Stability of Dirac solitons

(the massive Thirring model)

Dmitry Pelinovsky and Yusuke Shimabukuro
 (McMaster University, Canada)

Los Alamos National Laboratory, January 28, 2015

The model

The nonlinear Dirac equations in one spatial dimension,

$$
\left\{\begin{aligned}
i\left(u_{t}+u_{x}\right)+v & =\partial_{\bar{u}} W(u, v) \\
i\left(v_{t}-v_{x}\right)+u & =\partial_{\bar{v}} W(u, v)
\end{aligned}\right.
$$

where $W(u, v): \mathbb{C}^{2} \rightarrow \mathbb{R}$ satisfies the following three conditions:

- symmetry $W(u, v)=W(v, u)$;
- gauge invariance $W\left(e^{i \theta} u, e^{i \theta} v\right)=W(u, v)$ for any $\theta \in \mathbb{R}$;
- quartic polynomial in (u, v) and (\bar{u}, \bar{v}).

The model

The nonlinear Dirac equations in one spatial dimension,

$$
\left\{\begin{aligned}
i\left(u_{t}+u_{x}\right)+v & =\partial_{\bar{u}} W(u, v) \\
i\left(v_{t}-v_{x}\right)+u & =\partial_{\bar{v}} W(u, v)
\end{aligned}\right.
$$

where $W(u, v): \mathbb{C}^{2} \rightarrow \mathbb{R}$ satisfies the following three conditions:

- symmetry $W(u, v)=W(v, u)$;
- gauge invariance $W\left(e^{i \theta} u, e^{i \theta} v\right)=W(u, v)$ for any $\theta \in \mathbb{R}$;
- quartic polynomial in (u, v) and (\bar{u}, \bar{v}).

Examples of nonlinear potentials:

- Coupled-mode system: $W=|u|^{4}+4|u|^{2}|v|^{2}+|v|^{4}$.
- Gross-Neveu model: $W=(\bar{u} v+u \bar{v})^{2}$.
- Massive Thirring model: $W=|u|^{2}|v|^{2}$

Massive Thirring Model (MTM)

The MTM in laboratory coordinates

$$
\left\{\begin{aligned}
i\left(u_{t}+u_{x}\right)+v & =2|v|^{2} u \\
i\left(v_{t}-v_{x}\right)+u & =2|u|^{2} v
\end{aligned}\right.
$$

First three conserved quantities are

$$
\begin{gathered}
Q=\int_{\mathbb{R}}\left(|u|^{2}+|v|^{2}\right) d x \\
P=\frac{i}{2} \int_{\mathbb{R}}\left(u \bar{u}_{x}-u_{x} \bar{u}+v \bar{v}_{x}-v_{x} \bar{v}\right) d x \\
H=\frac{i}{2} \int_{\mathbb{R}}\left(u \bar{u}_{x}-u_{x} \bar{u}-v \bar{v}_{x}+v_{x} \bar{v}\right) d x+\int_{\mathbb{R}}\left(-v \bar{u}-u \bar{v}+2|u|^{2}|v|^{2}\right) d x
\end{gathered}
$$

An infinite set of conserved quantities is available thanks to the integrability of the MTM.

A physical context of the MTM system

Dynamics of nonlinear waves in the Gross-Pitaevskii equation with a one-dimensional (stripe) periodic potential

$$
i \psi_{t}=-\psi_{x x}-\psi_{y y}+2 \epsilon \cos (x) \psi+|\psi|^{2} \psi, \quad \epsilon \ll 1
$$

can be described by the slowly varying decomposition

$$
\psi(x, y, t) \approx \sqrt{\epsilon}\left[u(\epsilon x, \sqrt{\epsilon} y, \epsilon t) e^{\frac{i}{2} x-\frac{i}{4} t}+v(\epsilon x, \sqrt{\epsilon} y, \epsilon t) e^{-\frac{i}{2} x-\frac{i}{4} t}\right] .
$$

The amplitude u and v in slow variables X, Y, and T satisfy the perturbed MTM equations

$$
\left\{\begin{array}{l}
i\left(u_{T}+u_{X}\right)+v+u_{Y Y}=\left(|u|^{2}+2|v|^{2}\right) u \\
i\left(v_{T}-v_{X}\right)+u+v_{Y Y}=\left(2|u|^{2}+|v|^{2}\right) v
\end{array}\right.
$$

Reference: T.Dohnal \& A.B. Aceves (2005).

Transverse stability mystery

- J.Yang et al. [Opt. Lett. 37 (2012), 1571] - predicted no transverse instability of gap solitons in stripe (one-dimensional) periodic potentials.

