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The model

The nonlinear Dirac equations in one spatial dimension,

{

i(ut + ux) + v = ∂ūW (u, v),
i(vt − vx) + u = ∂v̄W (u, v),

where W (u, v) : C2 → R satisfies the following three conditions:

◮ symmetry W (u, v) =W (v, u);

◮ gauge invariance W (eiθu, eiθv) =W (u, v) for any θ ∈ R;

◮ quartic polynomial in (u, v) and (ū, v̄).
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where W (u, v) : C2 → R satisfies the following three conditions:

◮ symmetry W (u, v) =W (v, u);

◮ gauge invariance W (eiθu, eiθv) =W (u, v) for any θ ∈ R;

◮ quartic polynomial in (u, v) and (ū, v̄).

Examples of nonlinear potentials:

◮ Coupled-mode system: W = |u|4 + 4|u|2|v|2 + |v|4.
◮ Gross–Neveu model: W = (ūv + uv̄)2.

◮ Massive Thirring model: W = |u|2|v|2



Massive Thirring Model (MTM)

The MTM in laboratory coordinates

{

i(ut + ux) + v = 2|v|2u,
i(vt − vx) + u = 2|u|2v,

First three conserved quantities are

Q =

∫

R

(

|u|2 + |v|2
)

dx,

P =
i

2

∫

R

(uūx − uxū+ vv̄x − vxv̄) dx,

H =
i

2

∫

R

(uūx − uxū− vv̄x + vxv̄) dx+

∫

R

(

−vū− uv̄ + 2|u|2|v|2
)

dx.

An infinite set of conserved quantities is available thanks to the

integrability of the MTM.



A physical context of the MTM system

Dynamics of nonlinear waves in the Gross–Pitaevskii equation

with a one-dimensional (stripe) periodic potential

iψt = −ψxx − ψyy + 2ǫ cos(x)ψ + |ψ|2ψ, ǫ≪ 1,

can be described by the slowly varying decomposition

ψ(x, y, t) ≈
√
ǫ
[

u(ǫx,
√
ǫy, ǫt)e

i
2
x− i

4
t + v(ǫx,

√
ǫy, ǫt)e−

i
2
x− i

4
t
]

.

The amplitude u and v in slow variables X, Y , and T satisfy the

perturbed MTM equations

{

i(uT + uX) + v + uY Y = (|u|2 + 2|v|2)u,
i(vT − vX) + u+ vY Y = (2|u|2 + |v|2)v.

Reference: T.Dohnal & A.B. Aceves (2005).
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Transverse stability mystery

◮ J.Yang et al. [Opt. Lett. 37 (2012), 1571] - predicted no

transverse instability of gap solitons in stripe

(one-dimensional) periodic potentials.

◮ D.P. & J. Yang [Physica D 255 (2014), 1] - showed within

the tight-binding limit that gap solitons are transversely

unstable in all parameter configurations.

◮ Using the opposite limit of small-amplitude periodic

potential, we clarify the mystery and show that gap solitons

are indeed transversely unstable for all parameters.



Questions for MTM

◮ Existence of local and global solutions in H1(R) or L2(R)

◮ Orbital stability of gap solitons in H1(R) or L2(R)

◮ Transverse instability of gap solitons in two dimensions



Local and global existence

Theorem
Assume u0 ∈ H1(R). There exists T > 0 such that the

nonlinear Dirac equations admit a unique solution

u(t) ∈ C([0, T ], H1(R)) ∩ C1([0, T ], L2(R)) : u(0) = u0,

which depends continuously on the initial data.

Theorem
Assume that W is a polynomial in variables |u|2 and |v|2. A local

solution in H1 is extended globally as u(t) ∈ C(R+, H
1(R)).

References: Delgado (1978); Goodman-Weinstein-Holmes

(2001); Selberg-Tesfahun (2010); Huh (2011); Zhang (2013).
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1(R)
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∂t
(
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+ ∂x
(

|u|2p+2 − |v|2p+2
)

= i(p+ 1)(vū− v̄u)(|u|2p − |v|2p).

