Persistence and stability of discrete vortices Dmitry Pelinovsky Department of Mathematics, McMaster University, Canada

 $i\dot{u}_{n,m} + \epsilon \left(u_{n+1,m} + u_{n-1,m} + u_{n,m+1} + u_{n,m-1} \right) + |u_{n,m}|^2 u_{n,m} = 0$

With P. Kevrekidis (University of Massachusetts at Amherst)

Physica D 212, 1–19 (2005)
Physica D 212, 20–53 (2005)
Proc. Roy. Soc. Lond. A 462, 2671–2694 (2006)
Physica D, submitted (2007)

Cuernavaca, Mexico, January 12, 2007

Experimental pictures

• Discrete solitons

• Discrete vortices

1D:
$$i\dot{u}_n + \epsilon (u_{n+1} - 2u_n + u_{n-1}) + |u_n|^2 u_n = 0, \quad n \in \mathbb{Z}$$

• Vector space $\Omega = L^2(\mathbb{Z}, \mathbb{C})$ for $\{u_n\}_{n \in \mathbb{Z}}$:

$$(\mathbf{u}, \mathbf{w})_{\Omega} = \sum_{n \in \mathbb{Z}} \bar{u}_n w_n, \qquad \|\mathbf{u}\|_{\Omega}^2 = \sum_{n \in \mathbb{Z}} |u_n|^2 < \infty.$$

• Hamiltonian formulation:

$$i\dot{u}_n = \frac{\partial H}{\partial \bar{u}_n}, \qquad H = \sum_{n \in \mathbb{Z}} \epsilon |u_{n+1} - u_n|^2 - \frac{1}{2} |u_n|^4$$

• Existence problem for time-periodic solutions

$$u_n(t) = \phi_n e^{i(\mu - 2\epsilon)t + i\theta_0}, \qquad \mu \in \mathbb{R}, \ \theta_0 \in \mathbb{R}$$

such that

$$(\mu - |\phi_n|^2)\phi_n = \epsilon (\phi_{n+1} + \phi_{n-1}).$$

• Stability problem for time-periodic solutions

$$u_n(t) = e^{i(1-2\epsilon)t + i\theta_0} \left(\phi_n + (u_n + iw_n)e^{\lambda t} + (\bar{u}_n + i\bar{w}_n)e^{\bar{\lambda}t} \right)$$

such that

$$\left(1 - 3\phi_n^2\right)u_n - \epsilon \left(u_{n+1} + u_{n-1}\right) = -\lambda w_n,$$

$$\left(1 - \phi_n^2\right)w_n - \epsilon \left(w_{n+1} + w_{n-1}\right) = \lambda u_n.$$

where $\lambda \in \mathbb{C}$ and $(\mathbf{u}, \mathbf{w}) \in \Omega \times \Omega$

Existence problem in one dimension

$$(\mu - |\phi_n|^2)\phi_n = \epsilon (\phi_{n+1} + \phi_{n-1})$$

• All localized solutions for $\epsilon \neq 0$ are real-valued: $\phi \in L^2(\mathbb{Z}, \mathbb{R})$ $\bar{\phi}_n \phi_{n+1} - \phi_n \bar{\phi}_{n+1} = \text{const} \ n \in \mathbb{Z}$ $\frac{\phi_{n+1}}{\bar{\phi}_{n+1}} = \frac{\phi_n}{\bar{\phi}_n}: 2 \arg(\phi_{n+1}) = 2 \arg(\phi_n) = \operatorname{mod}(2\pi)$