Transverse stability mystery

- J.Yang et al. [Opt. Lett. 37 (2012), 1571] - predicted no transverse instability of gap solitons in stripe (one-dimensional) periodic potentials.
- D.P. \& J. Yang [Physica D 255 (2014), 1] - showed within the tight-binding limit that gap solitons are transversely unstable in all parameter configurations.

Transverse stability mystery

- J.Yang et al. [Opt. Lett. 37 (2012), 1571] - predicted no transverse instability of gap solitons in stripe (one-dimensional) periodic potentials.
- D.P. \& J. Yang [Physica D 255 (2014), 1] - showed within the tight-binding limit that gap solitons are transversely unstable in all parameter configurations.
- Using the opposite limit of small-amplitude periodic potential, we clarify the mystery and show that gap solitons are indeed transversely unstable for all parameters.

Questions for MTM

- Existence of local and global solutions in $H^{1}(\mathbb{R})$ or $L^{2}(\mathbb{R})$
- Orbital stability of gap solitons in $H^{1}(\mathbb{R})$ or $L^{2}(\mathbb{R})$
- Transverse instability of gap solitons in two dimensions

Local and global existence

Theorem
Assume $\mathbf{u}_{0} \in H^{1}(\mathbb{R})$. There exists $T>0$ such that the nonlinear Dirac equations admit a unique solution

$$
\mathbf{u}(t) \in C\left([0, T], H^{1}(\mathbb{R})\right) \cap C^{1}\left([0, T], L^{2}(\mathbb{R})\right): \quad \mathbf{u}(0)=\mathbf{u}_{0}
$$

which depends continuously on the initial data.

Theorem
Assume that W is a polynomial in variables $|u|^{2}$ and $|v|^{2}$. A local solution in H^{1} is extended globally as $\mathbf{u}(t) \in C\left(\mathbb{R}_{+}, H^{1}(\mathbb{R})\right)$.

References: Delgado (1978); Goodman-Weinstein-Holmes (2001); Selberg-Tesfahun (2010); Huh (2011); Zhang (2013).

Quick proof of global well-posedness in $H^{1}(\mathbb{R})$

- L^{2} conservation gives $\|\mathbf{u}(t)\|_{L^{2}}=\|\mathbf{u}(0)\|_{L^{2}}$

Quick proof of global well-posedness in $H^{1}(\mathbb{R})$

- L^{2} conservation gives $\|\mathbf{u}(t)\|_{L^{2}}=\|\mathbf{u}(0)\|_{L^{2}}$
- To obtain apriori energy estimates, W is canceled in

$$
\begin{aligned}
\partial_{t}\left(|u|^{2 p+2}\right. & \left.+|v|^{2 p+2}\right)+\partial_{x}\left(|u|^{2 p+2}-|v|^{2 p+2}\right) \\
& =i(p+1)(v \bar{u}-\bar{v} u)\left(|u|^{2 p}-|v|^{2 p}\right)
\end{aligned}
$$

Quick proof of global well-posedness in $H^{1}(\mathbb{R})$

- L^{2} conservation gives $\|\mathbf{u}(t)\|_{L^{2}}=\|\mathbf{u}(0)\|_{L^{2}}$
- To obtain apriori energy estimates, W is canceled in

$$
\begin{aligned}
\partial_{t}\left(|u|^{2 p+2}\right. & \left.+|v|^{2 p+2}\right)+\partial_{x}\left(|u|^{2 p+2}-|v|^{2 p+2}\right) \\
& =i(p+1)(v \bar{u}-\bar{v} u)\left(|u|^{2 p}-|v|^{2 p}\right)
\end{aligned}
$$

- By Gronwall's inequality, we have

$$
\|\mathbf{u}(t)\|_{L^{2 p+2}} \leq e^{2|t|}\|\mathbf{u}(0)\|_{L^{2 p+2}}, \quad t \in[0, T]
$$

which holds for any $p \geq 0$ including $p \rightarrow \infty$.

Quick proof of global well-posedness in $H^{1}(\mathbb{R})$

- L^{2} conservation gives $\|\mathbf{u}(t)\|_{L^{2}}=\|\mathbf{u}(0)\|_{L^{2}}$
- To obtain apriori energy estimates, W is canceled in

$$
\begin{aligned}
\partial_{t}\left(|u|^{2 p+2}\right. & \left.+|v|^{2 p+2}\right)+\partial_{x}\left(|u|^{2 p+2}-|v|^{2 p+2}\right) \\
& =i(p+1)(v \bar{u}-\bar{v} u)\left(|u|^{2 p}-|v|^{2 p}\right)
\end{aligned}
$$

- By Gronwall's inequality, we have

$$
\|\mathbf{u}(t)\|_{L^{2 p+2}} \leq e^{2|t|}\|\mathbf{u}(0)\|_{L^{2 p+2}}, \quad t \in[0, T]
$$

which holds for any $p \geq 0$ including $p \rightarrow \infty$.

