Dark solitons in external potentials

Dmitry Pelinovsky

Institute of Analysis and Dynamics, University of Stuttgart, Germany Department of Mathematics, McMaster University, Canada

References:

D.P., D. Frantzeskakis, P. Kevrekidis, Phys. Rev. E 72, 016615 (2005) D.P., P. Kevrekidis, ZAMP, accepted

Analyse Numerique, Universite Paris-Sud Orsay, April 26, 2007

Conventional dark solitons

Dark solitons are localized solutions of nonlinear PDEs with non-zero boundary conditions and non-zero phase shift.

Dark solitons in nonlinear optics

$$iu_t = -\frac{1}{2}u_{xx} + f(|u|^2)u,$$

where f(s) is a smooth function with f'(s) > 0.

Example: cubic NLS with $f = |u|^2$ and dark solitons

$$u = e^{-it} \left[k \tanh(k(x - vt)) + iv \right],$$

where $k = \sqrt{1 - v^2}$ and |v| < 1. When v = 0, the solution $u = \tanh x \ e^{-it}$ is called the black soliton.

Recent results in mathematical literature

- Zhidkov (1992) local existence of the Cauchy problem and stability of kink solutions in the cubic NLS
- de Bouard (1995) spectral and nonlinear instability of black solitons with zero velocity and zero phase shift
- Lin (2002) criterion for orbital stability and instability of dark solitons for non-zero velocities
- Maris (2003) bifurcations of dark solitons for non-zero velocities in the delta-function potential
- Di Menza and Gallo (2006) stability criterion for kinks with zero velocity and non-zero phase shift

New problems for dark solitons

Dark solitons in Bose–Einstein condensates

$$iu_t = -\frac{1}{2}u_{xx} + f(|u|^2)u + \epsilon V(x)u,$$

where ϵ is small and $V(x) : \mathbb{R} \to \mathbb{R}$ is a smooth, exponentially decaying function such that

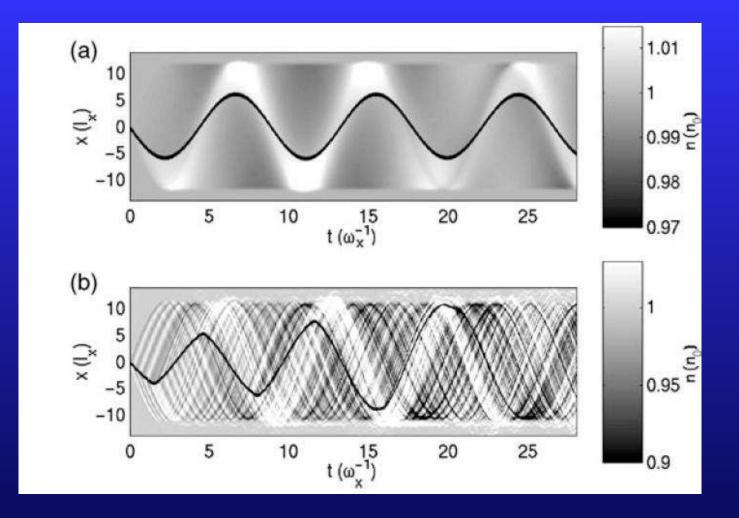
$$\exists C > 0, \ \kappa > 0: \quad |V(x)| \le Ce^{-\kappa|x|}, \quad \forall x \in \mathbb{R}$$

Example: symmetric external potentials

$$V_1(x) = -\operatorname{sech}^2\left(\frac{\kappa x}{2}\right), \qquad V_2(x) = x^2 e^{-\kappa |x|}, \qquad x \in \mathbb{R}.$$

More general context: periodic and confining potentials V(x).

Numerical simulations



Questions:

Find approximations of the frequency of oscillations of a dark soliton and study long-time changes in the amplitude of oscillations.

