Periodic Travelling Waves in Diatomic Granular Chains

Matthew Betti, <u>Dmitry Pelinovsky</u> Department of Mathematics, McMaster University

Lattice and Nonlocal Dynamical Systems and Applications IMA Minneapolis, December 6, 2012

Introduction

- Granular crystal chains are chains of densely packed, elastically interacting particles.
- Recent work focuses on periodic travelling waves in granular chains; said to be more relevant to physical experiments.
- Periodic travelling waves in homogeneous granular chains (monomers) were approximated numerically
 - Yu. Starosvetsky and A.F. Vakakis, Urbana-Champneys
 - G. James, Grenoble
- Our work focuses on the periodic travelling waves in chains of beads of alternating masses (dimers).

Experimental setups (CalTECH)

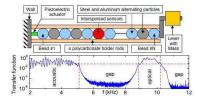


Figure : N. Boechler, G. Theocharis, S. Job, P.G. Kevrekidis, M.A. Porter, and C. Daraio, PRL 104, 244302 (2010)

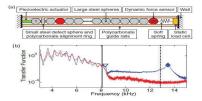
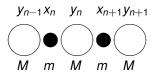


Figure : Y. Man, N. Boechler, G. Theocharis, P.G. Kevrekidis, and C. Daraio, Phys. Rev. E **85**, 037601 (2012)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

The Dimer Model



Newton's equations define the FPU (Fermi-Pasta-Ulam) lattice:

$$\begin{cases} m\ddot{x}_n = V'(y_n - x_n) - V'(x_n - y_{n-1}), \\ M\ddot{y}_n = V'(x_{n+1} - y_n) - V'(y_n - x_n), \end{cases} \quad n \in \mathbb{Z}, \end{cases}$$

where the interaction potential for spherical beads is

$$V(x) = \frac{1}{1+\alpha} |x|^{1+\alpha} H(-x), \quad \alpha = \frac{3}{2}$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

and H is the step (Heaviside) function.

H. Hertz, J. Reine Angewandte Mathematik, 92 (1882), 156

Small mass ratio

To study small mass ratios $\varepsilon^2 = \frac{m}{M}$, we make the substitutions:

$$n \in \mathbb{Z}$$
: $x_n(t) = u_{2n-1}(\tau)$, $y_n(t) = \varepsilon w_{2n}(\tau)$, $t = \sqrt{m\tau}$

The FPU lattice is transformed into the equivalent form:

$$\begin{cases} \ddot{u}_{2n-1} = V'(\varepsilon w_{2n} - u_{2n-1}) - V'(u_{2n-1} - \varepsilon w_{2n-2}), \\ \ddot{w}_{2n} = \varepsilon V'(u_{2n+1} - \varepsilon w_{2n}) - \varepsilon V'(\varepsilon w_{2n} - u_{2n-1}), \end{cases} \quad n \in \mathbb{Z}.$$

The anti-continuum limit corresponds formally $\varepsilon = 0$:

$$\begin{cases} \ddot{u}_{2n-1} = V'(-u_{2n-1}) - V'(u_{2n-1}) = -|u_{2n-1}|^{\alpha-1}u_{2n-1}, \\ \ddot{w}_{2n} = 0. \end{cases}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

K. Yoshimura, Nonlinearity 24 (2011), 293.

Periodic travelling waves

Periodicity conditions:

$$u_{2n-1}(\tau)=u_{2n-1}(\tau+2\pi), \quad w_{2n}(\tau)=w_{2n}(\tau+2\pi), \quad \tau\in\mathbb{R}, \quad n\in\mathbb{Z}.$$

Travelling wave conditions:

$$u_{2n+1}(\tau) = u_{2n-1}(\tau+2q), \quad w_{2n+2}(\tau) = w_{2n}(\tau+2q), \quad \tau \in \mathbb{R}, \quad n \in \mathbb{Z},$$

where $q \in [0, \pi]$ is a free parameter.

Equivalent form for periodic travelling waves:

$$u_{2n-1}(\tau) = u_*(\tau+2qn), \quad w_{2n}(\tau) = w_*(\tau+2qn), \quad \tau \in \mathbb{R}, \quad n \in \mathbb{Z},$$

where u_* and w_* are 2π -periodic functions.

