Oscillations of dark BEC solitons in a parabolic trap

Dmitry Pelinovsky

Department of Mathematics, McMaster University, Canada

Reference:

D.P., D. Franzeskakis, and P. Kevrekidis, Physical Review E 72, 016615 (2005)

Wolfgang Pauli Institute, Vienna, June 12-14, 2006

The Problem

The Gross–Pitaevsky equation:

$$iu_t = -\frac{1}{2}u_{xx} + \epsilon^2 x^2 u + |u|^2 u, \quad \epsilon \ll 1$$

Frequency of oscillations (adiabatic dynamics of dark solitons) Amplitude of oscillations (radiative effects of dark solitons)

Different Solutions of the Problem

- Collective coordinates (the Ehrenfest Theorem) (1997: Reinhardt & Clark, Morgan et al.)
- Boundary-layer integrals (hydrodynamic formulation) (2000: Busch & Anglin)
- Shallow-soliton theory (KdV formulation) (2002: Huang et al.)
- Renormalized momentum (perturbation theory) (2002-2004: Frantzeskakis et al.)
- Renormalized powers (perturbation theory) (2003-2004 : Brazhnyi & Konotop, Konotop & Pitaevsky)
- Numerical simulations (2003-2004 : Parker, Proukakis, et al.)

Main Empiric Results

- The frequency of oscillations is independent of dark soliton amplitude.
- The amplitude of oscillations increases due to radiative losses.

Numerical simulations by N. Proukakis (2003)

- Definition of the ground state, the first excited state, and the dark soliton
- Failure of the formal adiabatic theory
- Adiabatic theory with dynamical scaling techniques
- Radiation of dark solitons with the asymptotic multiscale expansions
- Comparison of asymptotic and numerical results
- Other ideas and prospects

Ground state of the GP equation

• Separation of variables

$$u_{\rm gs}(x,t) = U_{\epsilon}(x)e^{-i\mu_{\epsilon}t + i\theta_0},$$

where $\mu_{\epsilon} \in D \subset \mathbb{R}, \ \theta_0 \in \mathbb{R}, \ \text{and} \ (U_{\epsilon}, \mu_{\epsilon}) \ \text{are found from}$
$$\frac{1}{2}U'' - \epsilon^2 x^2 U - U^3 + \mu U = 0.$$

Ground state of the GP equation

• Separation of variables

$$u_{\rm gs}(x,t) = U_{\epsilon}(x)e^{-i\mu_{\epsilon}t + i\theta_0},$$

where $\mu_{\epsilon} \in D \subset \mathbb{R}, \, \theta_0 \in \mathbb{R}, \, \text{and} \, (U_{\epsilon}, \mu_{\epsilon})$ are found from
$$\frac{1}{2}U'' - \epsilon^2 x^2 U - U^3 + \mu U = 0.$$

• Linear ground state

$$U_{\epsilon} = \exp\left(-\frac{\epsilon x^2}{\sqrt{2}}\right), \quad \mu_{\epsilon} = \mu_0(\epsilon) = \frac{\epsilon}{\sqrt{2}}$$

Ground state of the GP equation

• Separation of variables

$$u_{\rm gs}(x,t) = U_{\epsilon}(x)e^{-i\mu_{\epsilon}t + i\theta_0},$$

where $\mu_{\epsilon} \in D \subset \mathbb{R}, \ \theta_0 \in \mathbb{R}, \ \text{and} \ (U_{\epsilon},\mu_{\epsilon}) \ \text{are found from}$
$$\frac{1}{2}U'' - \epsilon^2 x^2 U - U^3 + \mu U = 0.$$

• Linear ground state

$$U_{\epsilon} = \exp\left(-\frac{\epsilon x^2}{\sqrt{2}}\right), \quad \mu_{\epsilon} = \mu_0(\epsilon) = \frac{\epsilon}{\sqrt{2}}$$

• Local bifurcation (by Lyapunov-Schmidt reduction)

$$\mu > \mu_0(\epsilon) : \quad U'(0) = 0, \quad \lim_{|x| \to \infty} U(x) = 0.$$