Approaches to the solution at glance

$$iu_t = -\frac{1}{2}u_{xx} + f(|u|^2)u + \epsilon V(x)u,$$

- $\epsilon = 0$ existence and stability of dark solitons is known
- $\epsilon \ll 1$ persistence of solutions by using the method of Lyapunov–Schmidt reductions
- $\epsilon \ll 1$ stability of solutions by using the methods of Evans function and the theory of negative indices
- $\epsilon \neq 0$ long-time dynamics by using the Newton's law of motion and central manifold reductions

Main results

1. A black soliton $u = \phi_0(x - s)e^{-it}$ with $\phi_0 \to \pm 1$ as $x \to \pm \infty$ persists for small $\epsilon \neq 0$ if M'(s) = 0 and $M''(s) \neq 0$, where

$$M'(s) = \int_{\mathbb{R}} V'(x) \left[1 - \phi_0^2(x - s) \right] dx.$$

- 2. If a black soliton is spectrally stable for $\epsilon = 0$, then it is spectrally unstable for small $\epsilon \neq 0$ with one real positive eigenvalue if M''(s) < 0 and two complex-conjugate eigenvalues if M''(s) > 0.
- 3. If u(x, 0) is close to $\phi_{\epsilon}(x s(0))$, then u(x, t) remains close to $\phi_{\epsilon}(x s(t))e^{-it}$, where s(t) solves for $0 < t < C/\epsilon$

$$\mu_0 \ddot{s} - \epsilon \lambda_0 M''(s) \dot{s} + \epsilon M'(s) = \mathcal{O}(\epsilon^2), \qquad \lambda_0, \mu_0 > 0.$$

Persistence of black solitons

Black soliton in the form $u = \phi(x)e^{-it}$ satisfies the ODE

$$\frac{1}{2}\phi''(x) + \left[1 - \phi(x)^2\right]\phi(x) = \epsilon V(x)\phi(x),$$

subject to the boundary conditions $\lim_{x\to\pm\infty} \phi(x) = \pm 1$. If $\phi(x) = \phi_0(x-s) + \varphi(x,s)$, then φ is found from the operator-valued equation

$$F(\varphi, s) = L_{+}\varphi + N(\varphi, s) + \epsilon V(x) \left[\phi_{0}(x - s) + \varphi\right] = 0,$$

where $N: H^1(\mathbb{R}) \mapsto H^1(\mathbb{R})$ and $L_+: H^2(\mathbb{R}) \mapsto L^2(\mathbb{R})$, such that

$$L_{+} = -\frac{1}{2}\partial_{x}^{2} + 3\phi_{0}^{2} - 1 = -\frac{1}{2}\partial_{x}^{2} + 2 - 3\operatorname{sech}^{2}x.$$

Lyapunov–Schmidt reductions

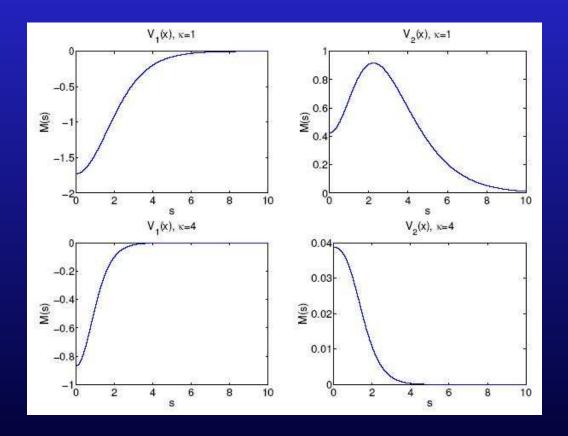
- The essential spectrum of L₊ is bounded from below by 2, Ker(L₊) = {\phi'(x)}, and other isolated eigenvalues are located in (0, 2).
- Let $\varphi \in H^1(\mathbb{R})$, such that $(\phi'_0, \varphi) = 0$ and $C(\varphi) = c(\varphi' - V(\varphi)(\varphi - \varphi)) + (\varphi' - V(\varphi))$

$$\begin{aligned} f(s) &= \epsilon \left(\phi_0, V(x)(\phi_0 + \varphi)\right) + \left(\phi_0, N(\varphi, s)\right) \\ &= \frac{\epsilon}{2} M'(s) + \tilde{G}(s) = 0. \end{aligned}$$

 By the Implicit Function Theorem, ||φ||_{H¹} = O(ε) subject to G(s) = 0. If M'(s₀) = 0 and M''(s₀) ≠ 0, the root of G(s) = 0 persists as s = s₀ + O(ε).

