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Introduction

» Granular crystal chains are chains of densely packed, elastically
interacting particles.

» Recent work focuses on periodic travelling waves in granular
chains; said to be more relevant to physical experiments.

» Periodic travelling waves in homogeneous granular chains
(monomers) were approximated numerically

» Yu. Starosvetsky and A.F. Vakakis, Urbana-Champneys
» G. James, Grenoble

» Our work focuses on the periodic travelling waves in chains of
beads of alternating masses (dimers).



Experimental setups (CalTECH)
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The Dimer Model
Yn—1Xn Yn Xn+1Yn+1
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Newton’s equations define the FPU (Fermi-Pasta-Ulam) lattice:

{ mXn = V'(Yn—Xn) = V' (X — ¥n-1),
) nez,

My, =V’ (X1 = Yn) = V'(¥n — Xn),

where the interaction potential for spherical beads is

1
1+

3
|X|1+(XH( )7 a=-

V(x)= 5

and H is the step (Heaviside) function.

H. Hertz, J. Reine Angewandte Mathematik, 92 (1882), 156



Small mass ratio

To study small mass ratios € = ™ we make the substitutions:

m
M’
nez: Xn(t) = U2p—1 (T)’ Yn(t) = 8W2n(ft)a t= \/ET

The FPU lattice is transformed into the equivalent form:

Uon—1 = V'(ewan — Uzn—1) — V' (Uon—1 — EWap_2), nez
Won = €V (Uant1 — EWap) — V' (EWop — Uzp—1),
The anti-continuum limit corresponds formally € = 0:
i ! ! _ o—1
Uop—1 = V'(—ton—1) — V'(ton—1) = —|U2n—1|* "ton—1,
Wo, = 0.

K. Yoshimura, Nonlinearity 24 (2011), 293.



Periodic travelling waves

Periodicity conditions:

Uop—1 (’C) = Uop—1 (T—l— 275), Wgn(T) = Wgn(T+ 27t), TeR, neZ.

Travelling wave conditions:
Uon1(T) = Uon—1(T+29), Wopi2(T) =wan(t+2q), T€R, nezZ,
where g € [0, 7] is a free parameter.
Equivalent form for periodic travelling waves:
Uop—1(T) = us(t+2gn), won(t) =wi(t+2gn), T€R, neZ,

where u, and w, are 2x-periodic functions.



The Monomer Model

In the limit of equal mass ratio, € = 1 we apply the reduction:
nez: Uop—1 (T) = Usp_1 (T), Wgn(’C) = Uzn(‘C).
This substitution, reduces the dimer system to the monomer system:

Up= V' (Ups1 — Up) = V'(Up— Uyq), necZ.

G. James, J. Nonlinear Science 22 (2012).

Remark: Travelling waves of the dimer model with € = 1 do not have
to obey the reductions to the monomer model.



Differential Advance-Delay Equation

Expressing the travelling waves as:
Uon—1(T) = us(T+29n), wap(t) =wi(t+2gn), T€R, neZ.
we obtain the differential advance-delay equations for (us., w;):

{ U (1) = V' (ewi(T) — ue (1)) — V/(ui(t) —ews (T — 29)), TeR
Wi (T) = eV'(us(t+2q) —ew.(T)) — eV/(ewi(T) — us(T)), '

Remark: For particular values g = % with 1 < m < N, the differential
advance-delay equation is equivalently represented by the system of
2mN second-order differential equations closed subject to the periodic
boundary conditions.



Anti-continuum Limit
Let ¢ be a solution of the nonlinear oscillator equation,

p=V(-9)-V(p) — o+lp/*'9=0.
For a unique 27-periodic solution we set:

¢(0)=0, (0)>0
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Figure : Phase portrait of the nonlinear oscillator in the (@, ®)-plane.



Special Solutions

For ¢ = 0, we can construct a limiting solution to the differential
advance-delay equations:

€=0: u(t)=0(t), w(t)=0, TER,

Two solutions are known exactly for all € > 0:

and
(p(T) W, (T) — _S(P(T)

(1+€2)8’

g=7: u(t)= (1+€2)3

Goals are to consider persistence and stability of the limiting solutions
in € for any fixed g € [0, x|.