Ground state: numerical approximation

• There exists a smooth one-parameter family of U(x) for a fixed value of $\epsilon > 0$, such that U(0) is increasing function of μ

Normalization

$$U_{\epsilon}(0) = 1$$

Ground state: numerical approximation

• There exists a smooth one-parameter family of U(x) for a fixed value of $\epsilon > 0$, such that U(0) is increasing function of μ

Normalization $U_{\epsilon}(0) = 1$

• Numerical approximations of ground state solutions

Ground state: WKB approximation

• Reformulation of the ODE for $Q(x) = U^2(x)$:

$$Q(x) = \mu - \epsilon^2 x^2 + \frac{2QQ'' - (Q')^2}{8Q^2}$$

Ground state: WKB approximation

• Reformulation of the ODE for $Q(x) = U^2(x)$:

$$Q(x) = \mu - \epsilon^2 x^2 + \frac{2QQ'' - (Q')^2}{8Q^2}$$

• WKB asymptotic series

$$Q = \mu^2 - X^2 + \sum_{k=1}^{\infty} \epsilon^{2k} Q_k(X), \qquad X = \epsilon x,$$

which converges for $|\epsilon x| < \sqrt{\mu}$

Ground state: WKB approximation

• Reformulation of the ODE for $Q(x) = U^2(x)$:

$$Q(x) = \mu - \epsilon^2 x^2 + \frac{2QQ'' - (Q')^2}{8Q^2}$$

• WKB asymptotic series

$$Q = \mu^2 - X^2 + \sum_{k=1}^{\infty} \epsilon^{2k} Q_k(X), \qquad X = \epsilon x,$$

which converges for $|\epsilon x| < \sqrt{\mu}$

• Normalization condition

$$Q(0) = \mu - \frac{\epsilon^2}{2\mu} + O(\epsilon^4) = 1,$$

such that $\mu_{\epsilon} = 1 + O(\epsilon^2)$.

First excited state of the GP equation

• Separation of variables

$$u_{\text{exc}}(x,t) = U_{\epsilon}(x)e^{-i\mu_{\epsilon}t + i\theta_{0}},$$

where $\mu_{\epsilon} \in D \subset \mathbb{R}, \, \theta_{0} \in \mathbb{R}, \, \text{and} \, (U_{\epsilon}, \mu_{\epsilon})$ are found from
$$\frac{1}{2}U'' - \epsilon^{2}x^{2}U - U^{3} + \mu U = 0.$$

First excited state of the GP equation

• Separation of variables

$$u_{\text{exc}}(x,t) = U_{\epsilon}(x)e^{-i\mu_{\epsilon}t + i\theta_{0}},$$

where $\mu_{\epsilon} \in D \subset \mathbb{R}, \, \theta_{0} \in \mathbb{R}, \, \text{and} \, (U_{\epsilon}, \mu_{\epsilon})$ are found from
$$\frac{1}{2}U'' - \epsilon^{2}x^{2}U - U^{3} + \mu U = 0.$$

• Linear excited state

$$U_{\epsilon}(x) = x \exp\left(-\frac{\epsilon x^2}{\sqrt{2}}\right), \quad \mu_{\epsilon} = \mu_1(\epsilon) = \frac{3\epsilon}{\sqrt{2}}.$$

• Separation of variables

$$u_{\text{exc}}(x,t) = U_{\epsilon}(x)e^{-i\mu_{\epsilon}t + i\theta_{0}},$$

where $\mu_{\epsilon} \in D \subset \mathbb{R}, \, \theta_{0} \in \mathbb{R}, \, \text{and} \, (U_{\epsilon}, \mu_{\epsilon})$ are found from
$$\frac{1}{2}U'' - \epsilon^{2}x^{2}U - U^{3} + \mu U = 0.$$

• Linear excited state

$$U_{\epsilon}(x) = x \exp\left(-\frac{\epsilon x^2}{\sqrt{2}}\right), \quad \mu_{\epsilon} = \mu_1(\epsilon) = \frac{3\epsilon}{\sqrt{2}}.$$

• Local bifurcation (by Lyapunov-Schmidt reduction)

$$\mu > \mu_1(\epsilon) : \quad U(0) = 0, \quad \lim_{|x| \to \infty} U(x) = 0,$$

such that it exists for $\mu \geq 1$.

