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Experimental pictures

◦ Discrete solitons

◦ Discrete vortices
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Main Formalism

1D : iu̇n + ε (un+1 − 2un + un−1) + |un|2un = 0, n ∈ Z

◦ Vector space Ω = L2(Z, C) for {un}n∈Z:

(u,w)Ω =
∑
n∈Z

ūnwn, ‖u‖2
Ω =

∑
n∈Z

|un|2 < ∞.

◦ Hamiltonian formulation:

iu̇n =
∂H

∂ūn
, H =

∑
n∈Z

ε|un+1 − un|2 −
1

2
|un|4
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◦ Existence problem for time-periodic solutions

un(t) = φnei(µ−2ε)t+iθ0, µ ∈ R, θ0 ∈ R

such that

(µ− |φn|2)φn = ε (φn+1 + φn−1) .

◦ Stability problem for time-periodic solutions

un(t) = ei(1−2ε)t+iθ0
(
φn + (un + iwn)eλt + (ūn + iw̄n)eλ̄t

)
such that (

1− 3φ2
n

)
un − ε (un+1 + un−1) = −λwn,(

1− φ2
n

)
wn − ε (wn+1 + wn−1) = λun.

where λ ∈ C and (u,w) ∈ Ω× Ω
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Existence problem in one dimension

(µ− |φn|2)φn = ε (φn+1 + φn−1)

◦ All localized solutions for ε 6= 0 are real-valued: φ ∈ L2(Z, R)

φ̄nφn+1 − φnφ̄n+1 = const n ∈ Z

φn+1

φ̄n+1
=

φn

φ̄n
: 2 arg(φn+1) = 2 arg(φn) = mod(2π)

◦ There exists a transformation from ε < 0 to ε > 0

φn 7→ (−1)nφn, ε 7→ −ε
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Existence problem in one dimension

(µ− |φn|2)φn = ε (φn+1 + φn−1)

◦ There exists a spectral band for |µ| ≤ 2ε:

φn = eikn : µ = µ(k) = 2ε cos k, k ∈ R

◦ Localized solutions do not exist for µ < −2ε < 0:

−(|µ| − 2ε)
∑
n∈Z

φ2
n −

∑
n∈Z

φ4
n = ε

∑
n∈Z

(φn+1 + φn)2

◦ Scaling transformation for localized solutions with µ > 2ε > 0:

φn =
√

µφ̂n, ε = µε̂
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Existence problem in one dimension

(1− φ2
n)φn = ε (φn+1 + φn−1)

◦ There exists an analytic function φ(ε) for 0 < ε < ε0:

lim
ε→0

φn =

{
±1, n ∈ S,
0, n ∈ Z\S,

dim(S) < ∞

lim
|n|→∞

eκ|n||φn| = φ∞, κ > 0, φ∞ > 0.

◦MacKay, Aubry (1994): inverse function theorem

◦ Hennig, Tsironis (1999): bounds on ε0

◦ Bergamin, Bountis (2000): symbolic dynamics for invertible maps

◦ Alfimov, Konotop (2004): complete classification of localized modes
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Families of discrete solitons

•Fundamental and two-node modes

•Three-node modes
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Stability problem in one dimension(
1− 3φ2

n

)
un − ε (un+1 + un−1) = −λwn,(

1− φ2
n

)
wn − ε (wn+1 + wn−1) = λun.

◦Matrix-vector form for (u,w) ∈ L2(Z, C2)

L+u = −λw, L−w = λu,

◦ Hamiltonian form for ψ = (u,w):

JHψ = λψ, J =

(
0 1
−1 0

)
, H =

(
L+ 0
0 L−

)
.
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Splitting of zero eigenvalues

Eigenvalues of H at ε = 0:

◦ γ = −2 of multiplicity N

◦ γ = 0 of multiplicity N

◦ γ = +1 of multiplicity ∞

Eigenvalues of JH at ε = 0:

◦ λ = 0 of multiplicity 2N

◦ λ = +i of multiplicity ∞
◦ λ = −i of multiplicity ∞

Lemma: Let γj be small eigenvalues of H as ε → 0. There exists N
pairs of small eigenvalues λj and −λj of JH:

lim
ε→0

γj = 0, lim
ε→0

λ2
j

γj
= 2, 1 ≤ j ≤ N.

