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Introduction

• Granular crystal chains are chains of densely packed, elastically
interacting particles.

• Recent work focuses on periodic travelling waves in granular
chains; said to be more relevant to physical experiments.

• Periodic travelling waves in homogeneous granular chains
(monomers) were approximated numerically [Yu. Starosvetsky
and A.F. Vakakis, 2011; G. James, 2012].

• Our work focuses on the periodic travelling waves in chains of
beads of alternating masses (dimers).
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The Dimer Model

yn−1

M
��
��xn

m

z
yn

M
��
��xn+1

m

z
yn+1

M
��
��

Newton’s equations define the FPU (Fermi-Pasta-Ulam) lattice:

{

mẍn = V ′(yn − xn)−V ′(xn − yn−1),
Mÿn = V ′(xn+1 − yn)−V ′(yn − xn),

n ∈ Z,

where the interaction potential for spherical beads is

V (x) =
1

1+α
|x |1+αH(−x), α =

3

2

and H is the step (Heaviside) function.
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To study small mass ratios ε2 = m
M , we make the substitutions:

n ∈ Z : xn(t) = u2n−1(τ), yn(t) = εw2n(τ), t =
√

mτ

The FPU lattice is transformed into the equivalent form:
{

ü2n−1 = V ′(εw2n −u2n−1)−V ′(u2n−1 − εw2n−2),
ẅ2n = εV ′(u2n+1 − εw2n)− εV ′(εw2n −u2n−1),

n ∈ Z.

Periodicity and travelling wave conditions:

u2n−1(τ) = u2n−1(τ+2π), w2n(τ) = w2n(τ+2π), τ ∈ R, n ∈ Z.

u2n+1(τ) = u2n−1(τ+2q), w2n+2(τ) = w2n(τ+2q), τ∈R, n ∈Z,

where q ∈ [0,π] is a free parameter.
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The Monomer Model

In the limit of equal mass ratio, ε = 1 we apply the reduction:

n ∈ Z : u2n−1(τ) = U2n−1(τ), w2n(τ) = U2n(τ).

This substitution, reduces the dimer system to the monomer system:

Ün = V ′(Un+1 −Un)−V ′(Un −Un−1), n ∈ Z.

Periodic travelling waves for the monomer system has been
considered before [Starosvetsky & Vakakis, 2011; James, 2012].

Note that travelling waves of the dimer model with ε = 1 do not have to
obey the reductions to the monomer model.
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Differential Advance-Delay Equation

Expressing the travelling waves as:

u2n−1(τ) = u∗(τ+2qn), w2n(τ) = w∗(τ+2qn), τ ∈ R, n ∈ Z.

we obtain the differential advance-delay equations for (u∗,w∗):

{

ü∗(τ) = V ′(εw∗(τ)−u∗(τ))−V ′(u∗(τ)− εw∗(τ−2q)),
ẅ∗(τ) = εV ′(u∗(τ+2q)− εw∗(τ))− εV ′(εw∗(τ)−u∗(τ)),

τ∈R.

For particular values q = πm
N with 1 ≤ m ≤ N, the differential

advance-delay equation is equivalently represented by the system of
2mN second-order differential equations closed subject to the periodic
boundary conditions.
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Anti-continuum Limit
Let ϕ be a solution of the nonlinear oscillator equation,

ϕ̈ = V ′(−ϕ)−V ′(ϕ) → ϕ̈+ |ϕ|α−1ϕ = 0.

For a unique 2π-periodic solution we set:

ϕ(0) = 0, ϕ̇(0) > 0
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Special Solutions

For ε = 0, we can construct a limiting solution to the differential
advance-delay equations:

ε = 0 : u∗(τ) = ϕ(τ), w∗(τ) = 0, τ ∈ R,

Two solutions are known exactly for all ε ≥ 0:

q =
π
2

: u∗(τ) = ϕ(τ), w∗(τ) = 0

and

q = π : u∗(τ) =
ϕ(τ)

(1+ ε2)3
, w∗(τ) =

−εϕ(τ)
(1+ ε2)3

.

Goal: To consider persistence of the limiting solutions in ε for any fixed
q ∈ [0,π].
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Symmetries and Spaces

If {u2n−1(τ),w2n(τ)}n∈Z is a solution, then

• {u2n−1(τ+ c),w2n(τ+ c)}n∈Z is a solution because of the
translational invariance

• {u2n−1(τ)+ cε,w2n(τ)+ c}n∈Z is a solution because of the
symmetry w.r.t. the change of coordinates.