◮ By Gronwall’s inequality, we have

‖u(t)‖L2p+2 ≤ e2|t|‖u(0)‖L2p+2 , t ∈ [0, T ],

which holds for any p ≥ 0 including p→ ∞.

◮ This allows to control

d

dt
‖∂xu(t)‖2L2 ≤ CW e

4(N−1)|t|‖∂xu(t)‖2L2 ,

where N is the degree of W in variables |u|2 and |v|2.



Local and global well-posedness in L
2(R)

Theorem
For any (u0, v0) ∈ L2(R), there exists a unique solution of the

MTM (u, v) ∈ C(R, L2(R)):

‖u(·, t)‖2L2 + ‖v(·, t)‖2L2 = ‖u0‖2L2 + ‖v0‖2L2 .

References: T. Candy (2011); Y. Zhang & Q. Zhao (2015).
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Existence of solitary waves

Time-periodic space-localized solutions

u(x, t) = Uω(x)e
−iωt, v(x, t) = Vω(x)e

−iωt

satisfy a system of stationary Dirac equations. They are known

in the closed analytic form

{

u(x, t) = i sin(γ) sech
[

x sin γ − iγ2
]

e−it cos γ ,
v(x, t) = −i sin(γ) sech

[

x sin γ + iγ2
]

e−it cos γ ,

where ω = cos(γ).



Existence of solitary waves

Time-periodic space-localized solutions

u(x, t) = Uω(x)e
−iωt, v(x, t) = Vω(x)e

−iωt

satisfy a system of stationary Dirac equations. They are known

in the closed analytic form

{

u(x, t) = i sin(γ) sech
[

x sin γ − iγ2
]
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[
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where ω = cos(γ).

◮ Translations in x and t can be added as free parameters.

◮ Constraint ω = cos γ ∈ (−1, 1) exists because spectrum of

linear waves is located for (−∞,−1] ∪ [1,∞).

◮ Moving solitons can be obtained from the stationary

solitons with the Lorentz transformation.



Orbital stability of solitary waves

Definition
We say that the solitary wave e−iωt

Uω(x) is orbitally stable if for

any ǫ > 0 there is a δ(ǫ) > 0, such that if

‖u(·, 0)−Uω(·)‖H1 ≤ δ(ǫ)

then
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Uω(·+ a)‖H1 ≤ ǫ,

for all t > 0.
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‖u(·, 0)−Uω(·)‖H1 ≤ δ(ǫ)

then

inf
θ,a∈R

‖u(·, t)− e−iθ
Uω(·+ a)‖H1 ≤ ǫ,

for all t > 0.

◮ Spectral stability of Dirac solitons was mainly studied

numerically, e.g., by I. Barashenkov (1998), G. Gottwald

(2005), M. Chugunova (2006), A. Comech (2012), A.

Saxena (2014), P. Kevrekidis (2014), ...

◮ Asymptotic stability of Dirac solitons was proved for quintic

nonlinearities by D.P. & A. Stefanov (2012).
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(uūx − uxū+ vv̄x − vxv̄) dx,

H =
i

2

∫

R
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An infinite set of conserved quantities is available thanks to the
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Orbital stability of MTM solitons in H
1

Theorem
There is ω0 ∈ (0, 1] such that for any fixed ω = cos γ ∈ (−ω0, ω0),
the MTM soliton is a local non-degenerate minimizer of R in

H1(R,C2) under the constraints of fixed values of Q and P .

The higher-order Hamiltonian R is

R =

∫

R

[

|ux|
2 + |vx|

2 −
i

2
(uxu− uxu)(|u|

2 + 2|v|2) +
i

2
(vxv − vxv)(2|u|

2 + |v|2)

−(uv + uv)(|u|2 + |v|2) + 2|u|2|v|2(|u|2 + |v|2)
]

dx.

R is a conserved quantity of the MTM in addition to the

standard Hamiltonian H, the charge Q, and the momentum P .



