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Structure of Talk

I will speak on two particular problems for nonlinear PDEs:

Global well-posedness for the derivative NLS equation

{
iut + uxx + i(|u|2u)x = 0, t > 0,
u|t=0 = u0.

Orbital stability for the massive Thirring model (MTM)





i(ut + ux) + v = u|v |2, t > 0,
i(vt − vx) + u = v |u|2,
(u, v)|t=0 = (u0, v0).

Both nonlinear PDEs belong to the class of integrable systems with the
inverse scattering transform method.
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Inverse scattering (for the DNLS equation)

Denote Q(u) =

[
0 u

−u 0

]
, σ3 =

[
1 0
0 −1

]
and consider two linear

equations for ψ(x , t) ∈ C
2:

∂xψ =
[
−iλ2σ3 + λQ(u)

]
ψ

and

∂tψ =
[
−2iλ4σ3 + 2λ3Q(u) + iλ2|u|2σ3 − λ|u|2Q(u) + iλσ3Q(ux)

]
ψ,

where λ ∈ C is the (x , t)-independent spectral parameter.

Lax representation:

Consider smooth ψ and u as functions of (x , t). Then,
∂x∂tψ = ∂t∂xψ if and only if iut + uxx + i(|u|2u)x = 0.

Zakharov-Shabat (1972), Ablowitz-Kaup-Newell-Segur (1974),
Kaup-Newell (1976), and many more...
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Miracles of the integrable nonlinear PDEs

A countable set of time-conserved quantities in some Sobolev spaces

A rich set of exact analytic solutions given by elementary and elliptic
functions (solitary waves, periodic waves, rogue waves, etc.)

Bäcklund and Darboux transformations to add or to remove solitons

The inverse scattering transform as a nonlinear Fourier transform
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Quick Review: Well-posedness for dispersive PDEs
For the general Cauchy problem:

{
iut +∆u + N(u) = 0,
u|t=0 = u0 ∈ X ,

where X is some Banach space and N(u) is a nonlinear term.

The Cauchy problem is locally well-posed in X if there exists an unique
solution u(t, ·) ∈ X for t ∈ (−T ,T ) with finite T > 0 and the solution
map u0 7→ u(t, ·) is continuous.

The Cauchy problem is globally well-posed if T can be arbitrarily large.

The proof relies usually on the integral form obtained by Duhamel’s
formula:

u = U(t)u0 + i

∫ t

0
U(t − s)N(u(s))ds, U(t)u0 := F−1(e−i |ξ|2t û0).
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Fixed-point argument: Define the mapM on some Banach space X

Mu := U(t)u0 +

∫ t

0
U(t − s)N(u(s))ds.

We need to prove for some ‖u0‖X -dependent T > 0 that
(a)M maps L∞((−T ,T ),X0) to itself, where X0 is a closed subset of X
(b)M is a contraction in L∞((−T ,T ),X0).
Then, local well-posedness holds with the solution u ∈ L∞((−T ,T ),X ).
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Fixed-point argument: Define the mapM on some Banach space X

Mu := U(t)u0 +

∫ t

0
U(t − s)N(u(s))ds.

We need to prove for some ‖u0‖X -dependent T > 0 that
(a)M maps L∞((−T ,T ),X0) to itself, where X0 is a closed subset of X
(b)M is a contraction in L∞((−T ,T ),X0).
Then, local well-posedness holds with the solution u ∈ L∞((−T ,T ),X ).

Continuation argument by energy:
If there exists a time-independent quantity E (u), defined for u(t, ·) ∈ X

and t ∈ (−T ,T ), such that

‖u(t, ·)‖X ≤ C (E (u)) = C (E (u0)),

then the norm of u in X is bounded by a t-independent constant.
Repeating fixed-point arguments k times, we extend solutions for
t ∈ (−kT ∗ − T ,T + kT ∗). This implies global well-posedness.
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Global well-posedness of the DNLS equation
For the Cauchy problem related to the derivative NLS equation

{
iut + uxx + i(|u|2u)x = 0, t > 0,
u|t=0 = u0 ∈ X = Hs(R),

Tsutsumi & Fukuda (1980) established local well-posedness in Hs

with s > 3
2 and extended solutions globally in H2 for small data in H1

Hayashi (1993) used gauge transformation of DNLS to a system of
semi-linear NLS and established local and global well-posedness in H1

under the condition ‖u0‖L2 <
√
2π.