• There exists a transformation from $\epsilon < 0$ to $\epsilon > 0$

$$\phi_n \mapsto (-1)^n \phi_n, \qquad \epsilon \mapsto -\epsilon$$

Existence problem in one dimension

$$(\mu - |\phi_n|^2)\phi_n = \epsilon (\phi_{n+1} + \phi_{n-1})$$

• There exists a spectral band for $|\mu| \leq 2\epsilon$:

$$\phi_n = e^{ikn}$$
: $\mu = \mu(k) = 2\epsilon \cos k$, $k \in \mathbb{R}$

• Localized solutions do not exist for $\mu < -2\epsilon < 0$:

$$-(|\mu| - 2\epsilon) \sum_{n \in \mathbb{Z}} \phi_n^2 - \sum_{n \in \mathbb{Z}} \phi_n^4 = \epsilon \sum_{n \in \mathbb{Z}} (\phi_{n+1} + \phi_n)^2$$

• Scaling transformation for localized solutions with $\mu > 2\epsilon > 0$:

$$\phi_n = \sqrt{\mu}\hat{\phi}_n, \qquad \epsilon = \mu\hat{\epsilon}$$

$$(1 - \phi_n^2)\phi_n = \epsilon (\phi_{n+1} + \phi_{n-1})$$

• There exists an analytic function $\phi(\epsilon)$ for $0 < \epsilon < \epsilon_0$:

$$\lim_{\epsilon \to 0} \phi_n = \begin{cases} \pm 1, & n \in S, \\ 0, & n \in \mathbb{Z} \setminus S, \end{cases} \quad \dim(S) < \infty$$
$$\lim_{|n| \to \infty} e^{\kappa |n|} |\phi_n| = \phi_{\infty}, \quad \kappa > 0, \quad \phi_{\infty} > 0.$$

- MacKay, Aubry (1994): inverse function theorem
- Hennig, Tsironis (1999): bounds on ϵ_0
- Bergamin, Bountis (2000): symbolic dynamics for invertible maps
- Alfimov, Konotop (2004): complete classification of localized modes

• Fundamental and two-node modes

• Three-node modes

Stability problem in one dimension

$$\begin{pmatrix} 1 - 3\phi_n^2 \end{pmatrix} u_n - \epsilon \left(u_{n+1} + u_{n-1} \right) = -\lambda w_n, \\ \begin{pmatrix} 1 - \phi_n^2 \end{pmatrix} w_n - \epsilon \left(w_{n+1} + w_{n-1} \right) = \lambda u_n.$$

• Matrix-vector form for $(\mathbf{u}, \mathbf{w}) \in L^2(\mathbb{Z}, \mathbb{C}^2)$

$$\mathcal{L}_{+}\mathbf{u} = -\lambda \mathbf{w}, \qquad \mathcal{L}_{-}\mathbf{w} = \lambda \mathbf{u},$$

• Hamiltonian form for $\boldsymbol{\psi} = (\mathbf{u}, \mathbf{w})$: $\mathcal{JH}\boldsymbol{\psi} = \lambda \boldsymbol{\psi}, \qquad \mathcal{J} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \mathcal{H} = \begin{pmatrix} \mathcal{L}_+ & 0 \\ 0 & \mathcal{L}_- \end{pmatrix}.$

Splitting of zero eigenvalues

Eigenvalues of \mathcal{H} at $\epsilon = 0$:Eigenvalues of \mathcal{JH} at $\epsilon = 0$: $\circ \gamma = -2$ of multiplicity N $\circ \lambda = 0$ of multiplicity 2N $\circ \gamma = 0$ of multiplicity N $\circ \lambda = +i$ of multiplicity ∞ $\circ \gamma = +1$ of multiplicity ∞ $\circ \lambda = -i$ of multiplicity ∞

Lemma: Let γ_j be small eigenvalues of \mathcal{H} as $\epsilon \to 0$. There exists N pairs of small eigenvalues λ_j and $-\lambda_j$ of \mathcal{JH} :

$$\lim_{\epsilon \to 0} \gamma_j = 0, \qquad \lim_{\epsilon \to 0} \frac{\lambda_j^2}{\gamma_j} = 2, \qquad 1 \le j \le N.$$

Corollary:

