

17



The first-order correction: inner part

◦ Orthogonality of R1 to w′0(z) produces the main equation for adiabatic
dynamics of a dark soliton:

s̈ + s = 0.

◦ The first-order solution w1(z, t) is decomposed into eigenfunctions of
the continuous spectrum of H. By the stationary phase method, the
first-order solution w1(z, t) becomes stationary as t →∞:

w1s =
q(T )

U2
ε (s)

(izw0 − ∂νw0) +
3νq(T )− θ̇(T )

2κU2
ε (s)

∂κw0 + w̃1s(z, T ),

where q(T ) is arbitrary parameter.

◦ The stationary solution w1s(z, T ) grows linearly in z as |z| → ∞.
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The first-order correction: outer part

◦Matching conditions from z = O(1) to εx = O(1):

lim
z→±∞

ws(z, T ) =
(
1 + εW±(X,T )

)
eiΘ±(X,T ),

where X = εx, T = εt, and

W±
∣∣∣∣
X=s(T )

,
∂Θ

∂X

∣∣∣∣
X=s(T )

are given.
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The first-order correction: outer part

◦Matching conditions from z = O(1) to εx = O(1):

lim
z→±∞

ws(z, T ) =
(
1 + εW±(X,T )

)
eiΘ±(X,T ),

where X = εx, T = εt, and

W±
∣∣∣∣
X=s(T )

,
∂Θ

∂X

∣∣∣∣
X=s(T )

are given.

◦ Radiation problem outside the dark soliton:

Θ±TT −
(
U2

ε (X)Θ±X

)
X

= 0,

where U2
ε (X) = 1−X2 and

W± = −
Θ±T

2U2
ε (X)
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Solution of the radiation problem

◦ Solution along the characteristics

dξ±
dT

= ±Uε(ξ±), R± = W± ±
Θ±X

2Uε(X)
,

where
dR+

dT
= −1

2
U ′ε(ξ+(T ; τ0)) (5R+ −R−) ,

dR−
dT

= −1

2
U ′ε(ξ−(T ; τ0)) (R+ − 5R−) .
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Solution of the radiation problem

◦ Solution along the characteristics

dξ±
dT

= ±Uε(ξ±), R± = W± ±
Θ±X

2Uε(X)
,

where
dR+

dT
= −1

2
U ′ε(ξ+(T ; τ0)) (5R+ −R−) ,

dR−
dT

= −1

2
U ′ε(ξ−(T ; τ0)) (R+ − 5R−) .

◦ Let us assume no radiation from the outer domain:

X > s(T ) : R− = 0 X < s(T ) : R+ = 0

The system of equations for the first-order correction is then closed.
The orthogonality of R2 to w′0(z) extends the main equation for dy-
namics of a dark soliton:

s̈ + s =
εṡ

2
√

(1− s2)3
√

1− s2 − ṡ2
+ O(ε2).
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Family of characteristics for radiation problem

Families of characteristics in the parabolic trap
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Outcomes of the dynamical equation

s̈ + s =
εṡ

2
√

(1− s2)3
√

1− s2 − ṡ2
+ O(ε2).

◦ The equilibrium point (0, 0) recovers the first excited state uexc(x).
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Outcomes of the dynamical equation

s̈ + s =
εṡ

2
√

(1− s2)3
√

1− s2 − ṡ2
+ O(ε2).

◦ The equilibrium point (0, 0) recovers the first excited state uexc(x).

◦ Linearization near the equilibrium point:

s̈ + s− ε

2
ṡ = O(ε2, s3)

corresponds to the harmonic oscillator with an amplification.
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Outcomes of the dynamical equation

s̈ + s =
εṡ

2
√

(1− s2)3
√

1− s2 − ṡ2
+ O(ε2).

◦ The equilibrium point (0, 0) recovers the first excited state uexc(x).

◦ Linearization near the equilibrium point:

s̈ + s− ε

2
ṡ = O(ε2, s3)

corresponds to the harmonic oscillator with an amplification.

◦ Lyapunov function

E =
1

2

(
ṡ2 + s2

)
shows that all trajectories are outgoing spirals:

Ė =
εṡ2

2
√

(1− s2)3
√

1− s2 − ṡ2
+ O(ε2) > 0.
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Conclusions on the asymptotic analysis

◦ The main equation for dynamics of a dark soliton is valid in the case
of no incoming radiation, e.g.

iut = −1

2
uxx + V (εx)u + |u|2u, ε � 1,

where

◦ V (X) = X2 + O(X3) near X = 0

◦ V (X) → 0 as |X| → ∞
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Conclusions on the asymptotic analysis

◦ The main equation for dynamics of a dark soliton is valid in the case
of no incoming radiation, e.g.

iut = −1

2
uxx + V (εx)u + |u|2u, ε � 1,

where

◦ V (X) = X2 + O(X3) near X = 0

◦ V (X) → 0 as |X| → ∞

◦ In the case of a harmonic trap (V = X2), the main equation is only
valid for the first half-period of oscillations. For longer times, the
radiative waves are expected to be in balance, so that oscillations of a
dark soliton are expected to be synchronized.
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Numerical solution (by N.G. Parker et al, 2003)

Position and energy of dark soliton in a double Gaussian trap.
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Numerical solution (by N.G. Parker et al, 2004)

Top: parabolic trap. Bottom: parabolic trap and optical lattice
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Numerical solution : nearly black soliton

ε = 0.05, s(0) = 0, v(0) = 0.1
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Further directions

•Perturbation theory for complex eigenvalues of the
linearized problem in the presence of external po-
tentials

•Hermite function expansions for dynamics of dark
solitons in the parabolic potentials (normal forms)

•Modeling of PDE problems along characteristics
with incoming and outcoming radiation waves

•Derivation of the O(ε2) error bound for the main
equation describing dynamics of a dark soliton
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