Takaoka (1999) proved local well-posedness in Hs with s ≥ 1
2 by

using Fourier restriction method.

Global existence was proved in Hs for s > 32
33 (Takaoka, 2001),

s > 1
2 (Colliander et al, 2002), and s = 1

2 (Mio-Wu-Xu, 2011),

under the same constraint ‖u0‖L2 <
√
2π.
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Why constraint ‖u0‖L2 <
√
2π?

First three conserved quantities of the DNLS equation:

I0 =

∫

R

|u|2dx ,

I1 = i

∫

R

(ūux − uūx)dx −
∫

R

|u|4dx ,

I2 =

∫

R

|ux |2dx +
3i

4

∫

R

|u|2(uūx − ux ū)dx +
1

2

∫

R

|u|6dx .

By the gauge transformation u = ve−
3i
4

∫ x

−∞
|v(y)|2dy and the

Gagliardo–Nirenberg inequality ‖f ‖6
L6
≤ 4

π2‖f ‖4L2‖fx‖2L2 ,

I2 = ‖vx‖2L2 −
1

16
‖v‖6L6 ≥

(
1− 1

4π2
‖v‖4L2

)
‖vx‖2L2 .

Hence, we must require 1− 1
4π2 ‖v‖4L2 > 0.
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Open question:

Is ‖u0‖L2 <
√
2π optimal? Is there a blowup in a finite time for large data?

Analogy is the quintic NLS equation

{
iut + uxx + |u|4u = 0, t > 0,
u|t=0 = u0 ∈ X = H1(R),

There is a finite C0 such that the solution is global if ‖u0‖L2 < C0 and
blowup in a finite time if ‖u0‖L2 > C0.
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Open question:

Is ‖u0‖L2 <
√
2π optimal? Is there a blowup in a finite time for large data?

Analogy is the quintic NLS equation

{
iut + uxx + |u|4u = 0, t > 0,
u|t=0 = u0 ∈ X = H1(R),

There is a finite C0 such that the solution is global if ‖u0‖L2 < C0 and
blowup in a finite time if ‖u0‖L2 > C0.

The answer to the open question may be NO!

Colin-Ohta (2006) proved orbital stability of solitons, for which
‖u0‖L2 may exceed

√
2π.

Wu (2014) shows global well-posedness in H1 with ‖u0‖L2 < 2
√
π.

Liu-Simpson-Sulem (2013) found no blowup in numerical studies of
the Cauchy problem.
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Why inverse scattering transform?

Because it is a nonlinear Fourier transform which requires no use of energy.

The linear case iut + uxx = 0:
The Fourier transform F : L2(R)→ L2(R) is bijective and

u(x , t) = F−1(F(u0)e itξ
2
), u0 ∈ L2(R), t ∈ R.

Moreover, F : Hs(R) ∩ L2,s(R)→ Hs(R) ∩ L2,s(R) is also bijective.

The nonlinear case:

Bijectivity of the inverse scattering was studied by Deift–Zhou (1998,2003)
for focusing/defocusing cubic NLS equation and modified KdV equation.
All works on derivative NLS were formal so far, including Lee (1989),
Kitaev-Vartanian (1997), Xu-Fan (2012).
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Main result
Recall the Kaup-Newel spectral problem for derivative NLS:

(KN) ∂xψ =
[
−iλ2σ3 + λQ(u)

]
ψ, ψ ∈ C

2.

Theorem (P-S, 2015)

For every u0 ∈ H2(R) ∩ L2,2(R) such that (KN) admits no eigenvalues or
resonances, there exists a unique global solution u(t, ·) ∈ H2(R) ∩ L2,2(R)
of the Cauchy problem for every t ∈ R. Furthermore, the map

H2(R) ∩ L2,2(R) 3 u0 7→ u ∈ C (R,H2(R) ∩ L2,2(R))

is Lipschitz.

Eigenvalues of (KN) are related to solitons, excluded for simplification.

Resonances of (KN) are non-generic and require special study.

A parallel ongoing work is by Liu-Perry-Sulem (2015).
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Direct scattering problem
Kaup-Newel spectral problem for derivative NLS:

∂xψ = (−iλ2σ3 + λQ(u))ψ, Q(u) =

[
0 u

−u 0

]

Jost functions with asymptotical values from the case Q(u) ≡ 0:

Ψ±(x ;λ)→ e−iλ2xσ3 as x → ±∞.