When $\gamma_j > 0$, there exists one unstable EV $\lambda_j > 0$. When $\gamma_j < 0$, there exists one pair $\lambda_j \in i\mathbb{R}$ with negative Krein signature: $(\psi, \mathcal{H}\psi) = (\mathbf{u}, \mathcal{L}_+\mathbf{u}) + (\mathbf{w}, \mathcal{L}_-\mathbf{w}) = 2(\mathbf{w}, \mathcal{L}_-\mathbf{w}) < 0.$

Count of small eigenvalues of \mathcal{H}

Lemma: Let n_0 be the number of sign-differences in the vector $\boldsymbol{\phi}$ at $\epsilon = 0$. There exists n_0 negative eigenvalues γ_j and $N - n_0 - 1$ positive eigenvalues γ_j for any $\epsilon \neq 0$.

Proof:

• By discrete Sturm Theorem, $\#_{<0}(\mathcal{L}_{-}) = n_0$, since

$$\mathcal{L}_-\phi=0.$$

• By theory of difference equations, dim $(\mathcal{L}_{-}) = 1$ for any $\epsilon \neq 0$, since

$$\mathcal{L}_{-}\mathbf{w} = \mathbf{0}, \qquad \mathbf{w} = c_1 \boldsymbol{\phi} + c_2 \mathbf{w}_2.$$

• By our analysis, the number of sign-differences in the vector $\boldsymbol{\phi}$ is continuous at $\epsilon = 0$.

$$N_{\text{real}} = N - 1 - n_0, \qquad N_{\text{imag}}^- = n_0, \qquad N_{\text{comp}} = 0$$

Theorem: The only stable N-pulse discrete soliton near $\epsilon = 0$ is the soliton with an alternating sequence of up and down pulses.

- Weinstein (1999): stability of discrete soliton with N = 1
- Kapitula, Kevrekidis, Malomed (2001): instabilities of twisted modes and other multi-pulse solitons
- \circ Morgante, Johansson, Kopidakis, Aubry (2002): numerical analysis of instabilities of multi-pulse solitons with N>1
- Sandstede, Jones, Alexander (1997): analysis of the orbit-flip bifurcation and multi-pulse homoclinic orbits

Numerical analysis of discrete solitons

• Page mode

• Twisted mode

• Three-node modes

Discrete NLS equations

• Scalar NLS equation

$$i\dot{u}_{n,m} + \epsilon \left(u_{n+1,m} + u_{n-1,m} + u_{n,m+1} + u_{n,m-1} \right) + |u_{n,m}|^2 u_{n,m} = 0$$

• Vector NLS equation

$$i\dot{u}_{n,m} + \epsilon \Delta u_{n,m} + \left(|u_{n,m}|^2 + \beta |v_{n,m}|^2\right) u_{n,m} = 0,$$

$$i\dot{v}_{n,m} + \epsilon \Delta v_{n,m} + \left(\beta |u_{n,m}|^2 + |v_{n,m}|^2\right) v_{n,m} = 0,$$

where $\epsilon > 0$ and $\beta > 0$ are parameters.

Numerical pictures

• Off-site vortex (vortex cell) on a square contour

• On-site vector vortex (vortex cross) on a diagonal contour

$$(1 - |\phi_{n,m}|^2)\phi_{n,m} = \epsilon \left(\phi_{n+1,m} + \phi_{n-1,m} + \phi_{n,m+1} + \phi_{n,m-1}\right)$$

Limiting solution:

$$\epsilon = 0: \quad \phi_{n,m}^{(0)} = \begin{cases} e^{i\theta_{n,m}}, & (n,m) \in S, \\ 0, & (n,m) \in \mathbb{Z}^2 \backslash S, \end{cases}$$

Examples of a square discrete contour ${\cal S}$

$$(1 - |\phi_{n,m}|^2)\phi_{n,m} = \epsilon (\phi_{n+1,m} + \phi_{n-1,m} + \phi_{n,m+1} + \phi_{n,m-1})$$

Limiting solution:

$$\epsilon = 0: \quad \phi_{n,m}^{(0)} = \begin{cases} e^{i\theta_{n,m}}, & (n,m) \in S, \\ 0, & (n,m) \in \mathbb{Z}^2 \backslash S, \end{cases}$$

Examples of a square discrete contour S

Which configurations $\theta_{n,m}$ can be continued for $\epsilon \neq 0$?

