Periodic Travelling Waves in Diatomic Granular Chains

Matthew Betti, Dmitry Pelinovsky
Department of Mathematics, McMaster University

SIAM Conference on Nonlinear Waves, Seattle, June 13, 2012

Introduction

- Granular crystal chains are chains of densely packed, elastically interacting particles.
- Recent work focuses on periodic travelling waves in granular chains; said to be more relevant to physical experiments.
- Periodic travelling waves in homogeneous granular chains (monomers) were approximated numerically [Yu. Starosvetsky and A.F. Vakakis, 2011; G. James, 2012].
- Our work focuses on the periodic travelling waves in chains of beads of alternating masses (dimers).

The Dimer Model

Newton's equations define the FPU (Fermi-Pasta-Ulam) lattice:

$$
\left\{\begin{array}{l}
m \ddot{x}_{n}=V^{\prime}\left(y_{n}-x_{n}\right)-V^{\prime}\left(x_{n}-y_{n-1}\right), \\
M \ddot{y}_{n}=V^{\prime}\left(x_{n+1}-y_{n}\right)-V^{\prime}\left(y_{n}-x_{n}\right),
\end{array} \quad n \in \mathbb{Z}\right.
$$

where the interaction potential for spherical beads is

$$
V(x)=\frac{1}{1+\alpha}|x|^{1+\alpha} H(-x), \quad \alpha=\frac{3}{2}
$$

and H is the step (Heaviside) function.

To study small mass ratios $\varepsilon^{2}=\frac{m}{M}$, we make the substitutions:

$$
n \in \mathbb{Z}: \quad x_{n}(t)=u_{2 n-1}(\tau), \quad y_{n}(t)=\varepsilon w_{2 n}(\tau), \quad t=\sqrt{m} \tau
$$

The FPU lattice is transformed into the equivalent form:

$$
\left\{\begin{array}{l}
\ddot{u}_{2 n-1}=V^{\prime}\left(\varepsilon w_{2 n}-u_{2 n-1}\right)-V^{\prime}\left(u_{2 n-1}-\varepsilon w_{2 n-2}\right), \\
\ddot{w}_{2 n}=\varepsilon V^{\prime}\left(u_{2 n+1}-\varepsilon w_{2 n}\right)-\varepsilon V^{\prime}\left(\varepsilon w_{2 n}-u_{2 n-1}\right),
\end{array} \quad n \in \mathbb{Z} .\right.
$$

Periodicity and travelling wave conditions:

$$
\begin{array}{ccc}
u_{2 n-1}(\tau)=u_{2 n-1}(\tau+2 \pi), & w_{2 n}(\tau)=w_{2 n}(\tau+2 \pi), & \tau \in \mathbb{R},
\end{array} \quad n \in \mathbb{Z} .
$$

where $q \in[0, \pi]$ is a free parameter.

The Monomer Model

In the limit of equal mass ratio, $\varepsilon=1$ we apply the reduction:

$$
n \in \mathbb{Z}: \quad u_{2 n-1}(\tau)=U_{2 n-1}(\tau), \quad w_{2 n}(\tau)=U_{2 n}(\tau)
$$

This substitution, reduces the dimer system to the monomer system:

$$
\ddot{U}_{n}=V^{\prime}\left(U_{n+1}-U_{n}\right)-V^{\prime}\left(U_{n}-U_{n-1}\right), \quad n \in \mathbb{Z} .
$$

Periodic travelling waves for the monomer system has been considered before [Starosvetsky \& Vakakis, 2011; James, 2012].

Note that travelling waves of the dimer model with $\varepsilon=1$ do not have to obey the reductions to the monomer model.

Differential Advance-Delay Equation

Expressing the travelling waves as:

$$
u_{2 n-1}(\tau)=u_{*}(\tau+2 q n), \quad w_{2 n}(\tau)=w_{*}(\tau+2 q n), \quad \tau \in \mathbb{R}, \quad n \in \mathbb{Z}
$$

we obtain the differential advance-delay equations for $\left(u_{*}, w_{*}\right)$:

For particular values $q=\frac{\pi m}{N}$ with $1 \leq m \leq N$, the differential advance-delay equation is equivalently represented by the system of 2 mN second-order differential equations closed subject to the periodic boundary conditions.