The Monomer Model

In the limit of equal mass ratio, $\varepsilon = 1$ we apply the reduction:

$$n \in \mathbb{Z}$$
: $u_{2n-1}(\tau) = U_{2n-1}(\tau), \quad w_{2n}(\tau) = U_{2n}(\tau).$

This substitution, reduces the dimer system to the monomer system:

$$\ddot{U}_n=V'(U_{n+1}-U_n)-V'(U_n-U_{n-1}),\quad n\in\mathbb{Z}.$$

G. James, J. Nonlinear Science 22 (2012).

Remark: Travelling waves of the dimer model with $\varepsilon = 1$ do not have to obey the reductions to the monomer model.

Differential Advance-Delay Equation

Expressing the travelling waves as:

$$u_{2n-1}(\tau) = u_*(\tau+2qn), \quad w_{2n}(\tau) = w_*(\tau+2qn), \quad \tau \in \mathbb{R}, \quad n \in \mathbb{Z}.$$

we obtain the differential advance-delay equations for (u_*, w_*) :

$$\begin{cases} \ddot{u}_*(\tau) = V'(\varepsilon w_*(\tau) - u_*(\tau)) - V'(u_*(\tau) - \varepsilon w_*(\tau - 2q)), \\ \ddot{w}_*(\tau) = \varepsilon V'(u_*(\tau + 2q) - \varepsilon w_*(\tau)) - \varepsilon V'(\varepsilon w_*(\tau) - u_*(\tau)), \end{cases} \quad \tau \in \mathbb{R}.$$

Remark: For particular values $q = \frac{\pi m}{N}$ with $1 \le m \le N$, the differential advance-delay equation is equivalently represented by the system of 2mN second-order differential equations closed subject to the periodic boundary conditions.

Anti-continuum Limit

Let ϕ be a solution of the nonlinear oscillator equation,

$$\ddot{\phi} = V'(-\phi) - V'(\phi) \quad \rightarrow \quad \ddot{\phi} + |\phi|^{\alpha-1}\phi = 0.$$

For a unique 2π -periodic solution we set:

$$\phi(0)=0,\quad \dot{\phi}(0)>0$$

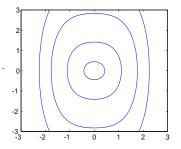


Figure : Phase portrait of the nonlinear oscillator in the $(\phi, \dot{\phi})$ -plane.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Special Solutions

For $\varepsilon = 0$, we can construct a limiting solution to the differential advance-delay equations:

$$\mathfrak{e} = \mathsf{0}: \quad u_*(\tau) = \phi(\tau), \quad w_*(\tau) = \mathsf{0}, \quad \tau \in \mathbb{R},$$

Two solutions are known exactly for all $\epsilon \ge 0$:

$$q=rac{\pi}{2}:$$
 $u_*(\tau)=\phi(\tau),$ $w_*(\tau)=0$

and

$$q=\pi:$$
 $u_*(\tau)=rac{\phi(au)}{(1+arepsilon^2)^3},$ $w_*(au)=rac{-arepsilon\phi(au)}{(1+arepsilon^2)^3}.$

Goals are to consider persistence and stability of the limiting solutions in ε for any fixed $q \in [0, \pi]$.

Symmetries and Spaces

If $\{u_{2n-1}(\tau), w_{2n}(\tau)\}_{n \in \mathbb{Z}}$ is a solution, then

- {u_{2n-1}(τ+c), w_{2n}(τ+c)}_{n∈ℤ} is a solution for any c∈ ℝ because of the translational invariance
- {u_{2n-1}(τ) + cε, w_{2n}(τ) + c}_{n∈Z} is a solution for any c∈ ℝ because of the symmetry w.r.t. the change of coordinates.