Dark solitons on the ground state

• Analytical representation for $\epsilon = 0$

$$u_{\rm ds}(x,t) = [k \tanh(k(x - vt - s_0)) + iv] e^{-it + i\theta_0},$$

where $k = \sqrt{1 - v^2} < 1$ and $(s_0, \theta_0) \in \mathbb{R}^2.$

• Boundary conditions for $\epsilon = 0$

$$|u_{\rm ds}|^2 = 1 - k^2 {\rm sech}^2(k(x - vt - s)) \to 1 \quad {\rm as} \quad |x| \to \infty$$

Dark solitons on the ground state

• Analytical representation for $\epsilon = 0$

$$u_{\rm ds}(x,t) = [k \tanh(k(x - vt - s_0)) + iv] e^{-it + i\theta_0},$$

where $k = \sqrt{1 - v^2} < 1$ and $(s_0, \theta_0) \in \mathbb{R}^2.$

• Boundary conditions for $\epsilon = 0$

$$|u_{\rm ds}|^2 = 1 - k^2 {\rm sech}^2(k(x - vt - s)) \to 1 \text{ as } |x| \to \infty$$

• When $\epsilon \neq 0$, the stationary solution persists only for v = 0 and $s_0 = 0$, when $u_{ds}(x,t) = u_{exc}(x,t)$ with zero boundary conditions as $|x| \to \infty$. Dark soliton solutions with $v \neq 0$ and $s_0 \neq 0$ undertake nonstationary dynamics in the parabolic trap.

Numerical solution : nearly shallow soliton

Starting transformation

• The original GP equation

$$iu_t = -\frac{1}{2}u_{xx} + \epsilon^2 x^2 u + |u|^2 u, \quad \epsilon \ll 1$$

• Transformation of the GP equation

$$u(x,t) = U_{\epsilon}(x)w(x,t)e^{-i\mu_{\epsilon}t},$$

where $(U_{\epsilon}, \mu_{\epsilon})$ is the ground state pair with $U_{\epsilon}(0) = 1$

• Perturbed NLS equation (Frantzeskakis et al, 2002):

$$iw_t + \frac{1}{2}w_{xx} + U_{\epsilon}^2(x)(1 - |w|^2)w = -\frac{U_{\epsilon}'(x)}{U_{\epsilon}(x)}w_x$$

where $U_{\epsilon}^2 = 1 - \epsilon^2 x^2 + O(\epsilon^2)$ for $\epsilon |x| = O(1)$ and $\epsilon |x| < 1$

Failure of formal adiabatic theory

• Formal perturbed NLS equation

$$iw_t + \frac{1}{2}w_{xx} + (1 - |w|^2)w = R(w, \bar{w}),$$

where

$$R(w,\bar{w}) = \epsilon^2 x^2 (1 - |w|^2)w + \frac{\epsilon^2 x}{1 - \epsilon^2 x^2} w_x$$

Failure of formal adiabatic theory

• Formal perturbed NLS equation

$$iw_t + \frac{1}{2}w_{xx} + (1 - |w|^2)w = R(w, \bar{w}),$$

where

$$R(w,\bar{w}) = \epsilon^2 x^2 (1 - |w|^2)w + \frac{\epsilon^2 x}{1 - \epsilon^2 x^2} w_x$$

• First-order balance for renormalized momentum

$$\frac{ds}{dt} = v, \qquad P'_r(v)\frac{dv}{dt} = -\int_{-\infty}^{\infty} w'_0(x)\left(R + \bar{R}\right)(w_0, \bar{w}_0)dx,$$

where $w_0 = w_0(x - s)$ is the exact dark soliton for $\epsilon = 0$ and $P'_r(v) = 4k$ is the renormalized momentum.