The energy functionals

◮ Critical points of H + ωQ for a fixed ω ∈ (−1, 1) satisfy the

stationary MTM equations. After the reduction

(u, v) = (U,U), we obtain the first-order equation

i
dU

dx
− ωU + U = 2|U |2U,

which is satisfied by the MTM soliton U = Uω.
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dU

dx
− ωU + U = 2|U |2U,
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◮ Critical points of R+ΩQ for some fixed Ω ∈ R satisfy

another system of equations. After the reduction

(u, v) = (U,U), we obtain the second-order equation

d2U

dx2
+ 6i|U |2dU

dx
− 6|U |4U + 3|U |2Ū + U3 = ΩU.

U = Uω satisfies this equation if Ω = 1− ω2.



The Lyapunov functional for MTM solitons

There is no chance for the standard energy functional

Λω := H + ωQ

to become a Lyapunov functional for MTM solitons.

However, the higher-order energy functional

Λ̃ω := R+ (1− ω2)Q, ω ∈ (−1, 1),

has Uω as a critical point and ...
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There is no chance for the standard energy functional

Λω := H + ωQ

to become a Lyapunov functional for MTM solitons.

However, the higher-order energy functional

Λ̃ω := R+ (1− ω2)Q, ω ∈ (−1, 1),

has Uω as a critical point and ...

... the second variation of Λ̃ω at Uω is proved to have exactly

one negative eigenvalue for small ω 6= 0 in addition to the

double zero eigenvalue. (For ω = 0, no negative eigenvalues

exist but the zero eigenvalue is quadruple.)



Constrained Hilbert spaces
Assume that (u, v) ∈ L2(R;C2) satisfies the constraints:

∫

R

(

Ūωu+ Uωv
)

dx = 0, (1)

∫

R

(

Ū ′
ωu+ U ′

ωv
)

dx = 0. (2)

◮ Real part of Eq (1) corresponds to fixed Q (charge).

◮ Imaginary part of Eq. (2) corresponds to fixed P
(momentum).

◮ Imaginary part of Eq. (1) corresponds to orthogonality to

the gauge translation u 7→ ueiα, v 7→ veiα.

◮ Real part of Eq. (2) corresponds to orthogonality to the

space translation u(x) 7→ u(x+ x0), v(x) 7→ v(x+ x0).
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∫

R

(

Ūωu+ Uωv
)

dx = 0, (1)

∫

R

(

Ū ′
ωu+ U ′

ωv
)

dx = 0. (2)

◮ Real part of Eq (1) corresponds to fixed Q (charge).

◮ Imaginary part of Eq. (2) corresponds to fixed P
(momentum).

◮ Imaginary part of Eq. (1) corresponds to orthogonality to

the gauge translation u 7→ ueiα, v 7→ veiα.

◮ Real part of Eq. (2) corresponds to orthogonality to the

space translation u(x) 7→ u(x+ x0), v(x) 7→ v(x+ x0).

The constraints (1)–(2) remove the negative and zero

eigenvalues of the second variation of Λ̃ω.



Orbital stability result

◮ Strict positivity (coercivity) of the second variation implies

Λ̃ω(Uω + u)− Λ̃ω(Uω) ≥ C‖u‖2H1 +O(3),

for all u ∈ H1(R;C2) in the constrained space.

◮ R, Q, and P are constant in time t and so is Λ̃ω.

◮ Then, we obtain the global lower bound for the solution u:

Λ̃ω(u)− Λ̃ω(Uω) ≥ inf
θ,x0

‖u(·, t)− eiθUω(·+ x0)‖2H1

for every t ∈ R.

◮ This yields orbital stability in H1(R) for ω ∈ (−ω0, ω0).



Orbital stability of MTM solitons in L
2

Theorem
Let (u, v) ∈ C(R;L2(R)) be a solution of the MTM system and

λ0 be a complex non-zero number. There exist a real positive

constant ǫ such that if the initial value (u0, v0) ∈ L2(R) satisfies

‖u0 − uλ0
(·, 0)‖L2 + ‖v0 − vλ0

(·, 0)‖L2 ≤ ǫ,

then for every t ∈ R, there exists λ ∈ C such that |λ− λ0| ≤ Cǫ,

inf
a,θ∈R

(‖u(·+a, t)−e−iθuλ(·, t)‖L2+‖v(·+a, t)−e−iθvλ(·, t)‖L2) ≤ Cǫ,

where the constant C is independent of ǫ and t.