- This allows to control

$$
\frac{d}{d t}\left\|\partial_{x} \mathbf{u}(t)\right\|_{L^{2}}^{2} \leq C_{W} e^{4(N-1)|t|}\left\|\partial_{x} \mathbf{u}(t)\right\|_{L^{2}}^{2}
$$

where N is the degree of W in variables $|u|^{2}$ and $|v|^{2}$.

Local and global well-posedness in $L^{2}(\mathbb{R})$

Theorem
For any $\left(u_{0}, v_{0}\right) \in L^{2}(\mathbb{R})$, there exists a unique solution of the $\operatorname{MTM}(u, v) \in C\left(\mathbb{R}, L^{2}(\mathbb{R})\right)$:

$$
\|u(\cdot, t)\|_{L^{2}}^{2}+\|v(\cdot, t)\|_{L^{2}}^{2}=\left\|u_{0}\right\|_{L^{2}}^{2}+\left\|v_{0}\right\|_{L^{2}}^{2}
$$

References: T. Candy (2011); Y. Zhang \& Q. Zhao (2015).

Questions for MTM

- Existence of local and global solutions in $H^{1}(\mathbb{R})$ or $L^{2}(\mathbb{R})$
- Orbital stability of gap solitons in $H^{1}(\mathbb{R})$ or $L^{2}(\mathbb{R})$
- Transverse instability of gap solitons in two dimensions

Existence of solitary waves

Time-periodic space-localized solutions

$$
u(x, t)=U_{\omega}(x) e^{-i \omega t}, \quad v(x, t)=V_{\omega}(x) e^{-i \omega t}
$$

satisfy a system of stationary Dirac equations. They are known in the closed analytic form

$$
\left\{\begin{array}{l}
u(x, t)=i \sin (\gamma) \operatorname{sech}\left[x \sin \gamma-i \frac{\gamma}{2}\right] e^{-i t \cos \gamma} \\
v(x, t)=-i \sin (\gamma) \operatorname{sech}\left[x \sin \gamma+i \frac{\gamma}{2}\right] e^{-i t \cos \gamma}
\end{array}\right.
$$

where $\omega=\cos (\gamma)$.

Existence of solitary waves

Time-periodic space-localized solutions

$$
u(x, t)=U_{\omega}(x) e^{-i \omega t}, \quad v(x, t)=V_{\omega}(x) e^{-i \omega t}
$$

satisfy a system of stationary Dirac equations. They are known in the closed analytic form

$$
\left\{\begin{array}{l}
u(x, t)=i \sin (\gamma) \operatorname{sech}\left[x \sin \gamma-i \frac{\gamma}{2}\right] e^{-i t \cos \gamma} \\
v(x, t)=-i \sin (\gamma) \operatorname{sech}\left[x \sin \gamma+i \frac{\gamma}{2}\right] e^{-i t \cos \gamma}
\end{array}\right.
$$

where $\omega=\cos (\gamma)$.

- Translations in x and t can be added as free parameters.
- Constraint $\omega=\cos \gamma \in(-1,1)$ exists because spectrum of linear waves is located for $(-\infty,-1] \cup[1, \infty)$.
- Moving solitons can be obtained from the stationary solitons with the Lorentz transformation.

Orbital stability of solitary waves

Definition

We say that the solitary wave $e^{-i \omega t} \mathbf{U}_{\omega}(x)$ is orbitally stable if for any $\epsilon>0$ there is a $\delta(\epsilon)>0$, such that if

$$
\left\|\mathbf{u}(\cdot, 0)-\mathbf{U}_{\omega}(\cdot)\right\|_{H^{1}} \leq \delta(\epsilon)
$$

then

$$
\inf _{\theta, a \in \mathbb{R}}\left\|\mathbf{u}(\cdot, t)-e^{-i \theta} \mathbf{U}_{\omega}(\cdot+a)\right\|_{H^{1}} \leq \epsilon
$$

for all $t>0$.

Orbital stability of solitary waves

Definition

We say that the solitary wave $e^{-i \omega t} \mathbf{U}_{\omega}(x)$ is orbitally stable if for any $\epsilon>0$ there is a $\delta(\epsilon)>0$, such that if

$$
\left\|\mathbf{u}(\cdot, 0)-\mathbf{U}_{\omega}(\cdot)\right\|_{H^{1}} \leq \delta(\epsilon)
$$

then

$$
\inf _{\theta, a \in \mathbb{R}}\left\|\mathbf{u}(\cdot, t)-e^{-i \theta} \mathbf{U}_{\omega}(\cdot+a)\right\|_{H^{1}} \leq \epsilon,
$$

for all $t>0$.