They are bounded for every λ2 ∈ R.
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Direct scattering problem
Kaup-Newel spectral problem for derivative NLS:

∂xψ = (−iλ2σ3 + λQ(u))ψ, Q(u) =

[
0 u

−u 0

]

Jost functions with asymptotical values from the case Q(u) ≡ 0:

Ψ±(x ;λ)→ e−iλ2xσ3 as x → ±∞.

They are bounded for every λ2 ∈ R.

Jost functions in Ψ± := e−iλ2xσ3 [ϕ±, φ±] satisfy Volterra’s equations

ϕ±(x ;λ) = e1 + λ

∫ x

±∞

[
1 0

0 e2iλ
2(x−y)

]
Q(u(y))ϕ±(y ;λ)dy ,

φ±(x ;λ) = e2 + λ

∫ x

±∞

[
e−2iλ2(x−y) 0

0 1

]
Q(u(y))φ±(y ;λ)dy .

Fixed point arguments are not uniform in λ as |λ| → ∞ if Q(u) ∈ L1(R).
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The way around this obstacle
Introduce transformations m± := T1ϕ± and n± := T2φ±, where

T1(x ;λ) =

[
1 0

−u(x) 2iλ

]
, T2(x ;λ) =

[
2iλ −u(x)
0 1

]
,

Then, Volterra’s equations become

m±(x ; z) = e1 +

∫ x

±∞

[
1 0

0 e2iz(x−y)

]
Q1(u(y))m±(y ; z)dy ,

n±(x ; z) = e2 +

∫ x

±∞

[
e−2iz(x−y) 0

0 1

]
Q2(u(y))n±(y ; z)dy ,

where z := λ2 and

Q1(u) =
1

2i

[
|u|2 u

−2iux − u|u|2 −|u|2
]
, Q2(u) =

1

2i

[
|u|2 −2iux + u|u|2
−u −|u|2

]
.

Instead of one Kaup-Newell spectral problem,
we have two Zakharov-Shabat-type spectral problems!
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Choice of spaces

From the condition Q1,2(u) ∈ L1(R), where

Q1(u) =
1

2i

[
|u|2 u

−2iux − u|u|2 −|u|2
]
, Q2(u) =

1

2i

[
|u|2 −2iux + u|u|2
−u −|u|2

]
,

we realize that u ∈ L1(R) ∩ L3(R) and ∂xu ∈ L1(R) is the best choice for
the potential u. With u ∈ L∞(R), it only gets better!

There exist unique L∞ solutions m±(·; z) for every z ∈ R.

For every x ∈ R, m∓(x ; ·), n±(x ; ·) are continued analytically in C
±.

Limits of m∓(x ; z), n±(x ; z) as |z | → ∞ are defined in C
±.
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Choice of spaces

From the condition Q1,2(u) ∈ L1(R), where

Q1(u) =
1

2i

[
|u|2 u

−2iux − u|u|2 −|u|2
]
, Q2(u) =

1

2i

[
|u|2 −2iux + u|u|2
−u −|u|2

]
,

we realize that u ∈ L1(R) ∩ L3(R) and ∂xu ∈ L1(R) is the best choice for
the potential u. With u ∈ L∞(R), it only gets better!

There exist unique L∞ solutions m±(·; z) for every z ∈ R.

For every x ∈ R, m∓(x ; ·), n±(x ; ·) are continued analytically in C
±.

Limits of m∓(x ; z), n±(x ; z) as |z | → ∞ are defined in C
±.

To use Fourier theory, it is better to work in H1,1(R) with u, ∂xu ∈ L2,1(R).
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Summary on Jost functions

Assume u0 ∈ H1,1(R) for initial data of DNLS.

m−, n+ analytic in C
+

m+, n− analytic in C
+

Im(z)

Re(z)

ϕ−, φ+ϕ+, φ−

Im(λ)

Re(λ)

z := λ2
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Spectral data
From basic ODE theory, it follows that each Jost function is spanned by
the two others:

[
ϕ−(x ;λ)
φ−(x ;λ)

]
=

[
a(λ) b(λ)e2iλ

2x

−b(λ̄)e−2iλ2x a(λ̄)