For persistence analysis based on the Implicit Function Theorem, we shall work in the following spaces for u and w:

$$\mathcal{H}^2_u = \left\{ u \in \mathcal{H}^2_{\mathrm{per}}(0, 2\pi) : \quad u(-\tau) = -u(\tau), \ \tau \in \mathbb{R} \right\},$$

and

$$H^2_w=\left\{w\in H^2_{\mathrm{per}}(0,2\pi): \quad w(\tau)=-w(-\tau-2q)
ight\},$$

Theorem 1

Fix $q \in [0, \pi]$. There is a unique C^1 continuation of 2π -periodic travelling wave in ε . In other words, there is an $\varepsilon_0 > 0$ such that for all $\varepsilon \in (0, \varepsilon_0)$ there exist a positive constant C and a unique solution $(u_*, w_*) \in H^2_u \times H^2_w$ of the system of differential advance-delay equations (13) such that

$$\|u_*-\phi\|_{H^2_{\text{per}}} \leq C\epsilon^2, \quad \|w_*\|_{H^2_{\text{per}}} \leq C\epsilon.$$

Theorem 1

Fix $q \in [0,\pi]$. There is a unique C^1 continuation of 2π -periodic travelling wave in ε . In other words, there is an $\varepsilon_0 > 0$ such that for all $\varepsilon \in (0, \varepsilon_0)$ there exist a positive constant C and a unique solution $(u_*, w_*) \in H^2_u \times H^2_w$ of the system of differential advance-delay equations (13) such that

$$\|u_*-\phi\|_{H^2_{\mathrm{per}}} \leq C\epsilon^2, \quad \|w_*\|_{H^2_{\mathrm{per}}} \leq C\epsilon.$$

Remark: By Theorem 1, the continuation of exact solutions is unique for small values of ε :

$$q=\frac{\pi}{2}:\quad u_*(\tau)=\phi(\tau),\quad w_*(\tau)=0$$

and

$$q=\pi:$$
 $u_*(\tau)=rac{\phi(au)}{(1+arepsilon^2)^3},$ $w_*(au)=rac{-arepsilon\phi(au)}{(1+arepsilon^2)^3}.$

However, other solutions may coexist for large values of ε .

Formal expansion

Differential advance-delay equations:

$$\left(egin{array}{ll} \ddot{u}_*(au)=V'(arepsilon w_*(au)-u_*(au))-V'(u_*(au)-arepsilon w_*(au-2q)),\ \ddot{w}_*(au)=arepsilon V'(u_*(au+2q)-arepsilon w_*(au))-arepsilon V'(arepsilon w_*(au)-u_*(au)), \end{array}
ight.$$

If we expand solutions into the perturbation series

$$u_* = \phi + \varepsilon^2 u_*^{(2)} + o(\varepsilon^2), \quad w_* = \varepsilon w_*^{(1)} + o(\varepsilon^2),$$

we can get nice equations for the first corrections

$$\ddot{w}^{(1)}_{*}(\tau) = V'(\phi(\tau+2q)) - V'(-\phi(\tau))$$

and

$$\ddot{u}_{*}^{(2)}(\tau) + \alpha |\phi(\tau)|^{\alpha-1} u_{*}^{(2)}(\tau) = V''(-\phi(\tau)) w_{*}^{(1)}(\tau) + V''(\phi(\tau)) w_{*}^{(1)}(\tau-2q),$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

but will run into problem of continuation of the perturbation expansions.

Nevertheless, we can solve the linearized inhomogeneous equations

$$\left(\frac{d^2}{d\tau^2} + \alpha |\varphi|^{\alpha-1}\right) u_*^{(2)} = F_u^{(2)}, \quad \frac{d^2}{d\tau^2} w_*^{(1)} = F_w^{(1)}$$

if

$$F_u^{(2)} \in L_u^2 = \left\{ u \in L_{per}^2(0, 2\pi) : \quad u(-\tau) = -u(\tau), \ \tau \in \mathbb{R} \right\},$$

and

$$F_w^{(1)} \in L^2_w = \left\{ w \in L^2_{\text{per}}(0, 2\pi) : \quad w(\tau) = -w(-\tau - 2q) \right\},$$

Under these conditions

$$F_u^{(2)} \perp \operatorname{Ker}(L_u) = \operatorname{span}(\dot{\varphi}), \quad F_w^{(1)} \perp \operatorname{Ker}(L_w) = \operatorname{span}(1).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