- Spectral stability of Dirac solitons was mainly studied numerically, e.g., by I. Barashenkov (1998), G. Gottwald (2005), M. Chugunova (2006), A. Comech (2012), A. Saxena (2014), P. Kevrekidis (2014), ...
- Asymptotic stability of Dirac solitons was proved for quintic nonlinearities by D.P. \& A. Stefanov (2012).

Massive Thirring Model (MTM)

The MTM in laboratory coordinates

$$
\left\{\begin{aligned}
i\left(u_{t}+u_{x}\right)+v & =2|v|^{2} u \\
i\left(v_{t}-v_{x}\right)+u & =2|u|^{2} v
\end{aligned}\right.
$$

First three conserved quantities are

$$
\begin{gathered}
Q=\int_{\mathbb{R}}\left(|u|^{2}+|v|^{2}\right) d x \\
P=\frac{i}{2} \int_{\mathbb{R}}\left(u \bar{u}_{x}-u_{x} \bar{u}+v \bar{v}_{x}-v_{x} \bar{v}\right) d x \\
H=\frac{i}{2} \int_{\mathbb{R}}\left(u \bar{u}_{x}-u_{x} \bar{u}-v \bar{v}_{x}+v_{x} \bar{v}\right) d x+\int_{\mathbb{R}}\left(-v \bar{u}-u \bar{v}+2|u|^{2}|v|^{2}\right) d x
\end{gathered}
$$

An infinite set of conserved quantities is available thanks to the integrability of the MTM.

Orbital stability of MTM solitons in H^{1}

Theorem
There is $\omega_{0} \in(0,1]$ such that for any fixed $\omega=\cos \gamma \in\left(-\omega_{0}, \omega_{0}\right)$, the MTM soliton is a local non-degenerate minimizer of R in $H^{1}\left(\mathbb{R}, \mathbb{C}^{2}\right)$ under the constraints of fixed values of Q and P.

The higher-order Hamiltonian R is

$$
\begin{gathered}
R=\int_{\mathbb{R}}\left[\left|u_{x}\right|^{2}+\left|v_{x}\right|^{2}-\frac{i}{2}\left(u_{x} \bar{u}-\bar{u}_{x} u\right)\left(|u|^{2}+2|v|^{2}\right)+\frac{i}{2}\left(v_{x} \bar{v}-\bar{v}_{x} v\right)\left(2|u|^{2}+|v|^{2}\right)\right. \\
\left.-(u \bar{v}+\bar{u} v)\left(|u|^{2}+|v|^{2}\right)+2|u|^{2}|v|^{2}\left(|u|^{2}+|v|^{2}\right)\right] d x .
\end{gathered}
$$

R is a conserved quantity of the MTM in addition to the standard Hamiltonian H, the charge Q, and the momentum P.

The energy functionals

- Critical points of $H+\omega Q$ for a fixed $\omega \in(-1,1)$ satisfy the stationary MTM equations. After the reduction $(u, v)=(U, \bar{U})$, we obtain the first-order equation

$$
i \frac{d U}{d x}-\omega U+\bar{U}=2|U|^{2} U
$$

which is satisfied by the MTM soliton $U=U_{\omega}$.

The energy functionals

- Critical points of $H+\omega Q$ for a fixed $\omega \in(-1,1)$ satisfy the stationary MTM equations. After the reduction $(u, v)=(U, \bar{U})$, we obtain the first-order equation

$$
i \frac{d U}{d x}-\omega U+\bar{U}=2|U|^{2} U
$$

which is satisfied by the MTM soliton $U=U_{\omega}$.

- Critical points of $R+\Omega Q$ for some fixed $\Omega \in \mathbb{R}$ satisfy another system of equations. After the reduction $(u, v)=(U, \bar{U})$, we obtain the second-order equation

$$
\frac{d^{2} U}{d x^{2}}+6 i|U|^{2} \frac{d U}{d x}-6|U|^{4} U+3|U|^{2} \bar{U}+U^{3}=\Omega U
$$

$U=U_{\omega}$ satisfies this equation if $\Omega=1-\omega^{2}$.

The Lyapunov functional for MTM solitons

There is no chance for the standard energy functional

$$
\Lambda_{\omega}:=H+\omega Q
$$

to become a Lyapunov functional for MTM solitons.

However, the higher-order energy functional

$$
\tilde{\Lambda}_{\omega}:=R+\left(1-\omega^{2}\right) Q, \quad \omega \in(-1,1)
$$

has U_{ω} as a critical point and ...