Failure of formal adiabatic theory

• Formal perturbed NLS equation

$$iw_t + \frac{1}{2}w_{xx} + (1 - |w|^2)w = R(w, \bar{w}),$$

where

$$R(w,\bar{w}) = \epsilon^2 x^2 (1 - |w|^2)w + \frac{\epsilon^2 x}{1 - \epsilon^2 x^2} w_x$$

• First-order balance for renormalized momentum

$$\frac{ds}{dt} = v, \qquad P'_r(v)\frac{dv}{dt} = -\int_{-\infty}^{\infty} w'_0(x)\left(R + \bar{R}\right)(w_0, \bar{w}_0)dx,$$

where $w_0 = w_0(x - s)$ is the exact dark soliton for $\epsilon = 0$ and $P'_r(v) = 4k$ is the renormalized momentum.

• Formal computations give a *wrong* dynamical equation:

$$\ddot{s} + \frac{(3-s^2)(1-\dot{s}^2)}{3(1-s^2)}s = O(\epsilon^2)$$

The main equation for perturbation theory

• Scaling of dark solitons for adiabatic dynamics

$$T = \epsilon t, \qquad v = v(T) = \dot{s}(T),$$

implies that $w_0 = w_0(x - s/\epsilon) \equiv w_0(\eta)$, such that
 $\epsilon^2 x^2 = s^2 + 2\epsilon s\eta + \epsilon^2 \eta^2, \quad \eta = O(1)$

The perturbation theory fails since $R(w, \bar{w})$ is not small.

The main equation for perturbation theory

• Scaling of dark solitons for adiabatic dynamics

$$T = \epsilon t, \qquad v = v(T) = \dot{s}(T),$$

implies that $w_0 = w_0(x - s/\epsilon) \equiv w_0(\eta)$, such that
 $\epsilon^2 x^2 = s^2 + 2\epsilon s\eta + \epsilon^2 \eta^2, \quad \eta = O(1).$

The perturbation theory fails since $R(w, \bar{w})$ is not small.

• Let $w = w(\eta, t)$ with $\eta = x - s(T)/\epsilon$ and rewrite the perturbed NLS equation in the form

$$iw_t - ivw_\eta + \frac{1}{2}w_{\eta\eta} + U_\epsilon^2(s)(1 - |w|^2)w = R(w, \bar{w}),$$

where

$$R = -\epsilon \left(\frac{U'_{\epsilon}(s)}{U_{\epsilon}(s)} w_{\eta} + 2U_{\epsilon}(s)U'_{\epsilon}(s)\eta(1-|w|^2)w \right) + \mathcal{O}(\epsilon^2)$$

Dynamical rescaling of the main equation

• Let
$$w = w(z,t)$$
 with $z = \eta U_{\epsilon}(s(T))$ and let
 $\dot{s}(T) = v(T) = \nu(T)U_{\epsilon}(s(T)),$

such that the final perturbed NLS equation is

$$iw_t + U_{\epsilon}^2(s) \left[-i\nu w_z + \frac{1}{2}w_{zz} + (1 - |w|^2)w \right] + \epsilon R_1(w, \bar{w}) = O(\epsilon^2),$$

where

$$R_1 = U'_{\epsilon}(s) \left[i\nu z w_z + w_z + 2z(1 - |w|^2)w \right]$$

٠

Dynamical rescaling of the main equation

• Let
$$w = w(z, t)$$
 with $z = \eta U_{\epsilon}(s(T))$ and let
 $\dot{s}(T) = v(T) = \nu(T)U_{\epsilon}(s(T)),$

such that the final perturbed NLS equation is

$$iw_t + U_{\epsilon}^2(s) \left[-i\nu w_z + \frac{1}{2}w_{zz} + (1 - |w|^2)w \right] + \epsilon R_1(w, \bar{w}) = O(\epsilon^2),$$

where

$$R_1 = U'_{\epsilon}(s) \left[i\nu z w_z + w_z + 2z(1 - |w|^2)w \right]$$

• An asymptotic solution is sought in the form:

$$w(z,t) = \left[w_0(z) + \epsilon w_1(z,t) + \mathcal{O}(\epsilon^2)\right] e^{i\theta},$$

where $w_0(z) = \kappa \tanh(\kappa z) + i\nu$, $\kappa = \sqrt{1 - \nu^2}$, and parameters $\theta(T)$ and s(T) are independent.