Corollary:
When γj > 0, there exists one unstable EV λj > 0.
When γj < 0, there exists one pair λj ∈ iR with negative Krein signature:

(ψ,Hψ) = (u,L+u) + (w,L−w) = 2 (w,L−w) < 0.
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Count of small eigenvalues of H

Lemma: Let n0 be the number of sign-differences in the vector φ at
ε = 0. There exists n0 negative eigenvalues γj and N − n0 − 1 positive
eigenvalues γj for any ε 6= 0.

Proof:

◦ By discrete Sturm Theorem, #<0(L−) = n0, since

L−φ = 0.

◦ By theory of difference equations, dim (L−) = 1 for any ε 6= 0, since

L−w = 0, w = c1φ + c2w2.

◦ By our analysis, the number of sign-differences in the vector φ is con-
tinuous at ε = 0.
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Count of unstable eigenvalues of JH

Nreal = N − 1− n0, N−
imag = n0, Ncomp = 0

Theorem: The only stable N -pulse discrete soliton near ε = 0 is the
soliton with an alternating sequence of up and down pulses.

◦Weinstein (1999): stability of discrete soliton with N = 1

◦ Kapitula, Kevrekidis, Malomed (2001):
instabilities of twisted modes and other multi-pulse solitons

◦Morgante, Johansson, Kopidakis, Aubry (2002):
numerical analysis of instabilities of multi-pulse solitons with N > 1

◦ Sandstede, Jones, Alexander (1997): analysis of the orbit-flip bifur-
cation and multi-pulse homoclinic orbits
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Numerical analysis of discrete solitons

•Page mode

•Twisted mode
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•Three-node modes
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Discrete NLS equations

◦ Scalar NLS equation

iu̇n,m + ε
(
un+1,m + un−1,m + un,m+1 + un,m−1

)
+ |un,m|2un,m = 0

◦ Vector NLS equation

iu̇n,m + ε∆un,m +
(
|un,m|2 + β|vn,m|2

)
un,m = 0,

iv̇n,m + ε∆vn,m +
(
β|un,m|2 + |vn,m|2

)
vn,m = 0,

where ε > 0 and β > 0 are parameters.
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Numerical pictures

◦ Off-site vortex (vortex cell) on a square contour

◦ On-site vector vortex (vortex cross) on a diagonal contour
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Existence problem

(1− |φn,m|2)φn,m = ε
(
φn+1,m + φn−1,m + φn,m+1 + φn,m−1

)
Limiting solution:

ε = 0 : φ
(0)
n,m =

{
eiθn,m, (n,m) ∈ S,
0, (n,m) ∈ Z2\S,

Examples of a square discrete contour S
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Existence problem

(1− |φn,m|2)φn,m = ε
(
φn+1,m + φn−1,m + φn,m+1 + φn,m−1

)
Limiting solution:

ε = 0 : φ
(0)
n,m =

{
eiθn,m, (n,m) ∈ S,
0, (n,m) ∈ Z2\S,

Examples of a square discrete contour S

Which configurations θn,m can be continued for ε 6= 0?

8



Lyapunov-Schmidt reductions

Proposition: Let N = dim(S) and T be the torus on [0, 2π]N . There
exists a vector-valued function g : T 7→ RN , such that the limiting
solution is continued to ε 6= 0 if and only if θ ∈ T is a root of g(θ, ε) = 0.