Applications

- If V(-x) = V(x), then M'(0) = 0 and the black soliton with s = 0 persists for $\epsilon \neq 0$.
- Additional roots s = ±s₀ may exist if sign(M(0)M"(0)) = 1 since M(s) → 0 as s → ∞.



Stability of black solitons

Linearization at a black soliton $\phi_0(x)e^{-it}$ is defined by

$$u = e^{-it} \left[\phi_0(x) + (u(x) + iw(x))e^{\lambda t} + (\bar{u}(x) + i\bar{w}(x))e^{\bar{\lambda} t} \right]$$

Spectral stability problem:

$$L_+u = -\lambda w, \qquad L_-w = \lambda u,$$

where

$$L_{+} = -\frac{1}{2}\partial_{x}^{2} + 2 - 3\operatorname{sech}^{2}x,$$
$$L_{-} = -\frac{1}{2}\partial_{x}^{2} - \operatorname{sech}^{2}x.$$

Spectra of L_{\pm} in $L^2(\mathbb{R})$

Continuous spectra σ_c :

 $\sigma_c(L_+) \ge 2 > 0, \qquad \sigma_c(L_-) \ge 0, \quad L_-\phi_0 = 0$

Kernel and negative eigenvalues:

- $L_+\phi'_0 = 0 \Rightarrow L_+$ has no negative eigenvalues
- L_{-} has exactly one negative eigenvalue

Define the constrained space

$$X_c = \{ w \in L^2(\mathbb{R}) : (\phi'_0, w) = 0 \}$$

Operator L_{-} has no negative eigenvalues in X_c if $P'_r|_{v=0} > 0$ and exactly one negative eigenvalue if $P'_r|_{v=0} < 0$, where

$$P'_r|_{v=0} = (\phi'_0, \psi_0), \qquad \psi_0 = L_-^{-1} \phi'_0 \in L^\infty(\mathbb{R}).$$

Constrained L²-space

Consider the spectral problem for $|\lambda| \neq 0$:

$$L_+u = -\lambda w, \qquad L_-w = \lambda u,$$

If $w \in X_c$, then the stability problem is equivalent to the generalized eigenvalue problem

$$L_-w = \gamma L_+^{-1}w, \qquad \gamma = -\lambda^2, \ w \in X_c.$$

- If $P'_r|_{v=0} > 0$, then $\gamma = \frac{(w, L_-w)}{(w, L_+^{-1}w)} \ge 0$, such that $\lambda \in i\mathbb{R}$.
- If $P'_r|_{v=0} < 0$, then there exists exactly one $w \in X_c$ such that $\gamma < 0$ with $\lambda \in \mathbb{R}_+$.

Pontryagin Invariant Subspace Theorem

Definition 1: Let \mathcal{H} be a Hilbert space equipped with the inner product (\cdot, \cdot) and the sesquilinear form $[\cdot, \cdot]$. The Hilbert space \mathcal{H} is called the Pontryagin space (denoted as Π_{κ}) if it can be decomposed into the sum $\mathcal{H} \doteq \Pi_{\kappa} = \Pi_{+} \oplus \Pi_{-}$, which is orthogonal with respect to $[\cdot, \cdot]$, where $\kappa = \dim(\Pi_{-}) < \infty$.

Definition 2: We say that Π is a non-positive subspace of Π_{κ} if $[x, x] \leq 0 \ \forall x \in \Pi$. We say that the non-positive subspace Π has the maximal dimension κ if any subspace of Π_{κ} of dimension higher than κ is not a non-positive subspace of Π_{κ} .

Theorem: Let T be a self-adjoint bounded operator in Π_{κ} , such that $[T \cdot, \cdot] = [\cdot, T \cdot]$. There exists a T-invariant non-positive subspace of Π_{κ} of the maximal dimension κ .