][
ϕ+(x ;λ)
φ+(x ;λ)

]
,

where the scattering coefficients are x-independent from Wronskian
determinants:

a(λ) = W (ϕ−, φ+), b(λ) = e−2iλ2xW (ϕ+, ϕ−).
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Spectral data
From basic ODE theory, it follows that each Jost function is spanned by
the two others:

[
ϕ−(x ;λ)
φ−(x ;λ)

]
=

[
a(λ) b(λ)e2iλ

2x

−b(λ̄)e−2iλ2x a(λ̄)

][
ϕ+(x ;λ)
φ+(x ;λ)

]
,

where the scattering coefficients are x-independent from Wronskian
determinants:

a(λ) = W (ϕ−, φ+), b(λ) = e−2iλ2xW (ϕ+, ϕ−).

a is continued analytically in C
+ for z := λ2

a converges to a limit a∞ as |z | → ∞
a − a∞, λb(λ), and λ−1b(λ) are H1(R) w.r.t. z .

What do our assumptions give?
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Spectral data
From basic ODE theory, it follows that each Jost function is spanned by
the two others:

[
ϕ−(x ;λ)
φ−(x ;λ)

]
=

[
a(λ) b(λ)e2iλ

2x

−b(λ̄)e−2iλ2x a(λ̄)

][
ϕ+(x ;λ)
φ+(x ;λ)

]
,

where the scattering coefficients are x-independent from Wronskian
determinants:

a(λ) = W (ϕ−, φ+), b(λ) = e−2iλ2xW (ϕ+, ϕ−).

a is continued analytically in C
+ for z := λ2

a converges to a limit a∞ as |z | → ∞
a − a∞, λb(λ), and λ−1b(λ) are H1(R) w.r.t. z .

What do our assumptions give?

No eigenvalues in (KN): a(λ) 6= 0 for every λ2 ∈ C
+.

No resonances in (KN): a(λ) 6= 0 for every λ2 ∈ R.
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Time evolution of spectral data
Since a − a∞, λb(λ), and λ−1b(λ) are H1(R) w.r.t. z , and a does not
vanish on R, we define the spectral data by

r+(z) := −
b(λ)

2iλa(λ)
, r−(z) :=

2iλb(λ)

a(λ)
,

so that r±(z) ∈ H1(R).
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Time evolution of spectral data
Since a − a∞, λb(λ), and λ−1b(λ) are H1(R) w.r.t. z , and a does not
vanish on R, we define the spectral data by

r+(z) := −
b(λ)

2iλa(λ)
, r−(z) :=

2iλb(λ)

a(λ)
,

so that r±(z) ∈ H1(R).

Time evolution is found from the Lax system of linear equations:

r±(z , t) = r±(z , 0)e
4iz2t ,

since the Cauchy problem for derivative NLS equation is locally well-posed.
However, if r±(z , 0) ∈ H1(R), then r±(z , t) /∈ H1(R), because

∂z r±(z , t) = [∂z r±(z , 0) + 8itzr±(z , 0)] e
4iz2t .
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Time evolution of spectral data
Since a − a∞, λb(λ), and λ−1b(λ) are H1(R) w.r.t. z , and a does not
vanish on R, we define the spectral data by

r+(z) := −
b(λ)

2iλa(λ)
, r−(z) :=

2iλb(λ)

a(λ)
,

so that r±(z) ∈ H1(R).

Time evolution is found from the Lax system of linear equations:

r±(z , t) = r±(z , 0)e
4iz2t ,

since the Cauchy problem for derivative NLS equation is locally well-posed.
However, if r±(z , 0) ∈ H1(R), then r±(z , t) /∈ H1(R), because

∂z r±(z , t) = [∂z r±(z , 0) + 8itzr±(z , 0)] e
4iz2t .