Anti-continuum Limit

Let φ be a solution of the nonlinear oscillator equation,

$$
\ddot{\varphi}=V^{\prime}(-\varphi)-V^{\prime}(\varphi) \quad \rightarrow \quad \ddot{\varphi}+|\varphi|^{\alpha-1} \varphi=0 .
$$

For a unique 2π-periodic solution we set:

$$
\varphi(0)=0, \quad \dot{\varphi}(0)>0
$$

Special Solutions

For $\varepsilon=0$, we can construct a limiting solution to the differential advance-delay equations:

$$
\varepsilon=0: \quad u_{*}(\tau)=\varphi(\tau), \quad w_{*}(\tau)=0, \quad \tau \in \mathbb{R}
$$

Two solutions are known exactly for all $\varepsilon \geq 0$:

$$
q=\frac{\pi}{2}: \quad u_{*}(\tau)=\varphi(\tau), \quad w_{*}(\tau)=0
$$

and

$$
q=\pi: \quad u_{*}(\tau)=\frac{\varphi(\tau)}{\left(1+\varepsilon^{2}\right)^{3}}, \quad w_{*}(\tau)=\frac{-\varepsilon \varphi(\tau)}{\left(1+\varepsilon^{2}\right)^{3}} .
$$

Goal: To consider persistence of the limiting solutions in ε for any fixed $q \in[0, \pi]$.

Symmetries and Spaces

If $\left\{u_{2 n-1}(\tau), w_{2 n}(\tau)\right\}_{n \in \mathbb{Z}}$ is a solution, then

- $\left\{u_{2 n-1}(\tau+c), w_{2 n}(\tau+c)\right\}_{n \in \mathbb{Z}}$ is a solution because of the translational invariance
- $\left\{u_{2 n-1}(\tau)+c \varepsilon, w_{2 n}(\tau)+c\right\}_{n \in \mathbb{Z}}$ is a solution because of the symmetry w.r.t. the change of coordinates.

For persistence analysis based on the Implicit Function Theorem, we shall work in the following spaces for u and w :

$$
H_{u}^{2}=\left\{u \in H_{\mathrm{per}}^{2}(0,2 \pi): \quad u(-\tau)=-u(\tau), \tau \in \mathbb{R}\right\}
$$

and

$$
H_{w}^{2}=\left\{w \in H_{\mathrm{per}}^{2}(0,2 \pi): \quad w(\tau)=-w(-\tau-2 q)\right\}
$$

Theorem 1

Fix $q \in[0, \pi]$. There is a unique C^{1} continuation of 2π-periodic travelling wave in ε. In other words, there is an $\varepsilon_{0}>0$ such that for all $\varepsilon \in\left(0, \varepsilon_{0}\right)$ there exist a positive constant C and a unique solution $\left(u_{*}, w_{*}\right) \in H_{u}^{2} \times H_{w}^{2}$ of the system of differential advance-delay equations (4) such that

$$
\left\|u_{*}-\varphi\right\|_{H_{\text {per }}^{2}} \leq C \varepsilon^{2}, \quad\left\|w_{*}\right\|_{H_{\text {per }}^{2}} \leq C \varepsilon
$$

Proof

To apply the Implicit Function Theorem, we rewrite the existence problem as the root-finding problem for the nonlinear operators:

$$
\left\{\begin{array}{l}
f_{u}(u, w, \varepsilon):=\frac{d^{2} u}{d \tau^{2}}-F_{u}(u, w, \varepsilon) \\
f_{w}(u, w, \varepsilon):=\frac{d^{2} w}{d \tau^{2}}-F_{w}(u, w, \varepsilon)
\end{array}\right.
$$

where

$$
\left\{\begin{array}{l}
F_{u}(u(\tau), w(\tau), \varepsilon):=V^{\prime}(\varepsilon w(\tau)-u(\tau))-V^{\prime}(u(\tau)-\varepsilon w(\tau-2 q)), \\
F_{w}(u(\tau), w(\tau), \varepsilon):=\varepsilon V^{\prime}(u(\tau+2 q)-\varepsilon w(\tau))-\varepsilon V^{\prime}(\varepsilon w(\tau)-u(\tau)),
\end{array}\right.
$$