The Lyapunov functional for MTM solitons

There is no chance for the standard energy functional

$$
\Lambda_{\omega}:=H+\omega Q
$$

to become a Lyapunov functional for MTM solitons.
However, the higher-order energy functional

$$
\tilde{\Lambda}_{\omega}:=R+\left(1-\omega^{2}\right) Q, \quad \omega \in(-1,1),
$$

has U_{ω} as a critical point and ...
... the second variation of $\tilde{\Lambda}_{\omega}$ at U_{ω} is proved to have exactly one negative eigenvalue for small $\omega \neq 0$ in addition to the double zero eigenvalue. (For $\omega=0$, no negative eigenvalues exist but the zero eigenvalue is quadruple.)

Constrained Hilbert spaces

Assume that $(u, v) \in L^{2}\left(\mathbb{R} ; \mathbb{C}^{2}\right)$ satisfies the constraints:

$$
\begin{align*}
\int_{\mathbb{R}}\left(\bar{U}_{\omega} u+U_{\omega} v\right) d x & =0 \tag{1}\\
\int_{\mathbb{R}}\left(\bar{U}_{\omega}^{\prime} u+U_{\omega}^{\prime} v\right) d x & =0 . \tag{2}
\end{align*}
$$

- Real part of Eq (1) corresponds to fixed Q (charge).
- Imaginary part of Eq. (2) corresponds to fixed P (momentum).
- Imaginary part of Eq. (1) corresponds to orthogonality to the gauge translation $u \mapsto u e^{i \alpha}, v \mapsto v e^{i \alpha}$.
- Real part of Eq. (2) corresponds to orthogonality to the space translation $u(x) \mapsto u\left(x+x_{0}\right), v(x) \mapsto v\left(x+x_{0}\right)$.

Constrained Hilbert spaces

Assume that $(u, v) \in L^{2}\left(\mathbb{R} ; \mathbb{C}^{2}\right)$ satisfies the constraints:

$$
\begin{align*}
\int_{\mathbb{R}}\left(\bar{U}_{\omega} u+U_{\omega} v\right) d x & =0 \tag{1}\\
\int_{\mathbb{R}}\left(\bar{U}_{\omega}^{\prime} u+U_{\omega}^{\prime} v\right) d x & =0 \tag{2}
\end{align*}
$$

- Real part of Eq (1) corresponds to fixed Q (charge).
- Imaginary part of Eq. (2) corresponds to fixed P (momentum).
- Imaginary part of Eq. (1) corresponds to orthogonality to the gauge translation $u \mapsto u e^{i \alpha}, v \mapsto v e^{i \alpha}$.
- Real part of Eq. (2) corresponds to orthogonality to the space translation $u(x) \mapsto u\left(x+x_{0}\right), v(x) \mapsto v\left(x+x_{0}\right)$.

The constraints (1)-(2) remove the negative and zero eigenvalues of the second variation of $\tilde{\Lambda}_{\omega}$.

Orbital stability result

- Strict positivity (coercivity) of the second variation implies

$$
\tilde{\Lambda}_{\omega}\left(\mathbf{U}_{\omega}+\mathbf{u}\right)-\tilde{\Lambda}_{\omega}\left(\mathbf{U}_{\omega}\right) \geq C\|\mathbf{u}\|_{H^{1}}^{2}+\mathcal{O}(3)
$$

for all $\mathbf{u} \in H^{1}\left(\mathbb{R} ; \mathbb{C}^{2}\right)$ in the constrained space.

- R, Q, and P are constant in time t and so is $\tilde{\Lambda}_{\omega}$.
- Then, we obtain the global lower bound for the solution \mathbf{u} :

$$
\tilde{\Lambda}_{\omega}(\mathbf{u})-\tilde{\Lambda}_{\omega}\left(\mathbf{U}_{\omega}\right) \geq \inf _{\theta, x_{0}}\left\|\mathbf{u}(\cdot, t)-e^{i \theta} \mathbf{U}_{\omega}\left(\cdot+x_{0}\right)\right\|_{H^{1}}^{2}
$$

for every $t \in \mathbb{R}$.

- This yields orbital stability in $H^{1}(\mathbb{R})$ for $\omega \in\left(-\omega_{0}, \omega_{0}\right)$.