The first-order correction: the inhomogeneous pi

• First-order linearization problem

$$i\partial_t \sigma_3 \mathbf{w}_1 + U_{\epsilon}^2(s)\mathcal{H}\mathbf{w}_1 = \dot{\theta}\mathbf{w}_0 - i\partial_T \sigma_3 \mathbf{w}_0 - \mathbf{R}_1(w_0, \bar{w}_0),$$

where

$$\mathcal{H} = -i\nu\sigma_3\partial_z + \sigma_0\left(\frac{1}{2}\partial_z^2 + 1\right) - \left(\begin{array}{cc}2|w_0|^2 & w_0^2\\ \bar{w}_0^2 & 2|w_0|^2\end{array}\right)$$

and

$$\mathbf{w}_0 = \begin{pmatrix} w_0 \\ \bar{w}_0 \end{pmatrix}, \qquad \mathbf{w}_1 = \begin{pmatrix} w_1 \\ \bar{w}_1 \end{pmatrix},$$

• First-order linearization problem

$$i\partial_t \sigma_3 \mathbf{w}_1 + U_\epsilon^2(s) \mathcal{H} \mathbf{w}_1 = \dot{\theta} \mathbf{w}_0 - i\partial_T \sigma_3 \mathbf{w}_0 - \mathbf{R}_1(w_0, \bar{w}_0),$$

where

$$\mathcal{H} = -i\nu\sigma_3\partial_z + \sigma_0\left(\frac{1}{2}\partial_z^2 + 1\right) - \left(\begin{array}{cc}2|w_0|^2 & w_0^2\\ \bar{w}_0^2 & 2|w_0|^2\end{array}\right)$$

and

$$\mathbf{w}_0 = \begin{pmatrix} w_0 \\ \bar{w}_0 \end{pmatrix}, \qquad \mathbf{w}_1 = \begin{pmatrix} w_1 \\ \bar{w}_1 \end{pmatrix},$$

• Completeness of eigenfunctions of \mathcal{H} (Chen et al, 1998)

- Continuous spectrum on $\lambda \in i\mathbb{R}$
- Embedded kernel at $\lambda = 0$ with

$$\mathcal{H}\mathbf{w}_0' = \mathbf{0}, \qquad \mathcal{H}(i\sigma_3\mathbf{w}_0) = \mathbf{0}$$

The first-order correction: inner part

• Orthogonality of \mathbf{R}_1 to $\mathbf{w}'_0(z)$ produces the main equation for adiabatic dynamics of a dark soliton:

$$\ddot{s} + s = 0.$$

The first-order correction: inner part

• Orthogonality of \mathbf{R}_1 to $\mathbf{w}'_0(z)$ produces the main equation for adiabatic dynamics of a dark soliton:

$$\ddot{s} + s = 0.$$

• The first-order solution $w_1(z,t)$ is decomposed into eigenfunctions of the continuous spectrum of \mathcal{H} . By the stationary phase method, the first-order solution $w_1(z,t)$ becomes stationary as $t \to \infty$:

$$w_{1s} = \frac{q(T)}{U_{\epsilon}^2(s)} \left(izw_0 - \partial_{\nu}w_0\right) + \frac{3\nu q(T) - \dot{\theta}(T)}{2\kappa U_{\epsilon}^2(s)} \partial_{\kappa}w_0 + \tilde{w}_{1s}(z,T),$$

where q(T) is arbitrary parameter.