- f_{u} and f_{w} are C^{1} maps from $H_{u}^{2} \times H_{w}^{2} \times \mathbb{R}$ to $L_{u}^{2} \times L_{w}^{2}$ since $V \in C^{2}$.
- At $(\varphi, 0,0),\left(f_{u}, f_{w}\right)=(0,0)$.
- The Jacobian operator

$$
\left[\begin{array}{cc}
D_{u} f_{u} & D_{u} f_{w} \\
D_{w} f_{u} & D_{w} f_{w}
\end{array}\right]_{(u, w, \varepsilon)=(\varphi, 0,0)}=\left[\begin{array}{cc}
\frac{d^{2}}{d \tau^{2}}+\alpha|\varphi|^{\alpha-1} & 0 \\
0 & \frac{d^{2}}{d \tau^{2}}
\end{array}\right]
$$

is invertible in the constrained spaces since the linear operators have zero-dimensional kernels in H_{u}^{2} and H_{w}^{2} respectively.

The result follows by the Implicit Function Theorem.

Linearization

We linearize the dimer lattice equations around the travelling waves in order to analyze their stability:

$$
\left\{\begin{array}{c}
\ddot{u}_{2 n-1}=V^{\prime \prime}\left(\varepsilon w_{*}(\tau+2 q n)-u_{*}(\tau+2 q n)\right)\left(\varepsilon w_{2 n}-u_{2 n-1}\right) \\
\quad-V^{\prime \prime}\left(u_{*}(\tau+2 q n)-\varepsilon w_{*}(\tau+2 q n-2 q)\right)\left(u_{2 n-1}-\varepsilon w_{2 n-2}\right), \\
\ddot{w}_{2 n}=\varepsilon V^{\prime \prime}\left(u_{*}(\tau+2 q n+2 q)-\varepsilon w_{*}(\tau+2 q n)\right)\left(u_{2 n+1}-\varepsilon w_{2 n}\right) \\
-\varepsilon V^{\prime \prime}\left(\varepsilon w_{*}(\tau+2 q n)-u_{*}(\tau+2 q n)\right)\left(\varepsilon w_{2 n}-u_{2 n-1}\right),
\end{array}\right.
$$

We use Floquet Theory for the chain of second-order ODEs:

$$
\mathbf{u}(\tau+2 \pi)=\mathcal{M} \mathbf{u}(\tau), \quad \tau \in \mathbb{R}
$$

where $\mathbf{u}:=\left[\cdots, w_{2 n-2}, u_{2 n-1}, w_{2 n}, u_{2 n+1}, \cdots\right]$ and \mathcal{M} is the monodromy operator.

Eigenvalues of the monodromy operator, \mathcal{M} are found via the substitution:

$$
u_{2 n-1}(\tau)=U_{2 n-1}(\tau) e^{\lambda \tau}, \quad W_{2 n}(\tau)=W_{2 n}(\tau) e^{\lambda \tau}, \quad \tau \in \mathbb{R},
$$

where $\left(U_{2 n-1}, W_{2 n}\right)$ are 2π-periodic functions of τ.
Admissible λ are called the characteristic exponents. They define Floquet multipliers μ :

$$
\mu=e^{2 \pi \lambda}
$$

For $\varepsilon=0$, the only characteristic exponent is $\lambda=0$. It splits for $\varepsilon \neq 0$ and the goal is to study the splitting of the zero eigenvalue.

Challenges: $V^{\prime \prime}$ is only continuous.
The spectrum of λ is continuous.