Symmetries and Spaces

If {uon—1(T), wan(T) }nez is a solution, then

> {ton_1(T+ ), won(T+C)}nez is a solution for any ¢ € R
because of the translational invariance

> {Uop—1(T) + c€, Wan(T) + C}nez is a solution for any c € R
because of the symmetry w.r.t. the change of coordinates.

For persistence analysis based on the Implicit Function Theorem, we
shall work in the following spaces for u and w:

H; = {u € Hop(0,2m) :  u(—1) = —u(1), T€ R},

and
H2 = {we HZ(0,2r): w(t)=—w(-Tt—2q)},



Theorem 1

Fix g € [0,m]. There is a unique C' continuation of 2rt-periodic
travelling wave in €. In other words, there is an €y > 0 such that for all
€ € (0,¢&9) there exist a positive constant C and a unique solution

(us, wi) € H2 x H2, of the system of differential advance-delay
equations (13) such that

o~ @lig, < CE2 [lw.llug, < Ce.

per —



Theorem 1
Fix g € [0,m]. There is a unique C' continuation of 2rt-periodic
travelling wave in €. In other words, there is an €y > 0 such that for all
€ € (0,¢&9) there exist a positive constant C and a unique solution
(us, wi) € H2 x H2, of the system of differential advance-delay
equations (13) such that

lu. — g, < e, [|willyg, < Ce.

per

Remark: By Theorem 1, the continuation of exact solutions is unique
for small values of €:

=3 u@)=9(1), w(x)=0

ane () (x)
o(t _ —eg(t
(e = Grey

However, other solutions may coexist for large values of €.

g=m: ur)=



Formal expansion

Differential advance-delay equations:

0.(t) = V'(ewa (1) — u(1)) — V' (e (1) — Wi (T —29)),
{ W, (T) = eV/(u(t+29) —ewi(t)) — eV (ewi(T) — UL (1)),

TeR.
If we expand solutions into the perturbation series
u = o +e2u® +o(e?), w, =enl" +o(e?),
we can get nice equations for the first corrections
i (x) = V/(9(t+24) - V'(~9(v))
and

i (7) + (1) * " u® (2) = V' (=) wl(2) + V" (o(x))wi" (:— 2q),

but will run into problem of continuation of the perturbation expansions.



Nevertheless, we can solve the linearized inhomogeneous equations

o a?
(d2+a|(p|a 1> @D, L= D)

FPe2={uel?,(02n): u(-1)=-u(1), TR},

and

FV e 12 = {we 2 (0,2n): w(r)=—w(—1—2q)},

Under these conditions

FP 1 Ker(L,) = span(¢), F 1 Ker(Ly) = span(1).



Proof

To apply the Implicit Function Theorem, we rewrite the existence
problem as the root-finding problem for the nonlinear operators:

fu(u,w,e) = g%‘z’ — Fu(u,w,e),
fw(u,w,€) = % — Fuw(u,w,e).

{ Fu(u(t), w(t),€) := V'(ew(1) — u(t)) — V'(u(t) —ew(t—2q)),
Fu(u(t),w(t),€) :=eV'(u(t+2q) —ew(t)) —eV'(ew(t) — u(t)),

» f,and f, are C' maps from H2 x H2 x R to L2 x L2 since
Vec2



» At (9,0,0), (fy, fs) = (0,0).
» The Jacobian operator

2
[ Dufy  Dyfy } & falp/t 0
- 2
Bulo Dl 1 (uw)=(9.0.0) 0 @

is invertible in the constrained spaces since the linear operators
have zero-dimensional kernels in H§ and Hﬁ, respectively.

The result follows by the Implicit Function Theorem.