Orbital stability of MTM solitons in L^{2}

Theorem
Let $(u, v) \in C\left(\mathbb{R} ; L^{2}(\mathbb{R})\right)$ be a solution of the MTM system and λ_{0} be a complex non-zero number. There exist a real positive constant ϵ such that if the initial value $\left(u_{0}, v_{0}\right) \in L^{2}(\mathbb{R})$ satisfies

$$
\left\|u_{0}-u_{\lambda_{0}}(\cdot, 0)\right\|_{L^{2}}+\left\|v_{0}-v_{\lambda_{0}}(\cdot, 0)\right\|_{L^{2}} \leq \epsilon,
$$

then for every $t \in \mathbb{R}$, there exists $\lambda \in \mathbb{C}$ such that $\left|\lambda-\lambda_{0}\right| \leq C \epsilon$,

$$
\inf _{a, \theta \in \mathbb{R}}\left(\left\|u(\cdot+a, t)-e^{-i \theta} u_{\lambda}(\cdot, t)\right\|_{L^{2}}+\left\|v(\cdot+a, t)-e^{-i \theta} v_{\lambda}(\cdot, t)\right\|_{L^{2}}\right) \leq C \epsilon,
$$

where the constant C is independent of ϵ and t.

Lax operators for the MTM

The MTM is obtained from the compatibility condition of the linear system

$$
\vec{\phi}_{x}=L \vec{\phi} \quad \text { and } \quad \vec{\phi}_{t}=A \vec{\phi},
$$

where

$$
L=\frac{i}{2}\left(|v|^{2}-|u|^{2}\right) \sigma_{3}-\frac{i \lambda}{\sqrt{2}}\left(\begin{array}{ll}
0 & \bar{v} \\
v & 0
\end{array}\right)-\frac{i}{\sqrt{2} \lambda}\left(\begin{array}{ll}
0 & \bar{u} \\
u & 0
\end{array}\right)+\frac{i}{4}\left(\frac{1}{\lambda^{2}}-\lambda^{2}\right) \sigma_{3}
$$

and
$A=-\frac{i}{4}\left(|u|^{2}+|v|^{2}\right) \sigma_{3}-\frac{i \lambda}{2}\left(\begin{array}{ll}0 & \bar{v} \\ v & 0\end{array}\right)-\frac{i}{2 \lambda}\left(\begin{array}{ll}0 & \bar{u} \\ u & 0\end{array}\right)+\frac{i}{4}\left(\lambda^{2}+\frac{1}{\lambda^{2}}\right) \sigma_{3}$

References:
Kaup-Newell (1977); Kuznetsov-Mikhailov (1977).

Bäcklund transformation for the MTM

- Let (u, v) be a C^{1} solution of the MTM system.
- Let $\vec{\phi}=\left(\phi_{1}, \phi_{2}\right)^{t}$ be a C^{2} nonzero solution of the linear system associated with (u, v) and $\lambda=\delta e^{i \gamma / 2}$.

A new C^{1} solution of the MTM system is given by

$$
\begin{aligned}
\mathbf{u} & =-u \frac{e^{-i \gamma / 2}\left|\phi_{1}\right|^{2}+e^{i \gamma / 2}\left|\phi_{2}\right|^{2}}{e^{i \gamma / 2}\left|\phi_{1}\right|^{2}+e^{-i \gamma / 2}\left|\phi_{2}\right|^{2}}+\frac{2 i \delta^{-1} \sin \gamma \bar{\phi}_{1} \phi_{2}}{e^{i \gamma / 2}\left|\phi_{1}\right|^{2}+e^{-i \gamma / 2}\left|\phi_{2}\right|^{2}} \\
\mathbf{v} & =-v \frac{e^{i \gamma / 2}\left|\phi_{1}\right|^{2}+e^{-i \gamma / 2}\left|\phi_{2}\right|^{2}}{e^{-i \gamma / 2}\left|\phi_{1}\right|^{2}+e^{i \gamma / 2}\left|\phi_{2}\right|^{2}}-\frac{2 i \delta \sin \gamma \bar{\phi}_{1} \phi_{2}}{e^{-i \gamma / 2}\left|\phi_{1}\right|^{2}+e^{i \gamma / 2}\left|\phi_{2}\right|^{2}}
\end{aligned}
$$

A new C^{2} nonzero solution $\vec{\psi}=\left(\psi_{1}, \psi_{2}\right)^{t}$ of the linear system associated with (\mathbf{u}, \mathbf{v}) and same λ is given by

$$
\psi_{1}=\frac{\bar{\phi}_{2}}{\left.\left|e^{i \gamma / 2}\right| \phi_{1}\right|^{2}+e^{-i \gamma / 2}\left|\phi_{2}\right|^{2} \mid}, \quad \psi_{2}=\frac{\bar{\phi}_{1}}{\left.\left|e^{i \gamma / 2}\right| \phi_{1}\right|^{2}+e^{-i \gamma / 2}\left|\phi_{2}\right|^{2} \mid} .
$$