Lax operators for the MTM

The MTM is obtained from the compatibility condition of the

linear system
~φx = L~φ and ~φt = A~φ,

where

L =
i

2
(|v|2−|u|2)σ3−

iλ√
2

(

0 v
v 0

)

− i√
2λ

(

0 u
u 0

)

+
i

4

(

1

λ2
− λ2

)

σ3

and

A = − i

4
(|u|2+|v|2)σ3−

iλ

2

(

0 v
v 0

)

− i

2λ

(

0 u
u 0

)

+
i

4

(

λ2 +
1

λ2

)

σ3

References:

Kaup–Newell (1977); Kuznetsov–Mikhailov (1977).



Bäcklund transformation for the MTM

◮ Let (u, v) be a C1 solution of the MTM system.

◮ Let ~φ = (φ1, φ2)
t be a C2 nonzero solution of the linear

system associated with (u, v) and λ = δeiγ/2.

A new C1 solution of the MTM system is given by

u = −ue
−iγ/2|φ1|2 + eiγ/2|φ2|2
eiγ/2|φ1|2 + e−iγ/2|φ2|2

+
2iδ−1 sin γφ1φ2

eiγ/2|φ1|2 + e−iγ/2|φ2|2

v = −v e
iγ/2|φ1|2 + e−iγ/2|φ2|2
e−iγ/2|φ1|2 + eiγ/2|φ2|2

− 2iδ sin γφ1φ2

e−iγ/2|φ1|2 + eiγ/2|φ2|2
,

A new C2 nonzero solution ~ψ = (ψ1, ψ2)
t of the linear system

associated with (u,v) and same λ is given by

ψ1 =
φ2

|eiγ/2|φ1|2 + e−iγ/2|φ2|2|
, ψ2 =

φ1
|eiγ/2|φ1|2 + e−iγ/2|φ2|2|

.



Bäcklund transformation 0 ↔ 1 soliton

Let (u, v) = (0, 0) and define

{

φ1 = e
i
4
(λ2−λ−2)x+ i

4
(λ2+λ−2)t,

φ2 = e−
i
4
(λ2−λ−2)x− i

4
(λ2+λ−2)t.

Then, (u,v) = (uλ, vλ).

If λ = eiγ/2 (stationary case), the vector ~ψ is given by

{

ψ1 = e
1

2
x sin γ+ i

2
t cos γ

∣

∣sech
(

x sin γ − iγ2
)
∣

∣ ,

ψ2 = e−
1

2
x sin γ− i

2
t cos γ

∣

∣sech
(

x sin γ − iγ2
)∣

∣ .

It decays exponentially as |x| → ∞.

In the opposite direction, if (u, v) = (uλ, vλ) and ~φ = ~ψ, then

(u,v) = (0, 0).



Steps in the proof of the main result

◮ Step 1: From a perturbed one-soliton to a small solution at

the initial time t = 0.

◮ Step 2: Time evolution of the small solution for t ∈ R.

◮ Step 3: From the small solution to the perturbed

one-soliton for every t ∈ R.



Questions for MTM

◮ Existence of local and global solutions in H1(R) or L2(R)

◮ Orbital stability of gap solitons in H1(R) or L2(R)

◮ Transverse instability of gap solitons in two dimensions



Transverse stability problem
The 2D version of the MTM:

{

i(ut + ux) + v + uyy = 2|v|2u,
i(vt − vx) + u+ vyy = 2|u|2v.