Proof

To apply the Implicit Function Theorem, we rewrite the existence problem as the root-finding problem for the nonlinear operators:

$$\begin{cases} f_u(u,w,\varepsilon) := \frac{d^2 u}{d\tau^2} - F_u(u,w,\varepsilon), \\ f_w(u,w,\varepsilon) := \frac{d^2 w}{d\tau^2} - F_w(u,w,\varepsilon). \end{cases}$$

where

$$\begin{cases} F_u(u(\tau), w(\tau), \varepsilon) := V'(\varepsilon w(\tau) - u(\tau)) - V'(u(\tau) - \varepsilon w(\tau - 2q)), \\ F_w(u(\tau), w(\tau), \varepsilon) := \varepsilon V'(u(\tau + 2q) - \varepsilon w(\tau)) - \varepsilon V'(\varepsilon w(\tau) - u(\tau)), \end{cases}$$

• f_u and f_w are C^1 maps from $H_u^2 \times H_w^2 \times \mathbb{R}$ to $L_u^2 \times L_w^2$ since $V \in C^2$.

- At $(\phi, 0, 0)$, $(f_u, f_w) = (0, 0)$.
- The Jacobian operator

$$\begin{bmatrix} D_u f_u & D_u f_w \\ D_w f_u & D_w f_w \end{bmatrix}_{(u,w,\varepsilon)=(\varphi,0,0)} = \begin{bmatrix} \frac{d^2}{d\tau^2} + \alpha |\varphi|^{\alpha-1} & 0 \\ 0 & \frac{d^2}{d\tau^2} \end{bmatrix}$$

is invertible in the constrained spaces since the linear operators have zero-dimensional kernels in H_u^2 and H_w^2 respectively.

The result follows by the Implicit Function Theorem.

Linearization

To analyze stability of travelling waves, we linearize the dimer lattice equations around the travelling waves:

$$\begin{cases} \ddot{u}_{2n-1} = V''(\varepsilon w_*(\tau+2qn) - u_*(\tau+2qn))(\varepsilon w_{2n} - u_{2n-1}) \\ -V''(u_*(\tau+2qn) - \varepsilon w_*(\tau+2qn-2q))(u_{2n-1} - \varepsilon w_{2n-2}), \\ \ddot{w}_{2n} = \varepsilon V''(u_*(\tau+2qn+2q) - \varepsilon w_*(\tau+2qn))(u_{2n+1} - \varepsilon w_{2n}) \\ -\varepsilon V''(\varepsilon w_*(\tau+2qn) - u_*(\tau+2qn))(\varepsilon w_{2n} - u_{2n-1}), \end{cases}$$

We use Floquet Theory for the chain of second-order ODEs:

$$\mathbf{u}(\tau+2\pi)=\mathcal{M}\mathbf{u}(\tau), \quad \tau\in\mathbb{R},$$

- コン・4回シュービン・4回シューレー

where $\mathbf{u} := [\cdots, w_{2n-2}, u_{2n-1}, w_{2n}, u_{2n+1}, \cdots]$ and \mathcal{M} is the monodromy operator.

Eigenvalues of the monodromy operator, $\ensuremath{\mathcal{M}}$ are found via the substitution:

$$u_{2n-1}(\tau) = U_{2n-1}(\tau)e^{\lambda \tau}, \quad w_{2n}(\tau) = W_{2n}(\tau)e^{\lambda \tau}, \quad \tau \in \mathbb{R},$$

where (U_{2n-1}, W_{2n}) are 2π -periodic functions of τ .

Admissible λ are called the **characteristic exponents**. They define Floquet multipliers μ :

$$\mu = e^{2\pi\lambda}$$

For $\varepsilon = 0$, the only characteristic exponent is $\lambda = 0$. It splits for $\varepsilon \neq 0$ and the **goal** here is to study the splitting of the zero eigenvalue.

Eigenvalues of the monodromy operator, $\ensuremath{\mathcal{M}}$ are found via the substitution:

$$u_{2n-1}(\tau) = U_{2n-1}(\tau)e^{\lambda \tau}, \quad w_{2n}(\tau) = W_{2n}(\tau)e^{\lambda \tau}, \quad \tau \in \mathbb{R},$$

where (U_{2n-1}, W_{2n}) are 2π -periodic functions of τ .