Theorem 2
Fix $q=\frac{\pi m}{N}$ for some positive integers m and N such that $m \leq N$. Let $\left(u_{*}, w_{*}\right) \in H_{u}^{2} \times H_{w}^{2}$ be defined by Theorem 1. For a sufficiently small ε, there exists $q_{0} \in(0, \pi / 2)$ such that the travelling periodic waves in the linear eigenvalue problem closed at the 2 mN -periodic boundary conditions are:

$$
\begin{gathered}
0<q<q_{0}, \quad \pi-q_{0}<q<\pi \Rightarrow \text { stable } \\
q_{0}<q<\pi-q \quad \Rightarrow \text { unstable }
\end{gathered}
$$

- Special solution with $q=\pi$ is stable.
- Special solution with $q=\pi / 2$ is unstable.

Ideas of the proof

- Renormalization by using the derivative expansion

$$
\begin{aligned}
\dddot{u}_{*}(\tau)= & V^{\prime \prime}\left(\varepsilon w_{*}(\tau)-u_{*}(\tau)\right)\left(\varepsilon \dot{w}_{*}(\tau)-\dot{u}_{*}(\tau)\right) \\
& -V^{\prime \prime}\left(u_{*}(\tau)-\varepsilon w_{*}(\tau-2 q)\right)\left(\dot{u}_{*}(\tau)-\varepsilon \dot{w}_{*}(\tau-2 q)\right),
\end{aligned}
$$

to avoid the problem of discontinuity of $V^{\prime \prime \prime}$.

- Formal expansion for the eigenvalue $\lambda=\varepsilon \Lambda+o(\varepsilon)$ and the eigenvectors $U_{2 n-1}=c_{2 n-1} \dot{\varphi}(\tau+2 q n)+O(\varepsilon)$ and

$$
W_{2 n}=a_{2 n}+O(\varepsilon):
$$

$$
\left\{\begin{array}{l}
K \Lambda^{2} c_{2 n-1}=M_{1}\left(c_{2 n+1}+c_{2 n-3}-2 c_{2 n-1}\right)+L_{1} \Lambda\left(a_{2 n}-a_{2 n-2}\right) \\
\Lambda^{2} a_{2 n}=M_{2}\left(a_{2 n+2}+a_{2 n-2}-2 a_{2 n}\right)+L_{2} \Lambda\left(c_{2 n+1}-c_{2 n-1}\right)
\end{array}\right.
$$

where $K>0, M_{1}(q), M_{2}, L_{1}, L_{2}<0$ are numerical coefficients.

Ideas of the proof

- Using a discrete Fourier transform, e.g. $c_{2 n-1}=C e^{i \theta(2 n-1)}$, we transform difference equations to the characteristic polynomial:

$$
D(\Lambda ; \theta)=K \Lambda^{4}+4 \Lambda^{2}\left(M_{1}+K M_{2}+L_{1} L_{2}\right) \sin ^{2}(\theta)+16 M_{1} M_{2} \sin ^{4}(\theta)=0 .
$$

- To classify the nonzero roots of $D(\Lambda ; \theta)$, we define

$$
\Gamma:=M_{1}+K M_{2}+L_{1} L_{2}, \quad \Delta:=4 K M_{1} M_{2}
$$

- The two pairs of roots are determined in the following table:

Coefficients	Roots	q Values
$\Delta<0$	$\Lambda_{1}^{2}<0<\Lambda_{2}^{2}$	$q_{0}<q<\pi-q$
$0<\Delta \leq \Gamma^{2}, \Gamma>0$	$\Lambda_{1}^{2} \leq \Lambda_{2}^{2}<0$	$0<q<q_{0}$
$0<\Delta \leq \Gamma^{2}, \Gamma<0$	$\Lambda_{1}^{2} \geq \Lambda_{2}^{2}>0$	
$\Delta>\Gamma^{2}$	$\operatorname{Re}\left(\Lambda_{1}^{2}\right)>0, \operatorname{Re}\left(\Lambda_{2}^{2}\right)<0$	

where $q_{0} \approx 0.915$

Ideas of the proof

- Because of 2 mN -periodic boundary conditions, the admissible values of θ are discrete and finite:

$$
\theta=\frac{\pi k}{m N} \equiv \theta_{k}(m, N), \quad k=0,1, \ldots, m N-1 .
$$

We count $4 m N$ eigenvalues $\lambda=\varepsilon \Lambda+o(\varepsilon)$ but some are double because $\sin (\theta)=\sin (\pi-\theta)$.

