Stability of Dirac solitons (the massive Thirring model)

Dmitry Pelinovsky and Yusuke Shimabukuro (McMaster University, Canada)

Los Alamos National Laboratory, January 28, 2015

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

The model

The nonlinear Dirac equations in one spatial dimension,

$$\begin{cases} i(u_t + u_x) + v = \partial_{\bar{u}} W(u, v), \\ i(v_t - v_x) + u = \partial_{\bar{v}} W(u, v), \end{cases}$$

where $W(u, v) : \mathbb{C}^2 \to \mathbb{R}$ satisfies the following three conditions:

- symmetry W(u, v) = W(v, u);
- ► gauge invariance $W(e^{i\theta}u, e^{i\theta}v) = W(u, v)$ for any $\theta \in \mathbb{R}$;

• quartic polynomial in (u, v) and (\bar{u}, \bar{v}) .

The model

The nonlinear Dirac equations in one spatial dimension,

$$\begin{cases} i(u_t + u_x) + v = \partial_{\bar{u}} W(u, v), \\ i(v_t - v_x) + u = \partial_{\bar{v}} W(u, v), \end{cases}$$

where $W(u, v) : \mathbb{C}^2 \to \mathbb{R}$ satisfies the following three conditions:

- symmetry W(u, v) = W(v, u);
- ► gauge invariance $W(e^{i\theta}u, e^{i\theta}v) = W(u, v)$ for any $\theta \in \mathbb{R}$;
- quartic polynomial in (u, v) and (\bar{u}, \bar{v}) .

Examples of nonlinear potentials:

• Coupled-mode system: $W = |u|^4 + 4|u|^2|v|^2 + |v|^4$.

- Gross–Neveu model: $W = (\bar{u}v + u\bar{v})^2$.
- Massive Thirring model: $W = |u|^2 |v|^2$

Massive Thirring Model (MTM)

The MTM in laboratory coordinates

$$\left\{ \begin{array}{l} i(u_t+u_x)+v=2|v|^2 u,\\ i(v_t-v_x)+u=2|u|^2 v, \end{array} \right.$$

First three conserved quantities are

$$Q = \int_{\mathbb{R}} \left(|u|^2 + |v|^2 \right) dx,$$
$$P = \frac{i}{2} \int_{\mathbb{R}} \left(u\bar{u}_x - u_x\bar{u} + v\bar{v}_x - v_x\bar{v} \right) dx,$$
$$H = \frac{i}{2} \int_{\mathbb{R}} \left(u\bar{u}_x - u_x\bar{u} - v\bar{v}_x + v_x\bar{v} \right) dx + \int_{\mathbb{R}} \left(-v\bar{u} - u\bar{v} + 2|u|^2|v|^2 \right) dx.$$

An infinite set of conserved quantities is available thanks to the integrability of the MTM.

A physical context of the MTM system

Dynamics of nonlinear waves in the Gross–Pitaevskii equation with a one-dimensional (stripe) periodic potential

$$i\psi_t = -\psi_{xx} - \psi_{yy} + 2\epsilon \cos(x)\psi + |\psi|^2\psi, \quad \epsilon \ll 1,$$

can be described by the slowly varying decomposition

$$\psi(x,y,t) \approx \sqrt{\epsilon} \left[u(\epsilon x, \sqrt{\epsilon}y, \epsilon t) e^{\frac{i}{2}x - \frac{i}{4}t} + v(\epsilon x, \sqrt{\epsilon}y, \epsilon t) e^{-\frac{i}{2}x - \frac{i}{4}t} \right]$$

The amplitude u and v in slow variables X, Y, and T satisfy the perturbed MTM equations

$$\begin{cases} i(u_T + u_X) + v + u_{YY} = (|u|^2 + 2|v|^2)u, \\ i(v_T - v_X) + u + v_{YY} = (2|u|^2 + |v|^2)v. \end{cases}$$

(日) (日) (日) (日) (日) (日) (日)

Reference: T.Dohnal & A.B. Aceves (2005).

Transverse stability mystery

 J.Yang *et al.* [Opt. Lett. **37** (2012), 1571] - predicted no transverse instability of gap solitons in stripe (one-dimensional) periodic potentials.