Application of the Pontryagin Theorem

Reference: L. Pontryagin, Izv. Acad. Nauk SSSR **8**, 243-280 (1944); M. Chugunova and D.P., preprint (2006)

- Let operators L_± have n_± negative eigenvalues, empty kernels in L²(ℝ), while σ_c(L₊) > 0 and σ_c(L_−) ≥ 0.
- Let embedded eigenvalues of the spectral problem $L_+u = -\lambda w$, $L_-w = \lambda u$ be algebraically simple.
- Then, the spectral problem has exactly N_c complex eigenvalues, N[±]_i imaginary eigenvalues and N[±]_r real eigenvalues with (w, L⁻¹₊w) ≥ 0 and (w, L⁻¹₊w) ≤ 0, such that

$$N_r^- + N_i^- + N_c = n_+, \qquad N_r^+ + N_i^- + N_c = n_-.$$

• If $n_+ = 0$ and $n_- = 1$, then $N_r^+ = 1$ (when $P'_r|_{v=0} < 0$) and the soliton is spectrally unstable.

Dark soliton in a potential

Linearized operators are

$$\mathcal{L}_{+} = -\frac{1}{2}\partial_x^2 + f(\phi_\epsilon^2) - f(q_0) + 2\phi_\epsilon^2 f'(\phi_\epsilon^2) + \epsilon V(x),$$

$$\mathcal{L}_{-} = -\frac{1}{2}\partial_x^2 + f(\phi_\epsilon^2) - f(q_0) + \epsilon V(x).$$

In particular,

$$(\phi'_0, L_+\phi'_0) = -\frac{\epsilon}{2}M''(s_0) + O(\epsilon^2)$$

- If $M''(s_0) > 0$, then $n_+ = 1$ and $n_- = 1$, such that either $N_c + N_i^- = 1$ or $N_r^+ = N_r^- = 1$.
- If M''(s₀) < 0, then n₊ = 0 and n₋ = 1, such that N_r⁺ = 1 and the kink is spectrally unstable.

Fundamental solutions

Recall that

$$L_+ u = -\lambda w, \quad L_- w = \lambda u$$

Define four fundamental solutions

$$\begin{pmatrix} u_{\pm} \\ w_{\pm} \end{pmatrix} \rightarrow \begin{pmatrix} \kappa_{\pm} \\ -\kappa_{\mp} \end{pmatrix} e^{\kappa_{\pm} x} \quad \text{as} \quad x \to -\infty,$$
$$\begin{pmatrix} \tilde{u}_{\pm} \\ \tilde{w}_{\pm} \end{pmatrix} \rightarrow \begin{pmatrix} \kappa_{\pm} \\ -\kappa_{\mp} \end{pmatrix} e^{-\kappa_{\pm} x} \quad \text{as} \quad x \to +\infty,$$

where κ_{\pm} with $\operatorname{Re}\kappa_{\pm} > 0$ are given by

$$\kappa_{\pm}^2 = 2c^2 \left(1 \pm \sqrt{1 - \frac{\lambda^2}{c^4}} \right).$$

where $\kappa_{\pm}^2 \neq \kappa_{-}^2$ ($\lambda \neq \pm c^2$) and $\kappa_{-} \neq 0$ ($\lambda \neq 0$).

Evans function

The *Evans* function $E(\lambda)$ is a 4-by-4 determinant of the four fundamental solutions. Its zero for $\text{Re}(\lambda) > 0$ coincide with eigenvalues λ with the account of their algebraic multiplicities.

Example: f(q) = q and $\phi_0 = \tanh x$, such that

$$E(\lambda) = \frac{4\kappa_+^3 \kappa_-^3 (\kappa_+^2 - \kappa_-^2)^2}{(\kappa_+ + 2)^2 (\kappa_- + 2)^2},$$

such that $E(\lambda) = 8\lambda^3(1 + O(\lambda))$ near $\lambda = 0$.

Lemma: The Evans function is analytic function of κ_{-} and ϵ near $\kappa_{-} = 0$ ($\lambda = 0$) and $\epsilon = 0$.