Linearization

To analyze stability of travelling waves, we linearize the dimer lattice
equations around the travelling waves:

Uop—1 = V" (ewi(T+2gn) — u.(T+2gn))(ewen — Uop—1)
— V"(u.(t+2qgn) —ew,(t+2gn—2q))(ton—1 — EWap_2),

Wop = V" (u.(T+2gn+2q) — ew, (T +2gn))(Uanr1 — EWap)
—eV"(ews(t+2qn) — u(t+2gn))(ewan — tan—1),

We use Floquet Theory for the chain of second-order ODEs:
u(t+2m) = Mu(t), TR,

where u:=[--+ , Wop_2, Uap_1, Wop, Uapt1,- -+ | @and M is the
monodromy operator.



Eigenvalues of the monodromy operator, M are found via the
substitution:

Upn1(T) = Uan_1(1)€M,  wan(t) = Wan(1)e®, TeR,

where (Uzp—1, Wap) are 2n-periodic functions of 7.

Admissible A are called the characteristic exponents. They define
Floquet multipliers u:
u=e

For € = 0, the only characteristic exponent is A = 0. It splits for € £ 0
and the goal here is to study the splitting of the zero eigenvalue.



Eigenvalues of the monodromy operator, M are found via the
substitution:

Upn1(T) = Uan_1(1)€M,  wan(t) = Wan(1)e®, TeR,

where (Uzp—1, Wap) are 2n-periodic functions of 7.

Admissible A are called the characteristic exponents. They define
Floquet multipliers u:
u=e

For € = 0, the only characteristic exponent is A = 0. It splits for € £ 0
and the goal here is to study the splitting of the zero eigenvalue.

Challenges: The spectrum of linearization is continuous.
V" is only continuous.



Theorem 2

Fix g = T for some positive integers m and N such that m < N. Let
(u., wi) € H2 x H2, be defined by Theorem 1. For a sufficiently small
€, there exists qo € (0,7/2) such that the travelling periodic waves in

the linear eigenvalue problem closed at the 2mN-periodic boundary
conditions are:

0<g<q, T—q<qg<T = stable
Qo< g<Tm—q = unstable

» Special solution with g = T is stable.
» Special solution with g = 1t/2 is unstable.



Formal expansions
We expand the eigenvalue
A =¢eN+o(g)
and the eigenvectors

Usn 1 = Con 19(t+2qn) +eUS)) | +€2US) | +o(e?),
Wap = azn + WS + W2 +o(e2),

where {Con_1,82n}ncz and A are to be computed from the reduced

eigenvalue problem:

KN%Con—1 = My(Cant1 + Con-3 — 2C2n—1) + LiA(a2n — @2n—2),
N2ap, = Mp(aznt2 + aon—2 — 2a2n) + LoaA(Cont1 — Con—1),

where K > 0, M;(q), M, L1, L, < 0 are numerical coefficients
(computed from projections). Only M; depends on g.



Analysis of the reduced eigenvalue problem

Using a discrete Fourier transform,
Con_1 = Ce®Cr=1) g, = A" B e0,7],

we transform the quadratic eigenvalue problem to the
finite-dimensional form:

KN?C = 2M;(cos(28) — 1)C + 2iL1Asin(0)A,
A2A = 2Ms(cos(20) — 1)A+2iLoAsin(0)C.

Eigenvalues are defined by roots of the characteristic polynomial:
D(A;8) = KA* + 4N2(My + KM + Ly Lo) sin?(8) + 16 My My sin®(8) = 0.
To classify the nonzero roots of D(A; ), we define

= M1+KM2+L1L2, A= 4KM1M2



Roots of the bi-quadratic equation

The characteristic polynomial
D(A;8) = K2A* 4 4N?KT sin?(8) +4Asin*(8) = 0

has two pairs of roots, which are determined in the following table:

Coefficients Roots g Values
A<0 A3 <0< A3 GQ<g<m—q
0<A<IZT>0|AN<A<0 0<qg<qo
0<A<IZT<0|[AN>A3>0

A>T? Re(A?) >0, Re(A3) <0

where qp ~ 0.915



Krein signature of eigenvalues

» Because of 2mN-periodic boundary conditions, the admissible
values of 6 are discrete and finite:

Tk
0=—=0,(mN), k=0,1,....mN—1.
mN k( ) )a ’
We count 4mN eigenvalues A = €A+ o(€) but some are double
because sin(0) = sin(t —0).