(日)

Transverse stability mystery

 J.Yang *et al.* [Opt. Lett. **37** (2012), 1571] - predicted no transverse instability of gap solitons in stripe (one-dimensional) periodic potentials.

D.P. & J. Yang [Physica D 255 (2014), 1] - showed within the tight-binding limit that gap solitons are transversely unstable in all parameter configurations.

Transverse stability mystery

 J.Yang *et al.* [Opt. Lett. **37** (2012), 1571] - predicted no transverse instability of gap solitons in stripe (one-dimensional) periodic potentials.

 D.P. & J. Yang [Physica D 255 (2014), 1] - showed within the tight-binding limit that gap solitons are transversely unstable in all parameter configurations.

 Using the opposite limit of small-amplitude periodic potential, we clarify the mystery and show that gap solitons are indeed transversely unstable for all parameters.

- Existence of local and global solutions in $H^1(\mathbb{R})$ or $L^2(\mathbb{R})$
- Orbital stability of gap solitons in $H^1(\mathbb{R})$ or $L^2(\mathbb{R})$
- Transverse instability of gap solitons in two dimensions

Local and global existence

Theorem

Assume $\mathbf{u}_0 \in H^1(\mathbb{R})$. There exists T > 0 such that the nonlinear Dirac equations admit a unique solution

 $\mathbf{u}(t) \in C([0,T], H^1(\mathbb{R})) \cap C^1([0,T], L^2(\mathbb{R})) : \mathbf{u}(0) = \mathbf{u}_0,$

which depends continuously on the initial data.

Theorem

Assume that *W* is a polynomial in variables $|u|^2$ and $|v|^2$. A local solution in H^1 is extended globally as $\mathbf{u}(t) \in C(\mathbb{R}_+, H^1(\mathbb{R}))$.

References: Delgado (1978); Goodman-Weinstein-Holmes (2001); Selberg-Tesfahun (2010); Huh (2011); Zhang (2013).

• L^2 conservation gives $\|\mathbf{u}(t)\|_{L^2} = \|\mathbf{u}(0)\|_{L^2}$

(ロ)、

- L^2 conservation gives $\|\mathbf{u}(t)\|_{L^2} = \|\mathbf{u}(0)\|_{L^2}$
- ► To obtain apriori energy estimates, W is canceled in

$$\partial_t \left(|u|^{2p+2} + |v|^{2p+2} \right) + \partial_x \left(|u|^{2p+2} - |v|^{2p+2} \right) \\= i(p+1)(v\bar{u} - \bar{v}u)(|u|^{2p} - |v|^{2p})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- L^2 conservation gives $\|\mathbf{u}(t)\|_{L^2} = \|\mathbf{u}(0)\|_{L^2}$
- ► To obtain apriori energy estimates, W is canceled in

$$\partial_t \left(|u|^{2p+2} + |v|^{2p+2} \right) + \partial_x \left(|u|^{2p+2} - |v|^{2p+2} \right) = i(p+1)(v\bar{u} - \bar{v}u)(|u|^{2p} - |v|^{2p}).$$

By Gronwall's inequality, we have

$$\|\mathbf{u}(t)\|_{L^{2p+2}} \le e^{2|t|} \|\mathbf{u}(0)\|_{L^{2p+2}}, \quad t \in [0,T],$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

which holds for any $p \ge 0$ including $p \to \infty$.

- L^2 conservation gives $\|\mathbf{u}(t)\|_{L^2} = \|\mathbf{u}(0)\|_{L^2}$
- ► To obtain apriori energy estimates, W is canceled in

$$\partial_t \left(|u|^{2p+2} + |v|^{2p+2} \right) + \partial_x \left(|u|^{2p+2} - |v|^{2p+2} \right)$$

= $i(p+1)(v\bar{u} - \bar{v}u)(|u|^{2p} - |v|^{2p})$

By Gronwall's inequality, we have

$$\|\mathbf{u}(t)\|_{L^{2p+2}} \le e^{2|t|} \|\mathbf{u}(0)\|_{L^{2p+2}}, \quad t \in [0,T],$$

which holds for any $p \ge 0$ including $p \to \infty$.