Proposition: Let $N = \dim(S)$ and \mathcal{T} be the torus on $[0, 2\pi]^N$. There exists a vector-valued function $\mathbf{g} : \mathcal{T} \mapsto \mathbb{R}^N$, such that the limiting solution is continued to $\epsilon \neq 0$ if and only if $\boldsymbol{\theta} \in \mathcal{T}$ is a root of $\mathbf{g}(\boldsymbol{\theta}, \epsilon) = \mathbf{0}$.

• The Jacobian of the nonlinear system:

$$\mathcal{H} = \begin{pmatrix} 1 - 2|\phi_{n,m}|^2 & -\phi_{n,m}^2 \\ -\bar{\phi}_{n,m}^2 & 1 - 2|\phi_{n,m}|^2 \end{pmatrix} - \epsilon \left(\delta_{+1,0} + \dots + \delta_{0,-1}\right) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

• \mathcal{H} is a self-adjoint Fredholm operator of index zero: $\dim(\ker(\mathcal{H}^{(0)}) = N$

Properties of $\mathbf{g}(\boldsymbol{\theta})$

 \circ **g** is analytic, such that

$$\mathbf{g}(\boldsymbol{\theta}, \boldsymbol{\epsilon}) = \sum_{k=1}^{\infty} \boldsymbol{\epsilon}^k \mathbf{g}^{(k)}(\boldsymbol{\theta})$$

 $\circ~{\bf g}$ has gauge symmetry, such that

$$\mathbf{g}(\boldsymbol{\theta}_*, \epsilon) = \mathbf{0} \quad \mapsto \quad \mathbf{g}(\boldsymbol{\theta}_* + \theta_0 \mathbf{1}, \epsilon) = \mathbf{0}$$

• If $\mathbf{g}^{(1)}(\boldsymbol{\theta}_*) = \mathbf{0}$ and $\mathcal{M}_1 = \mathcal{D}\mathbf{g}^{(1)}(\boldsymbol{\theta}_*)$ has a kernel with eigenvector $\mathbf{1}$, there exists a unique continuation of the limiting solution for $\epsilon \neq 0$.

• If
$$\mathbf{g}^{(1)}(\boldsymbol{\theta}_*) = \mathbf{0}$$
, the kernel of \mathcal{M}_1 is $(1+d)$ -dimensional, and $\left(\mathbf{g}^{(2)}(\boldsymbol{\theta}_*), \ker(\mathcal{M}_1)\right) \neq 0$, the limiting solution can not be continued to $\epsilon \neq 0$.

First-order reductions : classification of solutions

$$\mathbf{g}_{j}^{(1)}(\boldsymbol{\theta}) = \sin(\theta_{j} - \theta_{j+1}) + \sin(\theta_{j} - \theta_{j-1}) = 0, \ 1 \le j \le 4M$$

 \circ (1) Discrete solitons

$$\theta_j = \{0, \pi\}, \qquad 1 \le j \le 4M$$

 \circ (2) Symmetric vortices of charge L

$$\theta_j = \frac{\pi L(j-1)}{2M}, \qquad 1 \le j \le 4M,$$

• (3) One-parameter asymmetric vortices of charge L = M

$$\theta_{j+1} - \theta_j = \left\{ \begin{array}{c} \theta \\ \pi - \theta \end{array} \right\} \mod(2\pi), \quad 1 \le j \le 4M$$

where M is number of nodes at each side of the square contour and L is the vortex charge along the discrete contour.