The way around is to require u0 ∈ H2(R) ∩ L2,2(R),
which result in r± ∈ H1(R) ∩ L2,1(R).
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Inverse scattering transform
The scattering relations

[
ϕ−(x ;λ)
φ−(x ;λ)

]
=

[
a(λ) b(λ)e2iλ

2x

−b(λ̄)e−2iλ2x a(λ̄)

][
ϕ+(x ;λ)
φ+(x ;λ)

]
,

can be written as the Riemann–Hilbert problem in the λ complex plane

Φ+(x ;λ) − Φ−(x ;λ) = Φ−(x ;λ)S(x ;λ),

where

Φ+(x ;λ) :=

[
ϕ−(x ;λ)

a(λ)
, φ+(x ;λ)

]
, Φ−(x ;λ) :=

[
ϕ+(x ;λ),

φ−(x ;λ)

ā(λ)

]
.

are analytically continued in the upper and lower half plane of z := λ2

with the jump on the line z ∈ R and the limits as |z | → ∞:

Φ±(x ;λ)→ Φ∞(x) :=
[
e

1
2i

∫ x

+∞
|u(y)|2dy e1, e−

1
2i

∫ x

+∞
|u(y)|2dye2

]
.
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Interesting facts about the jump matrix
The jump matrix in the Riemann–Hilbert problem:

S(x ;λ) :=

[
r(λ)r(λ̄) r(λ̄)e−2iλ2x

r(λ)e2iλ
2x 0

]
.

For λ ∈ R, the matrix is Hermitian:

S(x ;λ) :=

[
|r(λ)|2 r(λ)e−2iλ2x

r(λ)e2iλ
2x 0

]
.

For λ ∈ iR, the matrix is not Hermitian but 1− |r(λ)|2 > 0:

S(x ;λ) :=

[
−|r(λ)|2 −r(λ)e−2iλ2x

r(λ)e2iλ
2x 0

]
.

In both cases, I + S(x ;λ) defines a positive quadratic form.

Under these conditions, the Riemann–Hilbert problem has a unique
solution in L2(R) (Zhou, 1989).
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Going back to the solution u(x , t)

Reformulation of the Riemann–Hilbert problem in z complex plane
with the jump on the real axis:

P+(x ; z)−P
−
(x ; z) = P

−
(x ; z)R(x ; z), R :=

[
r+(z)r−(z) r+(z)e

−2izx

r
−
(z)e2izx 0

]
,

where

P+(x ; z) =

[
m−(x ; z)

a(z)
, p+(x ; z)

]
, P−(x ; z) =

[
m+(x ; z),

p−(x ; z)

a(z)

]
.
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Going back to the solution u(x , t)

Reformulation of the Riemann–Hilbert problem in z complex plane
with the jump on the real axis:

P+(x ; z)−P
−
(x ; z) = P

−
(x ; z)R(x ; z), R :=

[
r+(z)r−(z) r+(z)e

−2izx

r
−
(z)e2izx 0

]
,

where

P+(x ; z) =

[
m−(x ; z)

a(z)
, p+(x ; z)

]
, P−(x ; z) =

[
m+(x ; z),

p−(x ; z)

a(z)

]
.

Reconstruction formulas:

∂x

(
ū(x)e

1
2i

∫ x

±∞
|u(y)|2dy

)
= 2i lim

|z |→∞
zm

(2)
± (x ; z)

and
u(x)e−

1
2i

∫ x

±∞
|u(y)|2dy = −4 lim

|z |→∞
zp

(1)
± (x ; z).
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Going back to the solution u(x , t)

Reformulation of the Riemann–Hilbert problem in z complex plane
with the jump on the real axis:

P+(x ; z)−P
−
(x ; z) = P

−
(x ; z)R(x ; z), R :=

[
r+(z)r−(z) r+(z)e

−2izx

r
−
(z)e2izx 0

]
,

where

P+(x ; z) =

[
m−(x ; z)

a(z)
, p+(x ; z)

]
, P−(x ; z) =

[
m+(x ; z),

p−(x ; z)

a(z)

]
.

Reconstruction formulas:

∂x

(
ū(x)e

1
2i

∫ x

±∞
|u(y)|2dy

)
= 2i lim

|z |→∞
zm

(2)
± (x ; z)

and
u(x)e−

1
2i

∫ x

±∞
|u(y)|2dy = −4 lim

|z |→∞
zp

(1)
± (x ; z).

The rest is estimates, estimates, and more estimates ...
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What other problems can we study with inverse scattering?

For solitary wave solutions, we can study

spectral stability

orbital stability

asymptotic stability

long-time asymptotics
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What other problems can we study with inverse scattering?