This allows to control

$$\frac{d}{dt} \|\partial_x \mathbf{u}(t)\|_{L^2}^2 \le C_W e^{4(N-1)|t|} \|\partial_x \mathbf{u}(t)\|_{L^2}^2,$$

where N is the degree of W in variables $|u|^2$ and $|v|^2$.

Local and global well-posedness in $L^2(\mathbb{R})$

Theorem

For any $(u_0, v_0) \in L^2(\mathbb{R})$, there exists a unique solution of the MTM $(u, v) \in C(\mathbb{R}, L^2(\mathbb{R}))$:

$$||u(\cdot,t)||_{L^2}^2 + ||v(\cdot,t)||_{L^2}^2 = ||u_0||_{L^2}^2 + ||v_0||_{L^2}^2.$$

References: T. Candy (2011); Y. Zhang & Q. Zhao (2015).

- Existence of local and global solutions in $H^1(\mathbb{R})$ or $L^2(\mathbb{R})$
- Orbital stability of gap solitons in $H^1(\mathbb{R})$ or $L^2(\mathbb{R})$
- Transverse instability of gap solitons in two dimensions

Existence of solitary waves

Time-periodic space-localized solutions

$$u(x,t) = U_{\omega}(x)e^{-i\omega t}, \quad v(x,t) = V_{\omega}(x)e^{-i\omega t}$$

satisfy a system of stationary Dirac equations. They are known in the closed analytic form

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

$$\left\{ \begin{array}{l} u(x,t) = i\sin(\gamma) \, \operatorname{sech} \left[x\sin\gamma - i\frac{\gamma}{2} \right] \, e^{-it\cos\gamma}, \\ v(x,t) = -i\sin(\gamma) \, \operatorname{sech} \left[x\sin\gamma + i\frac{\gamma}{2} \right] \, e^{-it\cos\gamma}, \end{array} \right.$$

where $\omega = \cos(\gamma)$.

Existence of solitary waves

Time-periodic space-localized solutions

$$u(x,t) = U_{\omega}(x)e^{-i\omega t}, \quad v(x,t) = V_{\omega}(x)e^{-i\omega t}$$

satisfy a system of stationary Dirac equations. They are known in the closed analytic form

$$\left\{ \begin{array}{l} u(x,t) = i \sin(\gamma) \, \operatorname{sech} \left[x \sin \gamma - i \frac{\gamma}{2} \right] \, e^{-it \cos \gamma}, \\ v(x,t) = -i \sin(\gamma) \, \operatorname{sech} \left[x \sin \gamma + i \frac{\gamma}{2} \right] \, e^{-it \cos \gamma}, \end{array} \right.$$

where $\omega = \cos(\gamma)$.

- ▶ Translations in *x* and *t* can be added as free parameters.
- Constraint ω = cos γ ∈ (−1, 1) exists because spectrum of linear waves is located for (−∞, −1] ∪ [1,∞).
- Moving solitons can be obtained from the stationary solitons with the Lorentz transformation.

Orbital stability of solitary waves

Definition

We say that the solitary wave $e^{-i\omega t}\mathbf{U}_{\omega}(x)$ is orbitally stable if for any $\epsilon > 0$ there is a $\delta(\epsilon) > 0$, such that if

$$\|\mathbf{u}(\cdot,0) - \mathbf{U}_{\omega}(\cdot)\|_{H^1} \le \delta(\epsilon)$$

then

$$\inf_{\theta, a \in \mathbb{R}} \| \mathbf{u}(\cdot, t) - e^{-i\theta} \mathbf{U}_{\omega}(\cdot + a) \|_{H^1} \le \epsilon,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

for all t > 0.

Orbital stability of solitary waves

Definition

We say that the solitary wave $e^{-i\omega t}\mathbf{U}_{\omega}(x)$ is orbitally stable if for any $\epsilon > 0$ there is a $\delta(\epsilon) > 0$, such that if

$$\|\mathbf{u}(\cdot,0) - \mathbf{U}_{\omega}(\cdot)\|_{H^1} \le \delta(\epsilon)$$

then

$$\inf_{\theta, a \in \mathbb{R}} \| \mathbf{u}(\cdot, t) - e^{-i\theta} \mathbf{U}_{\omega}(\cdot + a) \|_{H^1} \le \epsilon,$$

for all t > 0.

