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Rogue waves on standing periodic waves

J. Chen, D. Pelinovsky, Proceedings A 474 (2018) 20170814
J. Chen, D. Pelinovsky, R. White, Physica D 405 (2020) 132378
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1. Periodic waves and rogue waves

Other examples of integrable Hamiltonian systems

@ Modified Korteweg—de Vries equation
us + 6U2Ux + Upx =0

Dnoidal periodic waves are modulationally stable (no rogue waves).
Cnoidal periodic waves are modulationally unstable (rogue waves).
J. Chen & D. Pelinovsky, Nonlinearity 31 (2018) 1955—-1980

@ Sine—Gordon equation
Ut — Uxx +sin(u) =0

Same conclusion.
D. Pelinovsky & R. White, Proceedings A 476 (2020) 20200490

@ Derivative NLS equation
it + Yxx + /(|1/)|21/1)x =0.

There exist modulationally stable periodic waves (no rogue waves).
J. Chen, D. Pelinovsky, & J. Upsal, J. Nonlinear Science 31 (2021) 58
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1. Periodic waves and rogue waves

Rogue wave for the modified KdV equation

J. Chen & D. Pelinovsky, Journal of Nonlinear Science 29 (2019) 2797-2843
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2. Nonlinearization method with a single eigenvalue

Discrete modified KdV equation

It is considered to be a commuting flow in the Ablowitz—Ladik hierarchy:
Up = (1+ U3)(Upst — Un—1), NEZ,
where u, = uy(t) is real.

In the continuum limit, long waves of small amplitudes can be modeled by
1
un(t) = eu(e(n+ 2t), gest),

satisfy the continuous the mKdV equation

U, = 6u2ug + Ugee,

where u = u(¢, 7) with £ := £(n+ 2t) and 7 := 13t, and ¢ is small parameter.
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2. Nonlinearization method with a single eigenvalue

Lax equations

DMKDV is a compatibility condition of the linear Lax system

B 1 A Un
@n+1 - m _ un )\—1 <Pn
and

o= T(2=X"2)  Aup+ A" up o
g “AUp—1 =AUy, =3 (XB=A73) )"

There exists another Lax system representation:
B A Up
Pnt1 = —Uup, )\—1 ®n

o= Mg =AMy =3 (2= AR U,y )

and

15t Missing point. The method of nonlinearization works for the former system
and does not work for the latter system.
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2. Nonlinearization method with a single eigenvalue

Nonlinearization method

If vn = (Pn, gn)T is a solution of Lax system for A = Ay,
then ¢ = (—qn, Pn)" is a solution for A = A7 .

Assume the relation between solutions of the DMKV and Lax systems:
Up=MpPE+A7'q8, nel.

Then, ¢, = (pbn, gn)" satisfies the nonlinear symplectic map
( Pt ) _ 1 ( APn + (MPE+ A7 1G2)an )
Gn-+1 \/1 (PR ATTgR)2 \ AT G — (PR + AT aR)pn
and the nonlinear Hamiltonian system
don, OH dgn oH

dt  9gq,’ dt  Opa’
with
1 _ 1 4 2y
H(pn, Gn) = 5(\F = AT%)Paan + 5 (M5 + A7 G) (AT P + M),
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2. Nonlinearization method with a single eigenvalue

Restrictions on the class of admissible solutions

In addition to
Up=Mp5+A 'G5, nez,

one can easily prove the relation
U1 =\ '"P2+MQE,  nelz.
By eliminating the squared eigenfunctions, one can show that u, satisfies the
stationary discrete equation
(1+ U2)(Uns1 + Up—1) = wlp, NEZ,
where w := A3 + A\;2 4+ 4H, where H = H(py, gn) is constant.

2" Missing point. This is a standing wave reduction of the Ablowitz—Ladik
system, not the traveling wave reducton of DMKDV.
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8. Traveling periodic waves of DMKDV

Integrability of the nonlinear Hamiltonian system

The Hamiltonian system for (pp, qn) is obtained from the Lax equations

W(pn+1 s Q41 )‘) U(ufh )‘1) - U(uﬂ, M ) W(Pn, an, >‘) =0

and
d
a W(pfh Qn, )\) = V(Una )‘1 ) W(pfh an, )‘) - W(pfh an, )‘) V(ufh >‘1 )7
where
1 XNpadn  Apgn (PR N
2 NN 2 )2 X — X2 2 )2
W(pna Qn» /\) =
g2 A2 1 )2 A2
Y 19 LM Pn 1y 1PnGn Ay PnGn
R D e v 2 XN 2 )2
satisfies

1 A2 F,
det Wipn. G- ) = =3+ e gy e —a)
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8. Traveling periodic waves of DMKDV

Algebraic polynomial for the traveling periodic waves

Due to the squared eigenfunction constraints, we also have

1 B )\2(,:1 — UnUn71) )‘()‘2u’7 — u"*1)
S RS e N F U T T I b
W(pn, gn, A) = B AN2Up_1 — up) 1 A2(Fy — UnUp—1) ’

(=202 -\3) 2 (2-23) (- )P

which gives
P())
det W(pn, Gn, A) = — J

(pn an ) 4()\2 - )\$)2()\2 _ /\172)2

where

P(N) := 2% — 20 + (2 4+ w? — 4F2)A* — 2w + 1.
Thus, A1 is selected from two quadruplets of P(\):

P(A) = (02 = A0 = AT2)(A% = ) (A% = A3%).
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8. Traveling periodic waves of DMKDV

Dnoidal periodic waves

These are solutions of the form

sn(a; k)

Un(t) = e _ 2sn(a; k) _ 2dn(a; k)

dn(an+ct;k), C—m, W—Wv

where « € (0, K(k)) and k € (0, 1) are arbitrary parameters.