For persistence analysis based on the Implicit Function Theorem, we
shall work in the following spaces for u and w :

H2
u =

{

u ∈ H2
per(0,2π) : u(−τ) = −u(τ), τ ∈ R

}

,

and
H2

w =
{

w ∈ H2
per(0,2π) : w(τ) = −w(−τ−2q)

}

,
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Theorem 1
Fix q ∈ [0,π]. There is a unique C1 continuation of 2π-periodic
travelling wave in ε. In other words, there is an ε0 > 0 such that for all
ε ∈ (0,ε0) there exist a positive constant C and a unique solution
(u∗,w∗) ∈ H2

u ×H2
w of the system of differential advance-delay

equations (4) such that

‖u∗−ϕ‖H2
per

≤ Cε2, ‖w∗‖H2
per

≤ Cε.
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Proof

To apply the Implicit Function Theorem, we rewrite the existence
problem as the root-finding problem for the nonlinear operators:

{

fu(u,w ,ε) := d2u
dτ2 −Fu(u,w ,ε),

fw(u,w ,ε) := d2w
dτ2 −Fw(u,w ,ε).

where
{

Fu(u(τ),w(τ),ε) := V ′(εw(τ)−u(τ))−V ′(u(τ)− εw(τ−2q)),
Fw(u(τ),w(τ),ε) := εV ′(u(τ+2q)− εw(τ))− εV ′(εw(τ)−u(τ)),
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• fu and fw are C1 maps from H2
u ×H2

w ×R to L2
u ×L2

w since
V ∈ C2.

• At (ϕ,0,0), (fu, fw) = (0,0).

• The Jacobian operator

[

Dufu Dufw
Dw fu Dw fw

]

(u,w ,ε)=(ϕ,0,0)

=

[

d2

dτ2 +α|ϕ|α−1 0

0 d2

dτ2

]

is invertible in the constrained spaces since the linear operators
have zero-dimensional kernels in H2

u and H2
w respectively.

The result follows by the Implicit Function Theorem.
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Linearization

We linearize the dimer lattice equations around the travelling waves in
order to analyze their stability:















ü2n−1 = V ′′(εw∗(τ+2qn)−u∗(τ+2qn))(εw2n −u2n−1)
−V ′′(u∗(τ+2qn)− εw∗(τ+2qn−2q))(u2n−1 − εw2n−2),

ẅ2n = εV ′′(u∗(τ+2qn +2q)− εw∗(τ+2qn))(u2n+1 − εw2n)
− εV ′′(εw∗(τ+2qn)−u∗(τ+2qn))(εw2n −u2n−1),

We use Floquet Theory for the chain of second-order ODEs:

u(τ+2π) =M u(τ), τ ∈ R,

where u := [· · · ,w2n−2,u2n−1,w2n,u2n+1, · · · ] and M is the
monodromy operator.
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Eigenvalues of the monodromy operator, M are found via the
substitution:

u2n−1(τ) = U2n−1(τ)eλτ, w2n(τ) = W2n(τ)eλτ, τ ∈ R,

where (U2n−1,W2n) are 2π-periodic functions of τ.

Admissible λ are called the characteristic exponents. They define
Floquet multipliers µ:

µ= e2πλ

For ε = 0, the only characteristic exponent is λ = 0. It splits for ε 6= 0
and the goal is to study the splitting of the zero eigenvalue.

Challenges: V ′′ is only continuous.
The spectrum of λ is continuous.
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Theorem 2
Fix q = πm

N for some positive integers m and N such that m ≤ N. Let
(u∗,w∗) ∈ H2

u ×H2
w be defined by Theorem 1. For a sufficiently small

ε, there exists q0 ∈ (0,π/2) such that the travelling periodic waves in
the linear eigenvalue problem closed at the 2mN-periodic boundary
conditions are:

0 < q < q0, π−q0 < q < π ⇒ stable
q0 < q < π−q ⇒ unstable

• Special solution with q = π is stable.

• Special solution with q = π/2 is unstable.



Introduction Formalism Persistence of Solutions Stability of Periodic Travelling Waves Numerical Results Conclusions

Ideas of the proof

• Renormalization by using the derivative expansion

...
u ∗(τ) = V ′′(εw∗(τ)−u∗(τ))(εẇ∗(τ)− u̇∗(τ))

−V ′′(u∗(τ)− εw∗(τ−2q))(u̇∗(τ)− εẇ∗(τ−2q)),

to avoid the problem of discontinuity of V ′′′.