- Spectral stability of Dirac solitons was mainly studied numerically, e.g., by I. Barashenkov (1998), G. Gottwald (2005), M. Chugunova (2006), A. Comech (2012), A. Saxena (2014), P. Kevrekidis (2014), ...
- Asymptotic stability of Dirac solitons was proved for quintic nonlinearities by D.P. & A. Stefanov (2012).

Massive Thirring Model (MTM)

The MTM in laboratory coordinates

$$\left\{ \begin{array}{l} i(u_t+u_x)+v=2|v|^2 u,\\ i(v_t-v_x)+u=2|u|^2 v, \end{array} \right.$$

First three conserved quantities are

$$Q = \int_{\mathbb{R}} \left(|u|^2 + |v|^2 \right) dx,$$
$$P = \frac{i}{2} \int_{\mathbb{R}} \left(u\bar{u}_x - u_x\bar{u} + v\bar{v}_x - v_x\bar{v} \right) dx,$$
$$H = \frac{i}{2} \int_{\mathbb{R}} \left(u\bar{u}_x - u_x\bar{u} - v\bar{v}_x + v_x\bar{v} \right) dx + \int_{\mathbb{R}} \left(-v\bar{u} - u\bar{v} + 2|u|^2|v|^2 \right) dx.$$

An infinite set of conserved quantities is available thanks to the integrability of the MTM.

Orbital stability of MTM solitons in H^1

Theorem

There is $\omega_0 \in (0, 1]$ such that for any fixed $\omega = \cos \gamma \in (-\omega_0, \omega_0)$, the MTM soliton is a local non-degenerate minimizer of R in $H^1(\mathbb{R}, \mathbb{C}^2)$ under the constraints of fixed values of Q and P.

The higher-order Hamiltonian R is

$$R = \int_{\mathbb{R}} \left[|u_x|^2 + |v_x|^2 - \frac{i}{2} (u_x \overline{u} - \overline{u}_x u) (|u|^2 + 2|v|^2) + \frac{i}{2} (v_x \overline{v} - \overline{v}_x v) (2|u|^2 + |v|^2) - (u\overline{v} + \overline{u}v) (|u|^2 + |v|^2) + 2|u|^2 |v|^2 (|u|^2 + |v|^2) \right] dx.$$

R is a conserved quantity of the MTM in addition to the standard Hamiltonian H, the charge Q, and the momentum P.

The energy functionals

Critical points of *H* + ω*Q* for a fixed ω ∈ (−1, 1) satisfy the stationary MTM equations. After the reduction (*u*, *v*) = (*U*, *U*), we obtain the first-order equation

$$i\frac{dU}{dx} - \omega U + \overline{U} = 2|U|^2 U,$$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

which is satisfied by the MTM soliton $U = U_{\omega}$.

The energy functionals

Critical points of *H* + ω*Q* for a fixed ω ∈ (−1, 1) satisfy the stationary MTM equations. After the reduction (*u*, *v*) = (*U*, *U*), we obtain the first-order equation

$$i\frac{dU}{dx} - \omega U + \overline{U} = 2|U|^2 U,$$

which is satisfied by the MTM soliton $U = U_{\omega}$.

Critical points of R + ΩQ for some fixed Ω ∈ ℝ satisfy another system of equations. After the reduction (u, v) = (U, U), we obtain the second-order equation

$$\frac{d^2U}{dx^2} + 6i|U|^2\frac{dU}{dx} - 6|U|^4U + 3|U|^2\bar{U} + U^3 = \Omega U.$$

 $U = U_{\omega}$ satisfies this equation if $\Omega = 1 - \omega^2$.

The Lyapunov functional for MTM solitons

There is no chance for the standard energy functional

 $\Lambda_{\omega} := H + \omega Q$

to become a Lyapunov functional for MTM solitons.

However, the higher-order energy functional

$$\tilde{\Lambda}_{\omega} := R + (1 - \omega^2)Q, \quad \omega \in (-1, 1),$$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

has U_{ω} as a critical point and ...

The Lyapunov functional for MTM solitons

There is no chance for the standard energy functional

 $\Lambda_{\omega} := H + \omega Q$

to become a Lyapunov functional for MTM solitons.