We can find explicitly A1, A2 € R

A = 1\/(1 —sn(q; k)) <dn(a; k) — mSn(a; k))a

cn(a; k)

Ao = cn(;;k)\/“ — sn(a; k)) <dn(a; k) + v 1 — Kk2sn(a; k)),

satisfying 0 < A < o <1 <Xy <A
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8. Traveling periodic waves of DMKDV

Lax spectrum for dnoidal waves

The spectrum is found numerically for « = K(k)/M with U, opm = Up:

V1 + U3Pnst + A/ 1+ U,27_1pn—1 — (Un — Un=1)Qn = ZPn,
(Un — Up—1)pn+ V1 + U%Qn+1 + 4/ 1+ U§_1an1 = ZQn,

where z := XA+ A\~" and (px, g») is the eigenvector satisfying

ion

Pn = i)n(e)eiena an = f],,(@)e 5 ll\)n+2M(9) = l’\)n(e)v E]n+2M(9) = e]n(e)a
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8. Traveling periodic waves of DMKDV

Cnoidal periodic waves

These are solutions of the form

_ ksn(a; k)

Un(t) - W = M 20n(a; k)

w =

cen(an+ct k), c= dn(o k)’ 7dn2(a; k)a

where o € (0, K(k)) and k € (0, 1) are arbitrary parameters.

We can find explicitly Ay = Ao € C

/(1 = ksn(a; k) (en(a; k) + ivT — Kesn(a; k)

A =
! dn(a; k) ’

satisfying |\| <1 < [\]7".
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8. Traveling periodic waves of DMKDV

Lax spectrum for cnoidal waves
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4. Stability of traveling periodic waves

Stability spectrum for traveling periodic waves

Let un(t) = ¢(an+ ct) be a traveling periodic wave of the discrete mKdV
equation
Up = (1+ U3)(Uns1 — Up—1), NEZ.

Let {va(t)}nez be a perturbation of {un(t)}nez satisfying the linearized
discrete mKdV equation

Vo= (14 t3)(Vas1 — Vo1) + 2Un(Uny1 — Up_1)Vp, nNEZ.

We have the squared eigenfunction relation by brutal computations:
_ 2 —1 .2
Vo = AP2 — A1 G2 + 2UnPnGn,

where o, = (Pn, gn)" is a solution of the linear Lax system.
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4. Stability of traveling periodic waves

Relation to squared eigenfunctions

Thus, {¢n(t)}nez is a solution of the linear Lax system:

B 1 A Uy
Pn+1 = /71 T U,27 —Uup )\—1 ®n
and
P % ()\2 - )\72) )\Un + )\71 Un_1
L S V7 RIP R S TR L S I A
with the obvious decomposition since u,(f) = ¢(an+ cf):
on(t) = ¥(an + ct)e™.
3 Missing point. An explicit relation between Q and P()) is missing,

P(N) := A% — 208 + (2 4+ w? — 4F2)A* — 2w + 1.

As a result, the admissible values of Q must be found numerically.
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4. Stability of traveling periodic waves

Stability of the dnoidal periodic waves

sn(o; k) c— 2sn(a; K)
cn(a; k) ~ cen(a; k)’
where a € (0, K(k)) and k € (0, 1) are arbitrary parameters.

up(t) =

dn(an + ct; k),
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Figure: Lax spectrum (left) and stability spectrum (right) for k = 0.7.
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4. Stability of traveling periodic waves

Stability of the cnoidal periodic waves

ksn(a; k) _ _ 2sn(a; k)
an(a k) cn(an+ct k), c= an(a k)

where a € (0, K(k)) and k € (0, 1) are arbitrary parameters.

up(t) =
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Figure: Lax spectrum (left) and stability spectrum (right) for k = 0.7.