» The semi-simple eigenvalues A € /R have nonzero Krein

signature:
6 = i) [Usn-1lon—1— T2n—1ln—1 + WonWan — WanWa|
nez
= eV +0(e?).

Semi-simple eigenvalues A € iR are structurally stable w.r.t. €.



Renormalization technique

Challenges: if V" is only continuous, the O(€?) computations
involving computations of V"’ need to be justified.

A renormalization is performed by using the derivative expansion,
() = V'(ew(t) — u(1))(eWi(t) — (1))
— V" (u(t) — e (T 2))(is(7) — e (T - 29)).
Using now
Uon—1 = Con—1U(T+2gn) + Uop—1, Wap= Whp,

we obtain the linear eigenvalue problem, for which O(€?) terms of the
perturbation expansions are computed without computing V.



Numerical Results

We close the infinite chain of beads into a chain of 2N (i.e. g = %)
beads with periodic boundary conditions:

{ Uon—1(t) = (ewan(t) — t2n—1(1))§ — (U2n—1(t) — ewan—2(1))$,
Wan(t) = €(Uzn—1(t) —ewan(t)) — &(ewan(t) — Uznt+1(1))%,

where 1 < n < N and the periodic boundary conditions are used:

U_1 = UN—1, UoNny1=U1, Wo= Woyn, Woni2 = Wa.

» We use the shooting method with N shooting parameters to
approximate the travelling wave solutions.

» Then, we compute Floguet multipliers from the monodromy
matrix of the linearized system.



For g =7 (N = 1), the results are trivial:

{w(t) (ewy (1) — un(1))S = (n (1) —ewa())%
Wa(t) = e(un (1) —ena(1))S —e(ewa(t) — (1)

The exact solution is:

0)e.

([)(’C) w, (’C) _ 78@(1)

g="": U*(T):m’ _m.

The branch of solutions is unique for all € € [0,1]. Ate =1, it matches
the periodic wave in monomers studied by G. James (2012):

g=me=1: u(t)=0(1), w(v)= o)

The branch of solution is stable for all € € [0, 1].



Existence for N =2
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: Travelling wave solutions for ¢ = g (N = 2): branch 1 (top right),
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branch 2 (bottom left), and branch 2’ (bottom right) at e = 1.



Stability for N =2

Figure : Real (left) and imaginary (right) parts of the characteristic exponents
A versus € for g = g for branch 1 (top) and branch 2 (bottom).



Existence for N =3
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Figure : Travelling wave solutions for g = g: the solution of branch 1 is

continued from € = 0 to € = 1 (top right) and the solution of branch 2 is
continued from € = 1 (bottom left) to € = 0.985 (bottom right).



Stability for N =3
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Figure : Real (left) and imaginary (right) parts of the characteristic exponents
A versus € for g = % for branch 1 (top) and branch 2 (bottom).



Stability for N > 4

Recall that branch 1 is stable for 0 < g < g9 = 0.915, that is, for N > 4.

Figure : Imaginary parts of the characteristic exponents A versus € for g =
(left) and g = g (right). The real part of all the exponents is zero.



Conclusions

» We have shown analytically that the limiting periodic waves are
uniquely continued from the anti-continuum limit for small mass
ratio parameters.

» We have shown analytically that periodic waves with wavelengths
larger than a certain critical value are spectrally stable for small
mass ratios.

» We have used numerical techniques to show that for larger
wavelengths the stability of these periodic travelling waves with
N > 4 persists all the way to the limit of equal mass ratio.

» We have shown numerically that another branch of solutions
bifurcates from the limit of equal mass ratio and but it is unstable
for N > 4.



Open Problems

» The nature of the bifurcations where Branch 2 terminates at
€, € (0,1) needs to be clarified for N > 3. We have been
unsuccessful in our attempts to find another solution branch
nearby for €  &,.

discontinuity-induced bifurcation?

» We would like to understand the hidden symmetry which explains
why coalescent eigenvalues remain stable for branch 1 for all
ee[0,1].

different invariant subspaces?
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