However, the higher-order energy functional

$$\tilde{\Lambda}_{\omega} := R + (1 - \omega^2)Q, \quad \omega \in (-1, 1),$$

has U_{ω} as a critical point and ...

... the second variation of $\tilde{\Lambda}_{\omega}$ at U_{ω} is proved to have exactly one negative eigenvalue for small $\omega \neq 0$ in addition to the double zero eigenvalue. (For $\omega = 0$, no negative eigenvalues exist but the zero eigenvalue is quadruple.)

Constrained Hilbert spaces

Assume that $(u, v) \in L^2(\mathbb{R}; \mathbb{C}^2)$ satisfies the constraints:

$$\int_{\mathbb{R}} \left(\bar{U}_{\omega} u + U_{\omega} v \right) dx = 0, \qquad (1)$$
$$\int_{\mathbb{R}} \left(\bar{U}_{\omega}' u + U_{\omega}' v \right) dx = 0. \qquad (2)$$

- Real part of Eq (1) corresponds to fixed Q (charge).
- Imaginary part of Eq. (2) corresponds to fixed P (momentum).
- ► Imaginary part of Eq. (1) corresponds to orthogonality to the gauge translation $u \mapsto ue^{i\alpha}$, $v \mapsto ve^{i\alpha}$.
- ► Real part of Eq. (2) corresponds to orthogonality to the space translation u(x) → u(x + x₀), v(x) → v(x + x₀).

Constrained Hilbert spaces

Assume that $(u, v) \in L^2(\mathbb{R}; \mathbb{C}^2)$ satisfies the constraints:

$$\int_{\mathbb{R}} \left(\bar{U}_{\omega} u + U_{\omega} v \right) dx = 0, \qquad (1)$$
$$\int_{\mathbb{R}} \left(\bar{U}_{\omega}' u + U_{\omega}' v \right) dx = 0. \qquad (2)$$

- Real part of Eq (1) corresponds to fixed Q (charge).
- Imaginary part of Eq. (2) corresponds to fixed P (momentum).
- ► Imaginary part of Eq. (1) corresponds to orthogonality to the gauge translation $u \mapsto ue^{i\alpha}$, $v \mapsto ve^{i\alpha}$.
- ► Real part of Eq. (2) corresponds to orthogonality to the space translation u(x) → u(x + x₀), v(x) → v(x + x₀).

The constraints (1)–(2) remove the negative and zero eigenvalues of the second variation of $\tilde{\Lambda}_{\omega}$.

Orbital stability result

Strict positivity (coercivity) of the second variation implies

 $\tilde{\Lambda}_{\omega}(\mathbf{U}_{\omega} + \mathbf{u}) - \tilde{\Lambda}_{\omega}(\mathbf{U}_{\omega}) \ge C \|\mathbf{u}\|_{H^1}^2 + \mathcal{O}(3),$

for all $\mathbf{u} \in H^1(\mathbb{R}; \mathbb{C}^2)$ in the constrained space.

- R, Q, and P are constant in time t and so is $\tilde{\Lambda}_{\omega}$.
- Then, we obtain the global lower bound for the solution u:

$$\tilde{\Lambda}_{\omega}(\mathbf{u}) - \tilde{\Lambda}_{\omega}(\mathbf{U}_{\omega}) \ge \inf_{\theta, x_0} \|\mathbf{u}(\cdot, t) - e^{i\theta} \mathbf{U}_{\omega}(\cdot + x_0)\|_{H^1}^2$$

for every $t \in \mathbb{R}$.

• This yields orbital stability in $H^1(\mathbb{R})$ for $\omega \in (-\omega_0, \omega_0)$.

Orbital stability of MTM solitons in L^2

Theorem

Let $(u, v) \in C(\mathbb{R}; L^2(\mathbb{R}))$ be a solution of the MTM system and λ_0 be a complex non-zero number. There exist a real positive constant ϵ such that if the initial value $(u_0, v_0) \in L^2(\mathbb{R})$ satisfies

$$||u_0 - u_{\lambda_0}(\cdot, 0)||_{L^2} + ||v_0 - v_{\lambda_0}(\cdot, 0)||_{L^2} \le \epsilon,$$

then for every $t \in \mathbb{R}$, there exists $\lambda \in \mathbb{C}$ such that $|\lambda - \lambda_0| \leq C\epsilon$,

 $\inf_{a,\theta\in\mathbb{R}} (\|u(\cdot+a,t)-e^{-i\theta}u_{\lambda}(\cdot,t)\|_{L^{2}}+\|v(\cdot+a,t)-e^{-i\theta}v_{\lambda}(\cdot,t)\|_{L^{2}}) \leq C\epsilon,$

where the constant C is independent of ϵ and t.