The first-order correction: inner part

• Orthogonality of \mathbf{R}_1 to $\mathbf{w}'_0(z)$ produces the main equation for adiabatic dynamics of a dark soliton:

$$\ddot{s} + s = 0.$$

• The first-order solution $w_1(z,t)$ is decomposed into eigenfunctions of the continuous spectrum of \mathcal{H} . By the stationary phase method, the first-order solution $w_1(z,t)$ becomes stationary as $t \to \infty$:

$$w_{1s} = \frac{q(T)}{U_{\epsilon}^2(s)} \left(izw_0 - \partial_{\nu} w_0 \right) + \frac{3\nu q(T) - \dot{\theta}(T)}{2\kappa U_{\epsilon}^2(s)} \partial_{\kappa} w_0 + \tilde{w}_{1s}(z,T),$$

where q(T) is arbitrary parameter.

• The stationary solution $w_{1s}(z,T)$ grows linearly in z as $|z| \to \infty$.

The first-order correction: outer part

• Matching conditions from
$$z = O(1)$$
 to $\epsilon x = O(1)$:

$$\lim_{z \to \pm \infty} w_s(z, T) = (1 + \epsilon W^{\pm}(X, T)) e^{i\Theta^{\pm}(X, T)},$$
where $X = \epsilon x, T = \epsilon t$, and
 $W^{\pm} \Big|_{X=s(T)}, \frac{\partial \Theta}{\partial X} \Big|_{X=s(T)}$ are given.

The first-order correction: outer part

• Matching conditions from
$$z = O(1)$$
 to $\epsilon x = O(1)$:

$$\lim_{z \to \pm \infty} w_s(z, T) = (1 + \epsilon W^{\pm}(X, T)) e^{i\Theta^{\pm}(X, T)},$$
where $X = \epsilon x, T = \epsilon t$, and
 $W^{\pm} \Big|_{X=s(T)}, \frac{\partial \Theta}{\partial X} \Big|_{X=s(T)}$ are given.

• Radiation problem outside the dark soliton:

$$\begin{split} \Theta_{TT}^{\pm} - \left(U_{\epsilon}^2(X) \Theta_X^{\pm} \right)_X &= 0, \\ \text{where } U_{\epsilon}^2(X) = 1 - X^2 \text{ and} \\ W^{\pm} &= -\frac{\Theta_T^{\pm}}{2U_{\epsilon}^2(X)} \end{split}$$

Solution of the radiation problem

• Solution along the characteristics

$$\frac{d\xi_{\pm}}{dT} = \pm U_{\epsilon}(\xi_{\pm}), \qquad R_{\pm} = W^{\pm} \pm \frac{\Theta_X^{\pm}}{2U_{\epsilon}(X)},$$

where

$$\frac{dR_+}{dT} = -\frac{1}{2}U'_{\epsilon}(\xi_+(T;\tau_0))(5R_+ - R_-),$$

$$\frac{dR_-}{dT} = -\frac{1}{2}U'_{\epsilon}(\xi_-(T;\tau_0))(R_+ - 5R_-).$$

Solution of the radiation problem

• Solution along the characteristics

$$\frac{d\xi_{\pm}}{dT} = \pm U_{\epsilon}(\xi_{\pm}), \qquad R_{\pm} = W^{\pm} \pm \frac{\Theta_X^{\pm}}{2U_{\epsilon}(X)},$$

where

$$\frac{dR_+}{dT} = -\frac{1}{2}U'_{\epsilon}(\xi_+(T;\tau_0))\left(5R_+ - R_-\right),\\ \frac{dR_-}{dT} = -\frac{1}{2}U'_{\epsilon}(\xi_-(T;\tau_0))\left(R_+ - 5R_-\right).$$