4" Missing point. Numerical accuracy is not very good.
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5. Algebraic solitons and rogue waves on the periodic wave background

1-fold Darboux transformation

We can use eigenvalues found in the nonlinearization method to define a new
solution to the discrete mKdV equation:

W PR X (1 =2)Pnan
n — n
A2p2 + g2 M(A2P2 + g2)

where ¢, = (pPn, gn)7 is a solution of Lax equations with A\ = ).
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5. Algebraic solitons and rogue waves on the periodic wave background

Trivial new solution

“ v )
Qpn+1 m _Un )\—1 Son

(=X A+ AU
on= —AUp—1 =21, 7% ()\2 _ );2) n-

and

If on = (Pn, qn)T is obtained from u, = A\ P2 + )q‘q,% and \¢ is a root of P()\),
then new solution i, is a half-period translation of the dnoidal wave:

U, =—F; U,.T1
oysn(a; k) V1 — k2
cn(a; k) dn(&; k)
orsn(a; K)
- cn(a; k)
= —oqUn(t + ¢ TK(K)).

dn(§ + K(k); k)
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5. Algebraic solitons and rogue waves on the periodic wave background

Nontrivial new solution

The second, linearly independent solution can be found in the form:

N an Pn
= 9 - >, +

Pn = Pnbn 02+ g Qn = Qnbn 2t

where
M+ ATP(E - F)
9n+1 —an = >
(Un + Un—1)(Un + Uns1)(1 + UR)

and

(M +HAT2(WR + uE - 2F)
(Un + Un_1)2 '

n=

If un(t) = ¢(an + ct) is the traveling wave with periodic ¢, then
0n(t) = an+ bt + x(an + ct) with periodic x and uniquely computed
parameters a and b.
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5. Algebraic solitons and rogue waves on the periodic wave background

Algebraic soliton propagating on the dnoidal wave

The new solution is now nontrivial:

o BREXER (1= XDl
A2H2 ~oHn A1 (\2H2 ~2
1pn+Qn 1( 1pn+Qn)

Figure: The solution surface (left: sideview, right: topview) for A1.
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5. Algebraic solitons and rogue waves on the periodic wave background

Algebraic soliton propagating on the dnoidal wave

The new solution is now nontrivial:

o _PBEXNE (1= M)beds
A2H2 ~oHn A1 (\2H2 ~2
1pn+Qn 1( 1pn+qn)

Figure: The solution surface (left: sideview, right: topview) for Xs.
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5. Algebraic solitons and rogue waves on the periodic wave background

2-fold Darboux transformation

The 2-fold transformation uses two eigenvalues \1 and \o:

g Tn, 1n
AT MAA,

where

T = A5(G3n + \aP30) (PTn + A305,) + X5 (aF, + Nip%,) (03, + A5G3,)
— 2MN5(0F, + A570) (5, + A505,) — 2P1nGnP2nGan i1 A2(A] — 1)(A5 — 1),
Tn= (A = A3)(AN2A3 — 1)[M(AE — 1)P2nGen(afn + NiDE,)
— X2(A = 1)pingin(g3, + A5p3,)],
An = (XFN5 — 1)2(NI5 1 G3n + A3P3n05n) + (AT — A3)2(AFA3PTap3, + 9FnGBn)
— 2P1nQ1nP2nGen M A2(AT — 1)(A3 — 1).
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5. Algebraic solitons and rogue waves on the periodic wave background

Two algebraic solitons on the dnoidal wave
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Figure: The solution surface (left: sideview, right: topview) for eigenvalues Ay and ;.

5" Missing point. Is there a completeness result that no more than two
algebraic solitons could propagate on the dnoidal wave background?
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5. Algebraic solitons and rogue waves on the periodic wave background

Similar new solutions for the cnoidal wave

For the cnoidal wave, the new solution after 2-fold transformation is real
valued if A = \y. However, p2 + g2 is not sign-definite and the representation

A Gn Pn
Pn=Pnbn— ==, Gn=qnbn+
TP R+ gf TR+
cannot be used.
15 15-
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5. Algebraic solitons and rogue waves on the periodic wave background

Another representation

The second, linearly independent solution can be found in the form:

Br=Pnbn— . o= Gufn + o
n — nvn 2qn7 n — nvn 2pn7
where
(\F =A%)
9n+1 - 9n = >
2(1 + Un)(F1 - UnUn,1)(F1 — Unp41 Un)
and

(A2 = AT%)Puntn-

0‘ =
5 (F1 — Unup—1)?

If up(t) = ¢(an + ct) is the traveling wave with periodic ¢, then
0n(t) = an+ bt + x(an + ct) with periodic x and uniquely computed
parameters a and b.
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5. Algebraic solitons and rogue waves on the periodic wave background

Rogue wave on the cnoidal wave

-10
Figure: The solution surface for eigenvalues Ay and Az = \;.

6" Missing point. Do multi-fold transformations exist with higher-order rogue
waves on the cnoidal wave background?
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6. Summary
Summary

@ Traveling periodic waves are recovered from the nonlinearization method
based on the constraint u, = \1p2 + A" g2 with \; being a root of P(\).

@ Dnoidal waves are spectrally (modulationally) stable, whereas cnoidal
waves are spectrally (modulationally) unstable.

@ Only two distinct algebraic solitons exist on the background of dnoidal
waves. A rogue wave exists on the background of cnoidal waves.

@ Open questions include

@ relation between (14 u2)(Uni1 + Un_1) = wup and tn = (14 u2)(Uns1 — Un_1)
@ connection between P()\) and the stability spectrum Q.
@ existence and properties of higher-order rogue waves.

Many thanks for your attention!
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