Lax operators for the MTM

The MTM is obtained from the compatibility condition of the linear system

$$\vec{\phi}_x = L\vec{\phi}$$
 and $\vec{\phi}_t = A\vec{\phi}$,

where

$$L = \frac{i}{2}(|v|^2 - |u|^2)\sigma_3 - \frac{i\lambda}{\sqrt{2}} \begin{pmatrix} 0 & \overline{v} \\ v & 0 \end{pmatrix} - \frac{i}{\sqrt{2}\lambda} \begin{pmatrix} 0 & \overline{u} \\ u & 0 \end{pmatrix} + \frac{i}{4} \left(\frac{1}{\lambda^2} - \lambda^2\right)\sigma_3$$

and

$$A = -\frac{i}{4}(|u|^2 + |v|^2)\sigma_3 - \frac{i\lambda}{2} \begin{pmatrix} 0 & \overline{v} \\ v & 0 \end{pmatrix} - \frac{i}{2\lambda} \begin{pmatrix} 0 & \overline{u} \\ u & 0 \end{pmatrix} + \frac{i}{4} \left(\lambda^2 + \frac{1}{\lambda^2}\right)\sigma_3$$

References:

Kaup-Newell (1977); Kuznetsov-Mikhailov (1977).

Bäcklund transformation for the MTM

- Let (u, v) be a C^1 solution of the MTM system.
- Let φ̃ = (φ₁, φ₂)^t be a C² nonzero solution of the linear system associated with (u, v) and λ = δe^{iγ/2}.

A new C^1 solution of the MTM system is given by

$$\mathbf{u} = -u \frac{e^{-i\gamma/2} |\phi_1|^2 + e^{i\gamma/2} |\phi_2|^2}{e^{i\gamma/2} |\phi_1|^2 + e^{-i\gamma/2} |\phi_2|^2} + \frac{2i\delta^{-1} \sin \gamma \overline{\phi}_1 \phi_2}{e^{i\gamma/2} |\phi_1|^2 + e^{-i\gamma/2} |\phi_2|^2}$$
$$\mathbf{v} = -v \frac{e^{i\gamma/2} |\phi_1|^2 + e^{-i\gamma/2} |\phi_2|^2}{e^{-i\gamma/2} |\phi_1|^2 + e^{i\gamma/2} |\phi_2|^2} - \frac{2i\delta \sin \gamma \overline{\phi}_1 \phi_2}{e^{-i\gamma/2} |\phi_1|^2 + e^{i\gamma/2} |\phi_2|^2},$$

A new C^2 nonzero solution $\vec{\psi} = (\psi_1, \psi_2)^t$ of the linear system associated with (\mathbf{u}, \mathbf{v}) and same λ is given by

$$\psi_1 = \frac{\overline{\phi}_2}{|e^{i\gamma/2}|\phi_1|^2 + e^{-i\gamma/2}|\phi_2|^2|}, \quad \psi_2 = \frac{\overline{\phi}_1}{|e^{i\gamma/2}|\phi_1|^2 + e^{-i\gamma/2}|\phi_2|^2|}.$$

Bäcklund transformation $0 \leftrightarrow 1$ soliton

Let (u, v) = (0, 0) and define

$$\begin{cases} \phi_1 = e^{\frac{i}{4}(\lambda^2 - \lambda^{-2})x + \frac{i}{4}(\lambda^2 + \lambda^{-2})t}, \\ \phi_2 = e^{-\frac{i}{4}(\lambda^2 - \lambda^{-2})x - \frac{i}{4}(\lambda^2 + \lambda^{-2})t} \end{cases}$$