Bäcklund transformation $0 \leftrightarrow 1$ soliton

Let $(u, v)=(0,0)$ and define

$$
\left\{\begin{aligned}
\phi_{1} & =e^{\frac{i}{4}\left(\lambda^{2}-\lambda^{-2}\right) x+\frac{i}{4}\left(\lambda^{2}+\lambda^{-2}\right) t} \\
\phi_{2} & =e^{-\frac{i}{4}\left(\lambda^{2}-\lambda^{-2}\right) x-\frac{i}{4}\left(\lambda^{2}+\lambda^{-2}\right) t}
\end{aligned}\right.
$$

Then, $(\mathbf{u}, \mathbf{v})=\left(u_{\lambda}, v_{\lambda}\right)$.
If $\lambda=e^{i \gamma / 2}$ (stationary case), the vector $\vec{\psi}$ is given by

$$
\left\{\begin{array}{l}
\psi_{1}=e^{\frac{1}{2} x \sin \gamma+\frac{i}{2} t \cos \gamma}\left|\operatorname{sech}\left(x \sin \gamma-i \frac{\gamma}{2}\right)\right| \\
\psi_{2}=e^{-\frac{1}{2} x \sin \gamma-\frac{i}{2} t \cos \gamma}\left|\operatorname{sech}\left(x \sin \gamma-i \frac{\gamma}{2}\right)\right|
\end{array}\right.
$$

It decays exponentially as $|x| \rightarrow \infty$.
In the opposite direction, if $(u, v)=\left(u_{\lambda}, v_{\lambda}\right)$ and $\vec{\phi}=\vec{\psi}$, then $(\mathbf{u}, \mathbf{v})=(0,0)$.

Steps in the proof of the main result

- Step 1: From a perturbed one-soliton to a small solution at the initial time $t=0$.
- Step 2: Time evolution of the small solution for $t \in \mathbb{R}$.
- Step 3: From the small solution to the perturbed one-soliton for every $t \in \mathbb{R}$.

Questions for MTM

- Existence of local and global solutions in $H^{1}(\mathbb{R})$ or $L^{2}(\mathbb{R})$
- Orbital stability of gap solitons in $H^{1}(\mathbb{R})$ or $L^{2}(\mathbb{R})$
- Transverse instability of gap solitons in two dimensions

Transverse stability problem

The 2D version of the MTM:

$$
\left\{\begin{array}{l}
i\left(u_{t}+u_{x}\right)+v+u_{y y}=2|v|^{2} u \\
i\left(v_{t}-v_{x}\right)+u+v_{y y}=2|u|^{2} v
\end{array}\right.
$$

Using the Fourier decomposition like

$$
u(x, y, t)=e^{i \omega t}\left[U_{\omega}(x)+u_{1}(x) e^{\lambda t+i p y}\right], \quad \omega \in(-1,1)
$$

we obtain the spectral stability problem

$$
i \lambda \sigma \mathbf{U}=\left(D_{\omega}+W_{\omega}+p^{2} I\right) \mathbf{U}
$$

where $\mathbf{U} \in \mathbb{C}^{4}, \sigma=\operatorname{diag}(1,-1,1,-1), W_{\omega}$ is a decaying potential, and

$$
D_{\omega}=\left[\begin{array}{cccc}
-i \partial_{x}+\omega & 0 & -1 & 0 \\
0 & i \partial_{x}+\omega & 0 & -1 \\
-1 & 0 & i \partial_{x}+\omega & 0 \\
0 & -1 & 0 & -i \partial_{x}+\omega
\end{array}\right]
$$

Properties of the spectral problem

- Continuous spectrum is located along the segments $\pm i \Lambda_{1}$ and $\pm i \Lambda_{2}$, where

$$
\Lambda_{1} \in\left[1+\omega+p^{2}, \infty\right), \quad \Lambda_{2} \in\left[1-\omega-p^{2}, \infty\right)
$$

The gap near $\lambda=0$ exists for small p.

- If $p=0$, there exist exactly two eigenvectors for $\lambda=0$:

$$
\mathbf{U}_{t}=\partial_{x} \mathbf{U}_{\omega}, \quad \mathbf{U}_{g}=i \sigma \mathbf{U}_{\omega}
$$

and exactly two generalized eigenvectors

$$
\tilde{\mathbf{U}}_{t}=i \omega x \sigma \mathbf{U}_{\omega}-\frac{1}{2} \tilde{\sigma} \mathbf{U}_{\omega}, \quad \tilde{\mathbf{U}}_{g}=\partial_{\omega} \mathbf{U}_{\omega} .
$$