Admissible λ are called the **characteristic exponents**. They define Floquet multipliers μ :

$$\mu = e^{2\pi\lambda}$$

For $\varepsilon = 0$, the only characteristic exponent is $\lambda = 0$. It splits for $\varepsilon \neq 0$ and the **goal** here is to study the splitting of the zero eigenvalue.

Challenges: The spectrum of linearization is continuous. V'' is only continuous.

Theorem 2

Fix $q = \frac{\pi m}{N}$ for some positive integers m and N such that $m \leq N$. Let $(u_*, w_*) \in H^2_u \times H^2_w$ be defined by Theorem 1. For a sufficiently small ε , there exists $q_0 \in (0, \pi/2)$ such that the travelling periodic waves in the linear eigenvalue problem closed at the 2mN-periodic boundary conditions are:

$$0 < q < q_0, \quad \pi - q_0 < q < \pi \quad \Rightarrow \text{ stable} \ q_0 < q < \pi - q \quad \Rightarrow \text{ unstable}$$

- Special solution with $q = \pi$ is stable.
- Special solution with $q = \pi/2$ is unstable.

Formal expansions

We expand the eigenvalue

$$\lambda = \epsilon \Lambda + o(\epsilon)$$

and the eigenvectors

$$\begin{cases} U_{2n-1} = c_{2n-1} \dot{\varphi}(\tau + 2qn) + \varepsilon U_{2n-1}^{(1)} + \varepsilon^2 U_{2n-1}^{(2)} + o(\varepsilon^2), \\ W_{2n} = a_{2n} + \varepsilon W_{2n}^{(1)} + \varepsilon^2 W_{2n}^{(2)} + o(\varepsilon^2), \end{cases}$$

where $\{c_{2n-1}, a_{2n}\}_{n \in \mathbb{Z}}$ and Λ are to be computed from the reduced eigenvalue problem:

$$\begin{cases} \kappa \Lambda^2 c_{2n-1} = M_1(c_{2n+1} + c_{2n-3} - 2c_{2n-1}) + L_1 \Lambda(a_{2n} - a_{2n-2}), \\ \Lambda^2 a_{2n} = M_2(a_{2n+2} + a_{2n-2} - 2a_{2n}) + L_2 \Lambda(c_{2n+1} - c_{2n-1}), \end{cases}$$

where K > 0, $M_1(q)$, M_2 , L_1 , $L_2 < 0$ are numerical coefficients (computed from projections). Only M_1 depends on q.

Analysis of the reduced eigenvalue problem

Using a discrete Fourier transform,

$$c_{2n-1} = Ce^{i\theta(2n-1)}, \quad a_{2n} = Ae^{i2\theta n}, \quad \theta \in [0,\pi],$$

we transform the quadratic eigenvalue problem to the finite-dimensional form:

$$\begin{cases} K\Lambda^2 C = 2M_1(\cos(2\theta) - 1)C + 2iL_1\Lambda\sin(\theta)A, \\ \Lambda^2 A = 2M_2(\cos(2\theta) - 1)A + 2iL_2\Lambda\sin(\theta)C. \end{cases}$$

Eigenvalues are defined by roots of the characteristic polynomial:

$$D(\Lambda; \theta) = K\Lambda^4 + 4\Lambda^2 (M_1 + KM_2 + L_1L_2) \sin^2(\theta) + 16M_1M_2 \sin^4(\theta) = 0.$$

To classify the nonzero roots of $D(\Lambda; \theta)$, we define

$$\Gamma := M_1 + KM_2 + L_1L_2, \quad \Delta := 4KM_1M_2.$$

Roots of the bi-quadratic equation

The characteristic polynomial

$$D(\Lambda; \theta) = K^2 \Lambda^4 + 4 \Lambda^2 K \Gamma \sin^2(\theta) + 4 \Delta \sin^4(\theta) = 0$$

has two pairs of roots, which are determined in the following table:

Coefficients	Roots	q Values
$\Delta < 0$	$\Lambda_1^2 < 0 < \Lambda_2^2$	$q_0 < q < \pi - q$
$0 < \Delta \le \Gamma^2, \Gamma > 0$	$\Lambda_1^2 \le \Lambda_2^2 < 0$	$0 < q < q_0$
$0 < \Delta \le \Gamma^2, \Gamma < 0$	$\Lambda_1^2 \ge \Lambda_2^2 > 0$	
$\Delta > \Gamma^2$	$Re(\Lambda_1^2) > 0, Re(\Lambda_2^2) < 0$	

where $q_0 \approx 0.915$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Krein signature of eigenvalues

Because of 2mN-periodic boundary conditions, the admissible values of θ are discrete and finite:

$$\theta = \frac{\pi k}{mN} \equiv \theta_k(m, N), \quad k = 0, 1, \dots, mN - 1.$$

We count 4mN eigenvalues $\lambda = \epsilon \Lambda + o(\epsilon)$ but some are double because $sin(\theta) = sin(\pi - \theta)$.