Then, $(\mathbf{u}, \mathbf{v}) = (u_{\lambda}, v_{\lambda}).$

If $\lambda = e^{i\gamma/2}$ (stationary case), the vector $\vec{\psi}$ is given by $\begin{cases}
\psi_1 = e^{\frac{1}{2}x\sin\gamma + \frac{i}{2}t\cos\gamma} \left|\operatorname{sech}\left(x\sin\gamma - i\frac{\gamma}{2}\right)\right|, \\
\psi_2 = e^{-\frac{1}{2}x\sin\gamma - \frac{i}{2}t\cos\gamma} \left|\operatorname{sech}\left(x\sin\gamma - i\frac{\gamma}{2}\right)\right|.
\end{cases}$

It decays exponentially as $|x| \to \infty$.

In the opposite direction, if $(u, v) = (u_{\lambda}, v_{\lambda})$ and $\vec{\phi} = \vec{\psi}$, then $(\mathbf{u}, \mathbf{v}) = (0, 0)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Steps in the proof of the main result

Step 1: From a perturbed one-soliton to a small solution at the initial time t = 0.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

- Step 2: Time evolution of the small solution for $t \in \mathbb{R}$.
- Step 3: From the small solution to the perturbed one-soliton for every $t \in \mathbb{R}$.

- Existence of local and global solutions in $H^1(\mathbb{R})$ or $L^2(\mathbb{R})$
- Orbital stability of gap solitons in $H^1(\mathbb{R})$ or $L^2(\mathbb{R})$
- Transverse instability of gap solitons in two dimensions

Transverse stability problem

The 2D version of the MTM:

$$\begin{cases} i(u_t + u_x) + v + u_{yy} = 2|v|^2 u, \\ i(v_t - v_x) + u + v_{yy} = 2|u|^2 v. \end{cases}$$

Using the Fourier decomposition like

$$u(x, y, t) = e^{i\omega t} [U_{\omega}(x) + u_1(x)e^{\lambda t + ipy}], \quad \omega \in (-1, 1),$$

we obtain the spectral stability problem

$$i\lambda\sigma\mathbf{U} = (D_{\omega} + W_{\omega} + p^2I)\mathbf{U},$$

where $\mathbf{U} \in \mathbb{C}^4$, $\sigma = \text{diag}(1, -1, 1, -1)$, W_{ω} is a decaying potential, and

$$D_{\omega} = \begin{bmatrix} -i\partial_x + \omega & 0 & -1 & 0\\ 0 & i\partial_x + \omega & 0 & -1\\ -1 & 0 & i\partial_x + \omega & 0\\ 0 & -1 & 0 & -i\partial_x + \omega \end{bmatrix}.$$

Properties of the spectral problem

 Continuous spectrum is located along the segments ±iΛ₁ and ±iΛ₂, where

$$\Lambda_1 \in [1 + \omega + p^2, \infty), \quad \Lambda_2 \in [1 - \omega - p^2, \infty).$$

The gap near $\lambda = 0$ exists for small p.

• If p = 0, there exist exactly two eigenvectors for $\lambda = 0$:

$$\mathbf{U}_t = \partial_x \mathbf{U}_\omega, \quad \mathbf{U}_g = i\sigma \mathbf{U}_\omega,$$

and exactly two generalized eigenvectors

$$\tilde{\mathbf{U}}_t = i\omega x \sigma \mathbf{U}_\omega - \frac{1}{2} \tilde{\sigma} \mathbf{U}_\omega, \quad \tilde{\mathbf{U}}_g = \partial_\omega \mathbf{U}_\omega.$$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Perturbation theory result

Theorem

For every $\omega \in (-1, 1)$, there exists $p_0 > 0$ such that for every pwith $0 < |p| < p_0$, the spectral stability problem admits a pair of real eigenvalues λ with the eigenvectors $\mathbf{V} \in H^1(\mathbb{R})$ such that

$$\lambda = \pm p\Lambda_r(\omega) + \mathcal{O}(p^3), \quad \mathbf{V} = \mathbf{V}_t \pm p\Lambda_r(\omega)\tilde{\mathbf{V}}_t + \mathcal{O}_{H^1}(p^2) \quad \text{as} \quad p \to 0,$$

where $\Lambda_r = (1 - \omega^2)^{-1/4} ||U'_{\omega}||_{L^2} > 0$. Simultaneously, it admits a pair of purely imaginary eigenvalues λ with the eigenvector $\mathbf{V} \in H^1(\mathbb{R})$ such that

$$\lambda = \pm ip\Lambda_i(\omega) + \mathcal{O}(p^3), \quad \mathbf{V} = \mathbf{V}_g \pm ip\Lambda_i(\omega)\tilde{\mathbf{V}}_g + \mathcal{O}_{H^1}(p^2) \quad \text{as} \quad p \to 0,$$