For solitary wave solutions, we can study

spectral stability

orbital stability

asymptotic stability

long-time asymptotics

The rest of the talk is concerned with orbital stability of solitons in the
massive Thirring model (MTM)





i(ut + ux) + v = u|v |2, t > 0,
i(vt − vx) + u = v |u|2,
(u, v)|t=0 = (u0, v0).

Dmitry Pelinovsky and Yusuke Shimabukuro ( Department of Mathematics, McMaster University, Hamilton, Canada )Well-posedness and stability in the integrable systemsPittsburgh, November 2015 21 / 30



Definition of orbital stability

A family of the stationary MTM solitons is known

{
uω(x , t) = iα sech

[
αx − i

γ
2

]
e−iωt ,

vω(x , t) = −iα sech
[
αx + i γ2

]
e−iωt ,

where α = sin(γ), ω = cos(γ) with γ ∈ (0, π).

Definition

A soliton solution uω(t, x) is said to be orbitally stable in X if for any
ε > 0 there is a δ > 0 such that if ‖u(0, ·) − uω(0, ·)‖X < δ then

inf
θ,x0∈R

‖u(t, ·)− e iθuω(t, ·+ x0)‖X < ε

for all t ∈ R+.

Notations: u ≡ (u, v), ‖u‖X ≡ ‖u‖X + ‖v‖X for some Hilbert space X .
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Why the massive Thirring model (MTM)?

The energy functional is sign-indefinite near (0, 0):

E (u, v) =
i

2

∫

R

(uūx − ux ū − v v̄x + vx v̄) dx+

∫

R

(
−v ū − uv̄ + 2|u|2|v |2

)
dx .

No literature on orbital stability result for a class of nonlinear Dirac
equations, except for the MTM with several recent results:

L2 global well-posedness (Candy, 2011).

orbital stability of solitons for H1 solution (P-S, 2014)

I by finding a Lyapunov functional from a higher-order conserved energy

orbital stability of solitons for L2 solution (Contreras-P-S, 2015)
I by using the auto-Bäcklund transformation between solutions
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Orbital stability via Bäcklund transformation

The (auto) Bäcklund transformation is a black box that takes a solution of
the equation to a new solution of the same equation.

Let the Bäcklund transform B be the map that takes (u, v) of the MTM
to (ũ, ṽ) of the MTM,

B : (u, v) 7→ (ũ, ṽ),

In particular, the Bäcklund transformation relates zero ↔ one soliton:

(0, 0)
B←→ (uω, vω)

Heuristic stability argument by Bäcklund transform

B : stable small solution←→ solution around stable one soliton.

–Merle-Vega-2003 (KdV solitons)
–Mizumachi-P-2012 (NLS solitons)
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Lax operators for the MTM

The MTM is obtained from the compatibility condition of the linear system

~φx = L~φ and ~φt = A~φ,

where

L =
i

2
(|v |2 − |u|2)σ3 −

iλ√
2

(
0 v

v 0

)
− i√

2λ

(
0 u

u 0

)
+

i

4

(
1

λ2
− λ2

)
σ3

and

A = − i

4
(|u|2 + |v |2)σ3 −

iλ

2

(
0 v

v 0

)
− i

2λ

(
0 u

u 0

)
+

i

4

(
λ2 +

1

λ2

)
σ3

References:

Kaup–Newell (1977); Kuznetsov–Mikhailov (1977).
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Bäcklund transformation for the MTM

Let (u, v) be a C 1 solution of the MTM system.

Let ~φ = (φ1, φ2)
t be a C 2 nonzero solution of the linear system

associated with (u, v) and λ = e iγ/2.

A new C 1 solution of the MTM system is given by

ũ = −u e
−iγ/2|φ1|2 + e iγ/2|φ2|2

e iγ/2|φ1|2 + e−iγ/2|φ2|2
+

2i sin γφ1φ2
e iγ/2|φ1|2 + e−iγ/2|φ2|2

ṽ = −v e
iγ/2|φ1|2 + e−iγ/2|φ2|2

e−iγ/2|φ1|2 + e iγ/2|φ2|2
− 2i sin γφ1φ2

e−iγ/2|φ1|2 + e iγ/2|φ2|2
,

A new C 2 nonzero solution ~ψ = (ψ1, ψ2)
t of the linear system associated

with (ũ, ṽ) and same λ is given by

ψ1 =
φ2

|e iγ/2|φ1|2 + e−iγ/2|φ2|2|
, ψ2 =

φ1
|e iγ/2|φ1|2 + e−iγ/2|φ2|2|

.
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Orbital stability of MTM solitons in L
2

Well-posedness (Candy, 2011): For any (u0, v0) ∈ L2(R), there exists a
global solution of the MTM (u, v) ∈ C (R, L2(R)):

‖u(·, t)‖2L2 + ‖v(·, t)‖2L2 = ‖u0‖2L2 + ‖v0‖2L2 .
Moreover, the solution is unique in a subspace of C (R, L2(R)) and
depends continuously on initial data.