Perturbation theory result

Theorem

For every $\omega \in(-1,1)$, there exists $p_{0}>0$ such that for every p with $0<|p|<p_{0}$, the spectral stability problem admits a pair of real eigenvalues λ with the eigenvectors $\mathbf{V} \in H^{1}(\mathbb{R})$ such that
$\lambda= \pm p \Lambda_{r}(\omega)+\mathcal{O}\left(p^{3}\right), \quad \mathbf{V}=\mathbf{V}_{t} \pm p \Lambda_{r}(\omega) \tilde{\mathbf{V}}_{t}+\mathcal{O}_{H^{1}}\left(p^{2}\right) \quad$ as $\quad p \rightarrow 0$,
where $\Lambda_{r}=\left(1-\omega^{2}\right)^{-1 / 4}\left\|U_{\omega}^{\prime}\right\|_{L^{2}}>0$. Simultaneously, it admits a pair of purely imaginary eigenvalues λ with the eigenvector $\mathbf{V} \in H^{1}(\mathbb{R})$ such that
$\lambda= \pm i p \Lambda_{i}(\omega)+\mathcal{O}\left(p^{3}\right), \quad \mathbf{V}=\mathbf{V}_{g} \pm i p \Lambda_{i}(\omega) \tilde{\mathbf{V}}_{g}+\mathcal{O}_{H^{1}}\left(p^{2}\right) \quad$ as $\quad p \rightarrow 0$, where $\Lambda_{i}=\sqrt{2}\left(1-\omega^{2}\right)^{1 / 4}\left\|U_{\omega}\right\|_{L^{2}}>0$.

Numerical method: Chebyshev interpolation

- Grid points at $x_{j}=L \tanh ^{-1}\left(z_{j}\right)$, with $j=0,1, \ldots, N$, where $z_{j}=\cos (j \pi / N)$ is the Chebyshev node.
- Parameter L is at our disposal for better resolution of the fast change of the MTM soliton $(L=10)$.

Numerical method: Chebyshev interpolation

- Grid points at $x_{j}=L \tanh ^{-1}\left(z_{j}\right)$, with $j=0,1, \ldots, N$, where $z_{j}=\cos (j \pi / N)$ is the Chebyshev node.
- Parameter L is at our disposal for better resolution of the fast change of the MTM soliton $(L=10)$.
- Chebyshev discretization matrices and the chain rule for the map $z \rightarrow x$.
- Boundary points at $j=0$ and $j=N$ are accounted from the exponential decay of the potentials and zero first and last rows of the discretization matrices.

Numerical method: Chebyshev interpolation

- Grid points at $x_{j}=L \tanh ^{-1}\left(z_{j}\right)$, with $j=0,1, \ldots, N$, where $z_{j}=\cos (j \pi / N)$ is the Chebyshev node.
- Parameter L is at our disposal for better resolution of the fast change of the MTM soliton ($L=10$).
- Chebyshev discretization matrices and the chain rule for the map $z \rightarrow x$.
- Boundary points at $j=0$ and $j=N$ are accounted from the exponential decay of the potentials and zero first and last rows of the discretization matrices.
- Eigenvalues are found from $4(N+1) \times 4(N+1)$ matrices.

Reference: M. Chugunova \& D.P. [SIAD 5 (2006), 55].

Numerical approximations of eigenvalues for $\omega=0$

Isolated eigenvalues for $\omega=0$

Accuracy of numerical computations

	$\omega=-0.5$	$\omega=0$	$\omega=0.5$
$N=100$	1.96×10^{-1}	2.57×10^{-1}	1.16×10^{-1}
$N=300$	1.36×10^{-4}	2.18×10^{-4}	7.02×10^{-5}
$N=500$	2.22×10^{-7}	8.77×10^{-5}	6.56×10^{-8}

Table: max $|\operatorname{Re}(\lambda)|$ along the continuous band for $p=0$.

How general are our conclusions?

- Existence of local and global solutions in $H^{1}(\mathbb{R})$ or $L^{2}(\mathbb{R})$?
\Rightarrow YES: The same methods are extended to other (similar) nonlinear Dirac equations in 1D.

How general are our conclusions?

- Existence of local and global solutions in $H^{1}(\mathbb{R})$ or $L^{2}(\mathbb{R})$?
\Rightarrow YES: The same methods are extended to other (similar) nonlinear Dirac equations in 1D.
- Orbital stability of gap solitons in $H^{1}(\mathbb{R})$ or $L^{2}(\mathbb{R})$
\Rightarrow NO: These results are due to integrability of the MTM.

How general are our conclusions?

- Existence of local and global solutions in $H^{1}(\mathbb{R})$ or $L^{2}(\mathbb{R})$?
\Rightarrow YES: The same methods are extended to other (similar) nonlinear Dirac equations in 1D.
- Orbital stability of gap solitons in $H^{1}(\mathbb{R})$ or $L^{2}(\mathbb{R})$
\Rightarrow NO: These results are due to integrability of the MTM.
- Transverse instability of gap solitons in two dimensions \Rightarrow YES: These results are extended to other nonlinear Dirac equations in 1D.