► The semi-simple eigenvalues λ ∈ iℝ have nonzero Krein signature:

$$\begin{split} \sigma &= i \sum_{n \in \mathbb{Z}} \left[u_{2n-1} \dot{\bar{u}}_{2n-1} - \bar{u}_{2n-1} \dot{u}_{2n-1} + w_{2n} \dot{\bar{w}}_{2n} - \bar{w}_{2n} \dot{w}_{2n} \right] \\ &= \epsilon \sigma^{(1)} + O(\epsilon^2). \end{split}$$

Semi-simple eigenvalues $\lambda \in i\mathbb{R}$ are structurally stable w.r.t. ε .

Renormalization technique

Challenges: if V'' is only continuous, the $O(\varepsilon^2)$ computations involving computations of V''' need to be justified.

A renormalization is performed by using the derivative expansion,

$$\ddot{u}_*(\tau) = V''(\varepsilon w_*(\tau) - u_*(\tau))(\varepsilon \dot{w}_*(\tau) - \dot{u}_*(\tau)) \ - V''(u_*(\tau) - \varepsilon w_*(\tau - 2q))(\dot{u}_*(\tau) - \varepsilon \dot{w}_*(\tau - 2q)).$$

Using now

$$U_{2n-1} = c_{2n-1}\dot{u}_*(\tau + 2qn) + U_{2n-1}, \quad W_{2n} = \mathcal{W}_{2n},$$

we obtain the linear eigenvalue problem, for which $O(\epsilon^2)$ terms of the perturbation expansions are computed without computing V'''.

Numerical Results

We close the infinite chain of beads into a chain of 2*N* (i.e. $q = \frac{\pi}{N}$) beads with periodic boundary conditions:

$$\begin{cases} \ddot{u}_{2n-1}(t) = (\varepsilon w_{2n}(t) - u_{2n-1}(t))^{\alpha}_{+} - (u_{2n-1}(t) - \varepsilon w_{2n-2}(t))^{\alpha}_{+}, \\ \ddot{w}_{2n}(t) = \varepsilon (u_{2n-1}(t) - \varepsilon w_{2n}(t))^{\alpha}_{+} - \varepsilon (\varepsilon w_{2n}(t) - u_{2n+1}(t))^{\alpha}_{+}, \end{cases}$$

where $1 \le n \le N$ and the periodic boundary conditions are used:

$$u_{-1} = u_{2N-1}, \quad u_{2N+1} = u_1, \quad w_0 = w_{2N}, \quad w_{2N+2} = w_2.$$

- We use the shooting method with N shooting parameters to approximate the travelling wave solutions.
- Then, we compute Floquet multipliers from the monodromy matrix of the linearized system.

N = 1

For $q = \pi$ (N = 1), the results are trivial:

$$\begin{cases} \ddot{u}_{1}(t) = (\varepsilon w_{2}(t) - u_{1}(t))_{+}^{\alpha} - (u_{1}(t) - \varepsilon w_{2}(t))_{+}^{\alpha}, \\ \ddot{w}_{2}(t) = \varepsilon (u_{1}(t) - \varepsilon w_{2}(t))_{+}^{\alpha} - \varepsilon (\varepsilon w_{2}(t) - u_{1}(t))_{+}^{\alpha}, \end{cases}$$

The exact solution is:

$$q=\pi:$$
 $u_*(\tau)=rac{\phi(au)}{(1+arepsilon^2)^3},$ $w_*(au)=rac{-arepsilon\phi(au)}{(1+arepsilon^2)^3}.$

The branch of solutions is unique for all $\epsilon \in [0, 1]$. At $\epsilon = 1$, it matches the periodic wave in monomers studied by G. James (2012):

$$q=\pi, \varepsilon=1:$$
 $u_*(\tau)=rac{1}{8}\phi(\tau),$ $w_*(\tau)=-rac{1}{8}\phi(\tau).$

The branch of solution is stable for all $\epsilon \in [0, 1]$.