(日) (日) (日) (日) (日) (日) (日)

where $\Lambda_i = \sqrt{2}(1-\omega^2)^{1/4} \|U_\omega\|_{L^2} > 0.$

Numerical method: Chebyshev interpolation

- Grid points at $x_j = L \tanh^{-1}(z_j)$, with j = 0, 1, ..., N, where $z_j = \cos(j\pi/N)$ is the Chebyshev node.
- ▶ Parameter *L* is at our disposal for better resolution of the fast change of the MTM soliton (L = 10).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Numerical method: Chebyshev interpolation

- Grid points at $x_j = L \tanh^{-1}(z_j)$, with j = 0, 1, ..., N, where $z_j = \cos(j\pi/N)$ is the Chebyshev node.
- ▶ Parameter *L* is at our disposal for better resolution of the fast change of the MTM soliton (L = 10).
- Chebyshev discretization matrices and the chain rule for the map z → x.
- Boundary points at j = 0 and j = N are accounted from the exponential decay of the potentials and zero first and last rows of the discretization matrices.

Numerical method: Chebyshev interpolation

- Grid points at $x_j = L \tanh^{-1}(z_j)$, with j = 0, 1, ..., N, where $z_j = \cos(j\pi/N)$ is the Chebyshev node.
- ▶ Parameter *L* is at our disposal for better resolution of the fast change of the MTM soliton (L = 10).
- Chebyshev discretization matrices and the chain rule for the map z → x.
- Boundary points at j = 0 and j = N are accounted from the exponential decay of the potentials and zero first and last rows of the discretization matrices.
- Eigenvalues are found from $4(N+1) \times 4(N+1)$ matrices.

Reference: M. Chugunova & D.P. [SIAD 5 (2006), 55].

Numerical approximations of eigenvalues for $\omega = 0$

◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ □ →

Isolated eigenvalues for $\omega = 0$

◆ロ▶ ◆昼▶ ◆臣▶ ◆臣▶ ○臣 ○の≪⊙

Accuracy of numerical computations

	$\omega = -0.5$	$\omega = 0$	$\omega = 0.5$
N = 100	$1.96 imes 10^{-1}$	$2.57 imes 10^{-1}$	1.16×10^{-1}
N = 300	$1.36 imes 10^{-4}$	$2.18 imes 10^{-4}$	7.02×10^{-5}
N = 500	2.22×10^{-7}	8.77×10^{-5}	6.56×10^{-8}

Table: $\max |\operatorname{Re}(\lambda)|$ along the continuous band for p = 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

How general are our conclusions?

• Existence of local and global solutions in $H^1(\mathbb{R})$ or $L^2(\mathbb{R})$?

 \Rightarrow YES: The same methods are extended to other (similar) nonlinear Dirac equations in 1D.

How general are our conclusions?

• Existence of local and global solutions in $H^1(\mathbb{R})$ or $L^2(\mathbb{R})$?

 \Rightarrow YES: The same methods are extended to other (similar) nonlinear Dirac equations in 1D.

• Orbital stability of gap solitons in $H^1(\mathbb{R})$ or $L^2(\mathbb{R})$

 \Rightarrow NO: These results are due to integrability of the MTM.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

How general are our conclusions?

• Existence of local and global solutions in $H^1(\mathbb{R})$ or $L^2(\mathbb{R})$?

 \Rightarrow YES: The same methods are extended to other (similar) nonlinear Dirac equations in 1D.

- ► Orbital stability of gap solitons in H¹(ℝ) or L²(ℝ) ⇒ NO: These results are due to integrability of the MTM.
- Transverse instability of gap solitons in two dimensions
 YES: These results are extended to other nonlinear Dirac equations in 1D.