• Let us assume no radiation from the outer domain:

$$X > s(T): \quad R_{-} = 0 \qquad \qquad X < s(T): \quad R_{+} = 0$$

The system of equations for the first-order correction is then closed. The orthogonality of \mathbf{R}_2 to $\mathbf{w}'_0(z)$ extends the main equation for dynamics of a dark soliton:

$$\ddot{s} + s = \frac{\epsilon \dot{s}}{2\sqrt{(1-s^2)^3}\sqrt{1-s^2-\dot{s}^2}} + O(\epsilon^2).$$

Family of characteristics for radiation problem

Families of characteristics in the parabolic trap

Outcomes of the dynamical equation

$$\ddot{s} + s = \frac{\epsilon \dot{s}}{2\sqrt{(1 - s^2)^3}\sqrt{1 - s^2 - \dot{s}^2}} + O(\epsilon^2).$$

• The equilibrium point (0,0) recovers the first excited state $u_{\text{exc}}(x)$.

Outcomes of the dynamical equation

$$\ddot{s} + s = \frac{\epsilon \dot{s}}{2\sqrt{(1 - s^2)^3}\sqrt{1 - s^2 - \dot{s}^2}} + O(\epsilon^2).$$

• The equilibrium point (0,0) recovers the first excited state $u_{\text{exc}}(x)$.

• Linearization near the equilibrium point:

$$\ddot{s} + s - \frac{\epsilon}{2}\dot{s} = O(\epsilon^2, s^3)$$

corresponds to the harmonic oscillator with an amplification.

Outcomes of the dynamical equation

$$\ddot{s} + s = \frac{\epsilon \dot{s}}{2\sqrt{(1-s^2)^3}\sqrt{1-s^2-\dot{s}^2}} + O(\epsilon^2).$$

- The equilibrium point (0,0) recovers the first excited state $u_{\text{exc}}(x)$.
- Linearization near the equilibrium point:

$$\ddot{s} + s - \frac{\epsilon}{2}\dot{s} = \mathcal{O}(\epsilon^2, s^3)$$

corresponds to the harmonic oscillator with an amplification.

• Lyapunov function

$$E = \frac{1}{2} \left(\dot{s}^2 + s^2 \right)$$

shows that all trajectories are outgoing spirals:

$$\dot{E} = \frac{\epsilon \dot{s}^2}{2\sqrt{(1-s^2)^3}\sqrt{1-s^2-\dot{s}^2}} + O(\epsilon^2) > 0.$$

Conclusions on the asymptotic analysis

• The main equation for dynamics of a dark soliton is valid in the case of no incoming radiation, e.g.

$$iu_t = -\frac{1}{2}u_{xx} + V(\epsilon x)u + |u|^2 u, \quad \epsilon \ll 1,$$

where

•
$$V(X) = X^2 + O(X^3)$$
 near $X = 0$
• $V(X) \rightarrow 0$ as $|X| \rightarrow \infty$

Conclusions on the asymptotic analysis

• The main equation for dynamics of a dark soliton is valid in the case of no incoming radiation, e.g.

$$iu_t = -\frac{1}{2}u_{xx} + V(\epsilon x)u + |u|^2 u, \quad \epsilon \ll 1,$$

where

•
$$V(X) = X^2 + O(X^3)$$
 near $X = 0$
• $V(X) \to 0$ as $|X| \to \infty$

• In the case of a harmonic trap $(V = X^2)$, the main equation is only valid for the first half-period of oscillations. For longer times, the radiative waves are expected to be in balance, so that oscillations of a dark soliton are expected to be synchronized.

Numerical solution (by N.G. Parker et al, 2003)

Position and energy of dark soliton in a double Gaussian trap.

Numerical solution (by N.G. Parker et al, 2004)

Top: parabolic trap. Bottom: parabolic trap and optical lattice

Numerical solution : nearly black soliton

- Perturbation theory for complex eigenvalues of the linearized problem in the presence of external potentials
- Hermite function expansions for dynamics of dark solitons in the parabolic potentials (normal forms)
- Modeling of PDE problems along characteristics with incoming and outcoming radiation waves
- Derivation of the ${\cal O}(\epsilon^2)$ error bound for the main equation describing dynamics of a dark soliton