Using the Fourier decomposition like

u(x, y, t) = eiωt[Uω(x) + u1(x)e
λt+ipy], ω ∈ (−1, 1),

we obtain the spectral stability problem

iλσU = (Dω +Wω + p2I)U,

where U ∈ C
4, σ = diag(1,−1, 1,−1), Wω is a decaying

potential, and

Dω =









−i∂x + ω 0 −1 0
0 i∂x + ω 0 −1
−1 0 i∂x + ω 0
0 −1 0 −i∂x + ω









.



Properties of the spectral problem

◮ Continuous spectrum is located along the segments ±iΛ1

and ±iΛ2, where

Λ1 ∈ [1 + ω + p2,∞), Λ2 ∈ [1− ω − p2,∞).

The gap near λ = 0 exists for small p.

◮ If p = 0, there exist exactly two eigenvectors for λ = 0:

Ut = ∂xUω, Ug = iσUω,

and exactly two generalized eigenvectors

Ũt = iωxσUω − 1

2
σ̃Uω, Ũg = ∂ωUω.



Perturbation theory result

Theorem
For every ω ∈ (−1, 1), there exists p0 > 0 such that for every p
with 0 < |p| < p0, the spectral stability problem admits a pair of

real eigenvalues λ with the eigenvectors V ∈ H1(R) such that

λ = ±pΛr(ω)+O(p3), V = Vt±pΛr(ω)Ṽt+OH1(p2) as p→ 0,

where Λr = (1− ω2)−1/4‖U ′
ω‖L2 > 0. Simultaneously, it admits

a pair of purely imaginary eigenvalues λ with the eigenvector

V ∈ H1(R) such that

λ = ±ipΛi(ω)+O(p3), V = Vg±ipΛi(ω)Ṽg+OH1(p2) as p→ 0,

where Λi =
√
2(1− ω2)1/4‖Uω‖L2 > 0.



Numerical method: Chebyshev interpolation

◮ Grid points at xj = Ltanh−1(zj), with j = 0, 1, ..., N , where

zj = cos(jπ/N) is the Chebyshev node.

◮ Parameter L is at our disposal for better resolution of the

fast change of the MTM soliton (L = 10).



Numerical method: Chebyshev interpolation

◮ Grid points at xj = Ltanh−1(zj), with j = 0, 1, ..., N , where

zj = cos(jπ/N) is the Chebyshev node.

◮ Parameter L is at our disposal for better resolution of the

fast change of the MTM soliton (L = 10).

◮ Chebyshev discretization matrices and the chain rule for

the map z → x.

◮ Boundary points at j = 0 and j = N are accounted from
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Numerical method: Chebyshev interpolation

◮ Grid points at xj = Ltanh−1(zj), with j = 0, 1, ..., N , where

zj = cos(jπ/N) is the Chebyshev node.

◮ Parameter L is at our disposal for better resolution of the

fast change of the MTM soliton (L = 10).

◮ Chebyshev discretization matrices and the chain rule for

the map z → x.

◮ Boundary points at j = 0 and j = N are accounted from

the exponential decay of the potentials and zero first and

last rows of the discretization matrices.

◮ Eigenvalues are found from 4(N + 1)× 4(N + 1) matrices.

Reference: M. Chugunova & D.P. [SIAD 5 (2006), 55].



Numerical approximations of eigenvalues for ω = 0
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Isolated eigenvalues for ω = 0
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Accuracy of numerical computations

ω = −0.5 ω = 0 ω = 0.5

N = 100 1.96× 10−1 2.57× 10−1 1.16× 10−1

N = 300 1.36× 10−4 2.18× 10−4 7.02× 10−5

N = 500 2.22× 10−7 8.77× 10−5 6.56× 10−8

Table: max |Re(λ)| along the continuous band for p = 0.
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How general are our conclusions?

◮ Existence of local and global solutions in H1(R) or L2(R)?

⇒ YES: The same methods are extended to other (similar)

nonlinear Dirac equations in 1D.

◮ Orbital stability of gap solitons in H1(R) or L2(R)

⇒ NO: These results are due to integrability of the MTM.

◮ Transverse instability of gap solitons in two dimensions

⇒ YES: These results are extended to other nonlinear

Dirac equations in 1D.
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