Theorem

Let (u, v) ∈ C (R; L2(R)) be a solution of the MTM system and λ0 be a

complex non-zero number. There exist a real positive constant ε such that

if the initial value (u0, v0) ∈ L2(R) satisfies

‖u0 − uλ0
(·, 0)‖L2 + ‖v0 − vλ0

(·, 0)‖L2 ≤ ε,

then for every t ∈ R, there exists λ ∈ C such that |λ− λ0| ≤ Cε,

inf
a,θ∈R

(‖u(· + a, t)− e−iθuλ(·, t)‖L2 + ‖v(·+ a, t)− e−iθvλ(·, t)‖L2) ≤ Cε,

where the constant C is independent of ε and t.
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Steps in the proof of the stability result
Fix γ ∈ (0, π) for a soliton uω. Take initial data u0 ∈ H2(R) s.t.
‖u0 − uω‖L2 < ε for ε > 0 sufficiently small.
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Steps in the proof of the stability result
Fix γ ∈ (0, π) for a soliton uω. Take initial data u0 ∈ H2(R) s.t.
‖u0 − uω‖L2 < ε for ε > 0 sufficiently small.

Step 1: From a perturbed one-soliton to a small solution at t = 0:

There exists λ0 ∈ C and the corresponding L2-solution ~φ of
∂x ~φ = L(u0;λ0)~φ such that |λ0 − e iγ/2| . ε. Then, Bäcklund
transformation

B−1 : (u0;φ, λ0) 7→ ũ0

yields the estimate

‖ũ0‖L2 . ‖u0 − uω(0, ·)‖L2 .
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Steps in the proof of the stability result
Fix γ ∈ (0, π) for a soliton uω. Take initial data u0 ∈ H2(R) s.t.
‖u0 − uω‖L2 < ε for ε > 0 sufficiently small.

Step 1: From a perturbed one-soliton to a small solution at t = 0:

There exists λ0 ∈ C and the corresponding L2-solution ~φ of
∂x ~φ = L(u0;λ0)~φ such that |λ0 − e iγ/2| . ε. Then, Bäcklund
transformation

B−1 : (u0;φ, λ0) 7→ ũ0

yields the estimate

‖ũ0‖L2 . ‖u0 − uω(0, ·)‖L2 .

Step 2: Time evolution of the small solution in H2(R) ⊂ L2(R).

Dmitry Pelinovsky and Yusuke Shimabukuro ( Department of Mathematics, McMaster University, Hamilton, Canada )Well-posedness and stability in the integrable systemsPittsburgh, November 2015 28 / 30



Steps in the proof of the stability result

Step 3: From the small solution to the perturbed one-soliton:

The Bäcklund transformation

u(t, ·) = B+1(ũ(t, ·)) ∈ H2(R), ∀t ∈ R

yields the estimate

inf
a,θ∈R

‖u(t, ·) − e−iθuω(t, ·+ a)‖L2x . ‖ũ(t, ·)‖L2 ∀t ∈ R.
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Steps in the proof of the stability result

Step 3: From the small solution to the perturbed one-soliton:

The Bäcklund transformation

u(t, ·) = B+1(ũ(t, ·)) ∈ H2(R), ∀t ∈ R

yields the estimate

inf
a,θ∈R

‖u(t, ·) − e−iθuω(t, ·+ a)‖L2x . ‖ũ(t, ·)‖L2 ∀t ∈ R.

Step 4: Approximation arguments in H2(R) as all three steps are
performed in L2(R).

Sequences in H2(R) produce classical solutions (u, v) of the MTM, which
are compatible with the Lax linear system for ~φ ∈ C 2(R× R),

~φx = L(u, v , λ)~φ and ~φt = A(u, v , λ)~φ.
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Thank you!!!
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