◦ The Jacobian of the nonlinear system:

H =

(
1− 2|φn,m|2 −φ2

n,m

−φ̄2
n,m 1− 2|φn,m|2

)
− ε

(
δ+1,0 + ... + δ0,−1

) (
1 0
0 1

)

◦ H is a self-adjoint Fredholm operator of index zero:

dim(ker(H(0)) = N
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Properties of g(θ)

◦ g is analytic, such that

g(θ, ε) =

∞∑
k=1

εkg(k)(θ)

◦ g has gauge symmetry, such that

g(θ∗, ε) = 0 7→ g(θ∗ + θ01, ε) = 0

◦ If g(1)(θ∗) = 0 and M1 = Dg(1)(θ∗) has a kernel with eigenvector 1,
there exists a unique continuation of the limiting solution for ε 6= 0.

◦ If g(1)(θ∗) = 0, the kernel of M1 is (1 + d)-dimensional, and(
g(2)(θ∗), ker(M1)

)
6= 0,

the limiting solution can not be continued to ε 6= 0.
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First-order reductions : classification of solutions

g
(1)
j (θ) = sin(θj − θj+1) + sin(θj − θj−1) = 0, 1 ≤ j ≤ 4M

◦ (1) Discrete solitons

θj = {0, π}, 1 ≤ j ≤ 4M

◦ (2) Symmetric vortices of charge L

θj =
πL(j − 1)

2M
, 1 ≤ j ≤ 4M,

◦ (3) One-parameter asymmetric vortices of charge L = M

θj+1 − θj =

{
θ

π − θ

}
mod(2π), 1 ≤ j ≤ 4M

where M is number of nodes at each side of the square contour and L
is the vortex charge along the discrete contour.
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First-order reductions : persistence of solutions

M1 = Dg(1)(θ) =


a1 + a2 −a2 0 ... a1

−a2 a2 + a3 −a3 ... 0
... ... ... ... ...

−a1 0 0 ... aN−1 + aN

 ,

where aj = cos(θj+1 − θj)

◦M1 has a simple zero eigenvalue if all aj 6= 0 and N∏
i=1

ai

  N∑
i=1

1

ai

 6= 0.

Family (1) persists for ε 6= 0.

◦ If all aj = a = cos( πL2M ), eigenvalues of M1 are:

λn = 4a sin2 πn

4M
, 1 ≤ n ≤ 4M

Family (2) persists for ε 6= 0 and L 6= M .
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Second-order reductions : termination of solutions

◦ If all aj = ±a = cos θ, there are 2M − 1 negative eigenvalues of
M1, 2 zero eigenvalues and 2M − 1 positive eigenvalues of M1.

◦ Persistence of family (3) depends on g(2)(θ)

g
(2)
j =

1

2
sin(θj+1 − θj)

[
cos(θj − θj+1) + cos(θj+2 − θj+1)

]
+

1

2
sin(θj−1 − θj)

[
cos(θj − θj−1) + cos(θj−2 − θj−1)

]
◦We have (g(2), ker(M1)) 6= 0 for all members of family (3) excluding

the only configuration:

θ1 = 0, θ2 = θ, θ3 = π, θ4 = π + θ.

13



Higher-order reductions : termination of the last family

◦ Symbolic software algorithm is used on a squared domain of N0-by-
N0 lattice nodes, where N0 = 2K + 2M + 1, and K is the order of
the Lyapunov-Schmidt reductions.

◦ Super-symmetric family (3) has g(k)(θ) = 0 for k = 1, 2, 3, 4, 5 but

g(6)(θ) 6= 0, unless θj+1 − θj = π
2 .

◦Moreover, (g(6), ker(M1)) 6= 0, such that all asymmetric vortices
(3) terminate.
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Stability problem and zero eigenvalues

Matrix-vector Hamiltonian form of the stability problem:

Hψ = iλσψ,
where

◦ ψ ∈ l2(Z2,C2)

◦ H is the Jacobian (energy) operator

◦ σ is the diagonal matrix of (1,−1)

Eigenvalues of H at ε = 0:

◦ γ = −2 of multiplicity N

◦ γ = 0 of multiplicity N

◦ γ = +1 of multiplicity ∞

Eigenvalues of iσH at ε = 0:

◦ λ = 0 of multiplicity 2N

◦ λ = +i of multiplicity ∞
◦ λ = −i of multiplicity ∞

How do zero eigenvalues split?
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Stability results of Lyapunov-Schmidt reductions

◦ First-order splitting of zero eigenvalues of H:

M1c = γc

◦ First-order splitting of zero eigenvalues of iσH:

M1c =
λ2

2
c

◦ Second-order splitting of zero eigenvalues of H:

M1 = 0, M2c = γc

◦ Second-order splitting of zero eigenvalues of iσH:

M1 = 0, M2c =
λ2

2
c + λL2c

where MT
2 = M2 and LT2 = −L2.

◦ Six-order splitting : symbolic software algorithm
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Negative index theory

Number of eigenvalues of H:

◦ n(H) - negative

◦ p(H) - small positive

Number of eigenvalues of iσH:

◦ Nr - small real (unstable)

◦ Nc - small complex (unstable)

◦ N+
i - small imaginary with positive energy

◦ N−
i - small imaginary with negative energy

By Lyapunov–Schmidt reductions,

n(H) + p(H) = 2N − 1, 2Nr + 2Nc + 2N+
i + 2N−

i = 2N − 2

By closure relation for negative index,

Nr +Nc + 2N−
i = n(H)− 1
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Numerical analysis: symmetric vortex with L = 1 and M = 2

M1c = γc : n(H) = 8, p(H) = 7, Nr = 7
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Numerical analysis: symmetric vortex with L = 3 and M = 2

M1c = γc : n(H) = 15, p(H) = 0, N−
i = 7
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Numerical analysis: symmetric vortex with L = M = 1

M2c = γc : n(H) = 5, p(H) = 2, N+
i = 1, N−

i = 2

20



Numerical analysis: symmetric vortex with L = M = 2

M2c = γc : n(H) = 10, p(H) = 5, Nr = 1, N+
i = 2, N−

i = 4
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Vector on-site vortices on diagonal contours:

(1− |φn,m|2 − β|ψn,m|2)φn,m = ε (φn+1,m + φn−1,m + φn,m+1 + φn,m−1)

(1− β|φn,m|2 − |ψn,m|2)ψn,m = ε (ψn+1,m + ψn−1,m + ψn,m+1 + ψn,m−1)

Diagonal discrete contour

S = {(−1, 0); (0,−1); (1, 0); (0, 1)} ⊂ Z2

Limiting solution

φ
(0)
n,m =

{
aeiθj, (n,m) ∈ S

0, (n,m) /∈ S ψ
(0)
n,m =

{
beiνj, (n,m) ∈ S

0, (n,m) /∈ S
where

a2 + βb2 = 1, βa2 + b2 = 1.
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Numerical pictures

◦ Off-site vortex (vortex cell) on a square contour

◦ On-site vector vortex (vortex cross) on a diagonal contour
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Numerical and analytical results for vector on-site vortices:

β = 2
3 Left: (1,1) vector vortex. Right: (1,-1) vector vortex

(1,±1) : n(H) = 14, p(H) = 0, N−
i = 6
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Numerical and analytical results for vector on-site vortices:

β = 1 Left: (1,1) vector vortex. Right: (1,-1) vector vortex

(1, 1) : n(H) = 9, p(H) = 2, N+
i = 1, N−

i = 4

(1,−1) : n(H) = 9, p(H) = 2, Nr = 2, N−
i = 3
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Numerical and analytical results for vector on-site vortices:

β = 2 Left: (1,1) vector vortex. Right: (1,-1) vector vortex

(1, 1) : n(H) = 9, p(H) = 2, Nr = 2, N+
i = 1, N−

i = 3

(1,−1) : n(H) = 9, p(H) = 2, Nr = 4, N−
i = 2
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Summary:

• Systematic classification of discrete vortices

•Rigorous study of their existence and stability

•Predictions of stable and unstable vortices

• Interplay between analytical and numerical work
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