Characteristic equation

Expansion near $\lambda = 0$ and $\epsilon = 0$:

$$E(\lambda,\epsilon) = \lambda \left(\alpha \lambda^2 + \beta \epsilon + \tilde{\alpha} \lambda^3 + \tilde{\beta} \lambda \epsilon + O(\lambda^4, \lambda^2 \epsilon, \epsilon^2) \right)$$

where $\alpha \neq 0$ due to

$$L_+\phi'_0(x) = 0, \quad L_-w_1 = \phi'_0(x), \quad L_-\phi_0 = 0$$

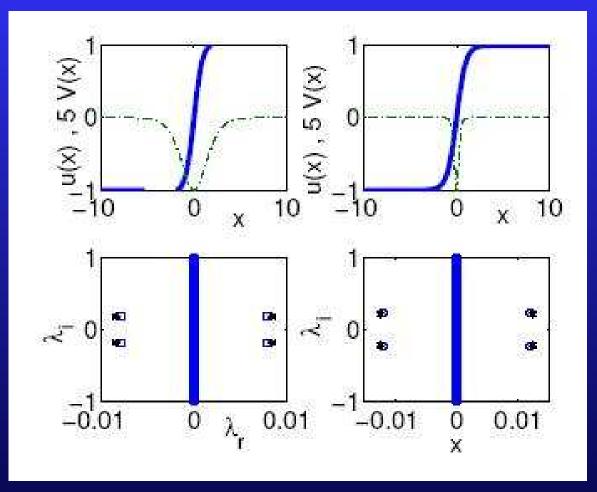
and $\beta = 0$ due to $M''(s_0) \neq 0$. Explicit computation near $\lambda = 0$ and $\epsilon = 0$:

$$\operatorname{Re}\lambda > 0: \quad \lambda^2 + \frac{\epsilon}{4}M''(s_0)\left(1 - \frac{\lambda}{2}\right) = O(\epsilon^2).$$

If $M''(s_0) < 0$, there is a small root $\lambda \in \mathbb{R}_+$ If $M''(s_0) > 0$, there are two small roots with $\operatorname{Re}\lambda > 0$ and $\operatorname{Im}\lambda \neq 0$.

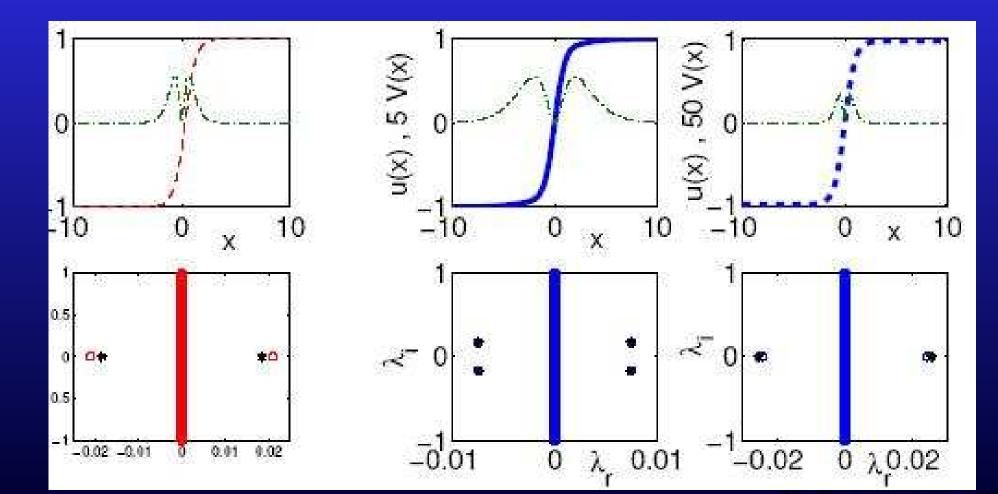
Example: $V_1 = -\operatorname{sech}^2$ $\left(\frac{\kappa x}{2}\right)$

Only one solution persists with $s_0 = 0$ and M''(0) > 0



Example: $V_2 = x^2 e^{-\kappa |x|}$

For $\kappa < 3.21$, three solutions persist with $s_0 = 0$ (M''(0) > 0) and $s_0 = \pm s_*$ ($M''(s_*) < 0$). For $\kappa > 3.21$, only one solution persists with $s_0 = 0$ and M''(0) < 0