• Formal expansion for the eigenvalue λ = εΛ+o(ε) and the
eigenvectors U2n−1 = c2n−1ϕ̇(τ+2qn)+O (ε) and
W2n = a2n +O (ε):
{

KΛ2c2n−1 = M1(c2n+1 + c2n−3 −2c2n−1)+L1Λ(a2n −a2n−2),
Λ2a2n = M2(a2n+2 +a2n−2 −2a2n)+L2Λ(c2n+1 − c2n−1),

where K > 0, M1(q), M2,L1,L2 < 0 are numerical coefficients.
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Ideas of the proof

• Using a discrete Fourier transform, e.g. c2n−1 = Ceiθ(2n−1), we
transform difference equations to the characteristic polynomial:

D(Λ;θ)= KΛ4+4Λ2(M1+KM2+L1L2)sin2(θ)+16M1M2 sin4(θ)= 0.

• To classify the nonzero roots of D(Λ;θ), we define

Γ := M1 +KM2 +L1L2, ∆ := 4KM1M2.

• The two pairs of roots are determined in the following table:

Coefficients Roots q Values
∆ < 0 Λ2

1 < 0 < Λ2
2 q0 < q < π−q

0 < ∆ ≤ Γ2, Γ > 0 Λ2
1 ≤ Λ2

2 < 0 0 < q < q0

0 < ∆ ≤ Γ2, Γ < 0 Λ2
1 ≥ Λ2

2 > 0
∆ > Γ2 Re(Λ2

1) > 0, Re(Λ2
2) < 0

where q0 ≈ 0.915
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Ideas of the proof

• Because of 2mN-periodic boundary conditions, the admissible
values of θ are discrete and finite:

θ =
πk

mN
≡ θk(m,N), k = 0,1, . . . ,mN −1.

We count 4mN eigenvalues λ = εΛ+o(ε) but some are double
because sin(θ) = sin(π−θ).

• The semi-simple eigenvalues λ ∈ iR have the same (nonzero)
Krein signature:

σ = i ∑
n∈Z

[

u2n−1 ˙̄u2n−1 − ū2n−1u̇2n−1 +w2n ˙̄w2n − w̄2nẇ2n

]

= εσ(1) +O (ε2).

Semi-simple eigenvalues λ ∈ iR are structurally stable w.r.t. ε.
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Numerical Results

We close the infinite chain of beads into a chain of 2N (i.e. q = π
N )

beads with periodic boundary conditions:

{

ü2n−1(t) = (εw2n(t)−u2n−1(t))α
+− (u2n−1(t)− εw2n−2(t))α

+,
ẅ2n(t) = ε(u2n−1(t)− εw2n(t))α

+− ε(εw2n(t)−u2n+1(t))α
+,

where 1 ≤ n ≤ N and the periodic boundary conditions are used:

u−1 = u2N−1, u2N+1 = u1, w0 = w2N , w2N+2 = w2.

• We use the shooting method with N shooting parameters to
approximate the travelling wave solutions.

• Then, we compute Floquet multipliers from the monodromy
matrix of the linearized system.
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Figure: Travelling wave solutions for q = π
2 : branch 1 (top right), branch 2

(bottom left), and branch 2’ (bottom right) at ε = 1.
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Figure: Real (left) and imaginary (right) parts of the characteristic exponents
λ versus ε for q = π

2 for branch 1 (top) and branch 2 (bottom).
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Figure: Travelling wave solutions for q = π
3 : the solution of branch 1 is

continued from ε = 0 to ε = 1 (top right) and the solution of branch 2 is
continued from ε = 1 (bottom left) to ε = 0.985 (bottom right).
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Figure: Real (left) and imaginary (right) parts of the characteristic exponents
λ versus ε for q = π

3 for branch 1 (top) and branch 2 (bottom).
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Recall that branch 1 is stable for 0 < q < q0 ≈ 0.915.
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Figure: Imaginary parts of the characteristic exponents λ versus ε for q = π
4

(left) and q = π
5 (right). The real part of all the exponents is zero.
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Conclusions

• We have shown that the limiting periodic waves are uniquely
continued from the anti-continuum limit for small mass ratio
parameters.

• We are able to show that periodic waves with wavelengths larger
than a certain critical value are spectrally stable for small mass
ratios.

• We have used numerical techniques to show that for larger
wavelengths the stability of these periodic travelling waves
persists all the way to the limit of equal mass ratio.
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Open Problems

• The nature of the bifurcations where Branch 2 terminates at
ε∗ ∈ (0,1) needs to be clarified for N ≥ 3. We have been
unsuccessful in our attempts to find another solution branch
nearby for ε ' ε∗.

• We would like to understand the hidden symmetry which explains
why coalescent eigenvalues remain stable for branch 1 for all
ε ∈ [0,1].
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