Existence for N = 2

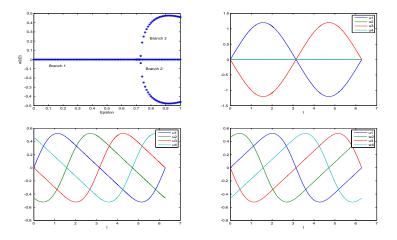


Figure : Travelling wave solutions for $q = \frac{\pi}{2}$ (N = 2): branch 1 (top right), branch 2 (bottom left), and branch 2' (bottom right) at $\varepsilon = 1$.

Stability for N = 2

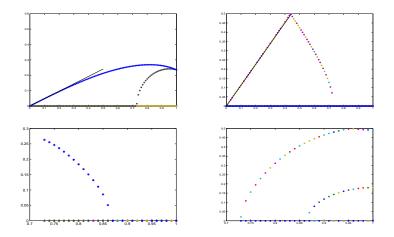


Figure : Real (left) and imaginary (right) parts of the characteristic exponents λ versus ε for $q = \frac{\pi}{2}$ for branch 1 (top) and branch 2 (bottom).

Existence for N = 3

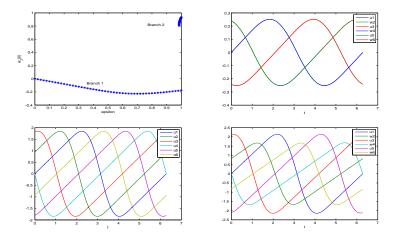


Figure : Travelling wave solutions for $q = \frac{\pi}{3}$: the solution of branch 1 is continued from $\varepsilon = 0$ to $\varepsilon = 1$ (top right) and the solution of branch 2 is continued from $\varepsilon = 1$ (bottom left) to $\varepsilon = 0.985$ (bottom right).

Stability for N = 3

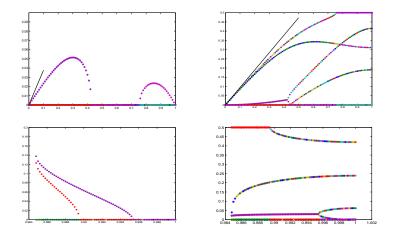


Figure : Real (left) and imaginary (right) parts of the characteristic exponents λ versus ε for $q = \frac{\pi}{3}$ for branch 1 (top) and branch 2 (bottom).

Stability for $N \ge 4$

Recall that branch 1 is stable for $0 < q < q_0 \approx 0.915$, that is, for $N \ge 4$.

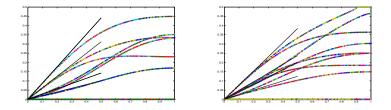


Figure : Imaginary parts of the characteristic exponents λ versus ε for $q = \frac{\pi}{4}$ (left) and $q = \frac{\pi}{5}$ (right). The real part of all the exponents is zero.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Conclusions

- We have shown analytically that the limiting periodic waves are uniquely continued from the anti-continuum limit for small mass ratio parameters.
- We have shown analytically that periodic waves with wavelengths larger than a certain critical value are spectrally stable for small mass ratios.
- We have used numerical techniques to show that for larger wavelengths the stability of these periodic travelling waves with N ≥ 4 persists all the way to the limit of equal mass ratio.
- We have shown numerically that another branch of solutions bifurcates from the limit of equal mass ratio and but it is unstable for N ≥ 4.

Open Problems

The nature of the bifurcations where Branch 2 terminates at ε_{*} ∈ (0,1) needs to be clarified for N ≥ 3. We have been unsuccessful in our attempts to find another solution branch nearby for ε ≥ ε_{*}.

discontinuity-induced bifurcation?

• We would like to understand the hidden symmetry which explains why coalescent eigenvalues remain stable for branch 1 for all $\epsilon \in [0, 1]$.

different invariant subspaces?