- The semi-simple eigenvalues $\lambda \in i \mathbb{R}$ have the same (nonzero) Krein signature:

$$
\begin{aligned}
\sigma & =i \sum_{n \in \mathbb{Z}}\left[u_{2 n-1} \dot{\bar{u}}_{2 n-1}-\bar{u}_{2 n-1} \dot{u}_{2 n-1}+w_{2 n} \dot{\bar{w}}_{2 n}-\bar{w}_{2 n} \dot{\dot{w}}_{2 n}\right] \\
& =\varepsilon \sigma^{(1)}+O\left(\varepsilon^{2}\right) .
\end{aligned}
$$

Semi-simple eigenvalues $\lambda \in i \mathbb{R}$ are structurally stable w.r.t. ε.

Numerical Results

We close the infinite chain of beads into a chain of $2 N$ (i.e. $q=\frac{\pi}{N}$) beads with periodic boundary conditions:

$$
\left\{\begin{array}{l}
\ddot{u}_{2 n-1}(t)=\left(\varepsilon w_{2 n}(t)-u_{2 n-1}(t)\right)_{+}^{\alpha}-\left(u_{2 n-1}(t)-\varepsilon w_{2 n-2}(t)\right)_{+}^{\alpha}, \\
\ddot{w}_{2 n}(t)=\varepsilon\left(u_{2 n-1}(t)-\varepsilon w_{2 n}(t)\right)_{+}^{\alpha}-\varepsilon\left(\varepsilon w_{2 n}(t)-u_{2 n+1}(t)\right)_{+}^{\alpha},
\end{array}\right.
$$

where $1 \leq n \leq N$ and the periodic boundary conditions are used:

$$
u_{-1}=u_{2 N-1}, \quad u_{2 N+1}=u_{1}, \quad w_{0}=w_{2 N}, \quad w_{2 N+2}=w_{2} .
$$

- We use the shooting method with N shooting parameters to approximate the travelling wave solutions.
- Then, we compute Floquet multipliers from the monodromy matrix of the linearized system.

Figure: Travelling wave solutions for $q=\frac{\pi}{2}$: branch 1 (top right), branch 2 (bottom left), and branch 2' (bottom right) at $\varepsilon=1$.

Figure: Real (left) and imaginary (right) parts of the characteristic exponents λ versus ε for $q=\frac{\pi}{2}$ for branch 1 (top) and branch 2 (bottom).

Figure: Travelling wave solutions for $q=\frac{\pi}{3}$: the solution of branch 1 is continued from $\varepsilon=0$ to $\varepsilon=1$ (top right) and the solution of branch 2 is continued from $\varepsilon=1$ (bottom left) to $\varepsilon=0.985$ (bottom right).

Figure: Real (left) and imaginary (right) parts of the characteristic exponents λ versus ε for $q=\frac{\pi}{3}$ for branch 1 (top) and branch 2 (bottom).

Recall that branch 1 is stable for $0<q<q_{0} \approx 0.915$.

Figure: Imaginary parts of the characteristic exponents λ versus ε for $q=\frac{\pi}{4}$ (left) and $q=\frac{\pi}{5}$ (right). The real part of all the exponents is zero.

Conclusions

- We have shown that the limiting periodic waves are uniquely continued from the anti-continuum limit for small mass ratio parameters.
- We are able to show that periodic waves with wavelengths larger than a certain critical value are spectrally stable for small mass ratios.
- We have used numerical techniques to show that for larger wavelengths the stability of these periodic travelling waves persists all the way to the limit of equal mass ratio.

Open Problems

- The nature of the bifurcations where Branch 2 terminates at $\varepsilon_{*} \in(0,1)$ needs to be clarified for $N \geq 3$. We have been unsuccessful in our attempts to find another solution branch nearby for $\varepsilon \gtrsim \varepsilon_{*}$.
- We would like to understand the hidden symmetry which explains why coalescent eigenvalues remain stable for branch 1 for all $\varepsilon \in[0,1]$.