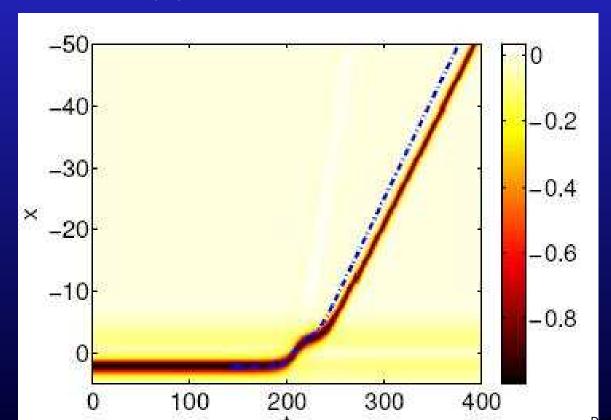


Nonlinear dynamics of instability

Newton's particle equation

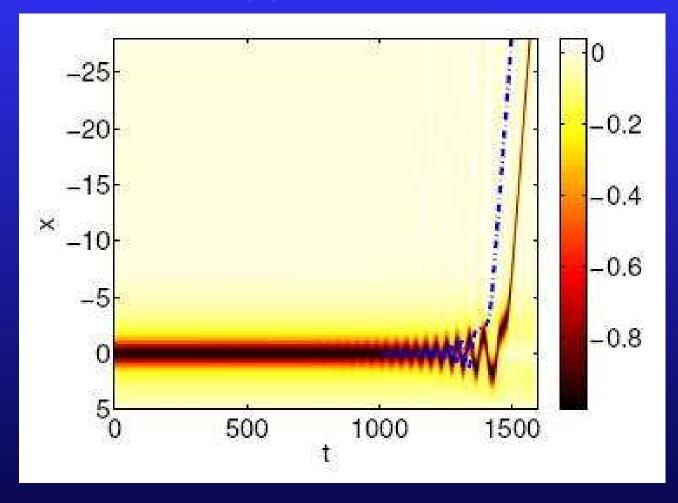
$$\mu_0 \ddot{s} - \epsilon \lambda_0 M''(s) \dot{s} + \epsilon M'(s) = \mathcal{O}(\epsilon^2), \qquad \lambda_0, \mu_0 > 0.$$

Real instability for $V_2(x)$, $\kappa < 3.21$ and $s_0 = s_* \neq 0$



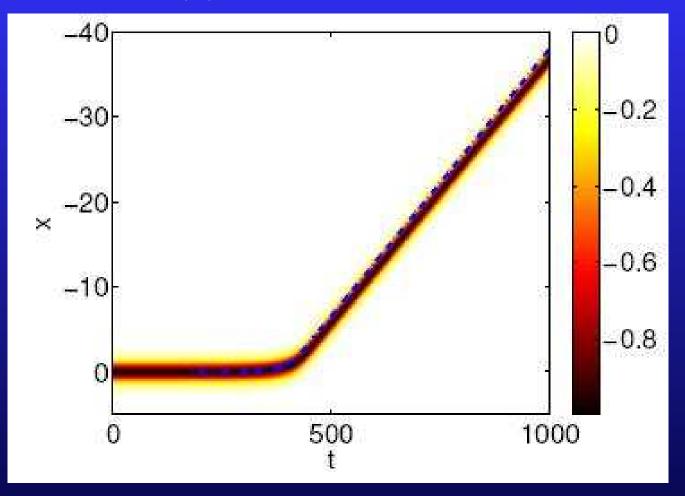
Nonlinear dynamics of instability

Complex instability for $V_2(x)$, $\kappa < 3.21$ and $s_0 = 0$



Nonlinear dynamics of instability

Real instability for $V_2(x)$, $\kappa > 3.21$ and $s_0 = 0$



Conclusion

- Persistence of dark solitons is studied for non-zero boundary conditions and decaying potentials
- Stability of dark solitons is studied for linearized problems without spectral gaps
- Numerical modeling suggests an adequate approximation of the nonlinear dynamics by the Newton's particle equation
- Extension of this work is needed for bounded (periodic) and unbounded (parabolic) potentials V(x).