First-order reductions : persistence of solutions

$$\mathcal{M}_{1} = \mathcal{D}\mathbf{g}^{(1)}(\boldsymbol{\theta}) = \begin{pmatrix} a_{1} + a_{2} & -a_{2} & 0 & \dots & a_{1} \\ -a_{2} & a_{2} + a_{3} & -a_{3} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -a_{1} & 0 & 0 & \dots & a_{N-1} + a_{N} \end{pmatrix},$$

where $a_{j} = \cos(\theta_{j+1} - \theta_{j})$

• \mathcal{M}_1 has a simple zero eigenvalue if all $a_j \neq 0$ and

$$\left(\prod_{i=1}^{N} a_i\right) \quad \left(\sum_{i=1}^{N} \frac{1}{a_i}\right) \neq 0.$$

Family (1) persists for $\epsilon \neq 0$.

• If all
$$a_j = a = \cos(\frac{\pi L}{2M})$$
, eigenvalues of \mathcal{M}_1 are:
 $\lambda_n = 4a \sin^2 \frac{\pi n}{4M}, \quad 1 \le n \le 4M$
Family (2) persists for $\epsilon \ne 0$ and $L \ne M$.

Second-order reductions : termination of solutions

- If all $a_j = \pm a = \cos \theta$, there are 2M 1 negative eigenvalues of \mathcal{M}_1 , 2 zero eigenvalues and 2M 1 positive eigenvalues of \mathcal{M}_1 .
- Persistence of family (3) depends on $\mathbf{g}^{(2)}(\boldsymbol{\theta})$ $\mathbf{g}_{j}^{(2)} = \frac{1}{2}\sin(\theta_{j+1} - \theta_{j})\left[\cos(\theta_{j} - \theta_{j+1}) + \cos(\theta_{j+2} - \theta_{j+1})\right]$ $+ \frac{1}{2}\sin(\theta_{j-1} - \theta_{j})\left[\cos(\theta_{j} - \theta_{j-1}) + \cos(\theta_{j-2} - \theta_{j-1})\right]$
- We have $(\mathbf{g}^{(2)}, \ker(\mathcal{M}_1)) \neq 0$ for all members of family (3) excluding the only configuration:

$$\theta_1 = 0, \quad \theta_2 = \theta, \qquad \theta_3 = \pi, \quad \theta_4 = \pi + \theta.$$

Higher-order reductions : termination of the last family

- Symbolic software algorithm is used on a squared domain of N_0 -by- N_0 lattice nodes, where $N_0 = 2K + 2M + 1$, and K is the order of the Lyapunov-Schmidt reductions.
- Super-symmetric family (3) has $\mathbf{g}^{(k)}(\boldsymbol{\theta}) = 0$ for k = 1, 2, 3, 4, 5 but $\mathbf{g}^{(6)}(\boldsymbol{\theta}) \neq 0$, unless $\theta_{j+1} \theta_j = \frac{\pi}{2}$.
- Moreover, $(\mathbf{g}^{(6)}, \ker(\mathcal{M}_1)) \neq 0$, such that *all* asymmetric vortices (3) terminate.

Stability problem and zero eigenvalues

Matrix-vector Hamiltonian form of the stability problem:

$$\mathcal{H}\boldsymbol{\psi}=i\lambda\sigma\boldsymbol{\psi},$$

where

• $\psi \in l^2(\mathbb{Z}^2, \mathbb{C}^2)$ • \mathcal{H} is the Jacobian (energy) operator • σ is the diagonal matrix of (1, -1)

Eigenvalues of \mathcal{H} at $\epsilon = 0$:

• $\gamma = -2$ of multiplicity N

• $\gamma = 0$ of multiplicity N

•
$$\gamma = +1$$
 of multiplicity ∞

Eigenvalues of $i\sigma \mathcal{H}$ at $\epsilon = 0$:

- $\lambda = 0$ of multiplicity 2N
- $\lambda = +i$ of multiplicity ∞
- $\lambda = -i$ of multiplicity ∞

How do zero eigenvalues split?

Stability results of Lyapunov-Schmidt reductions

• First-order splitting of zero eigenvalues of \mathcal{H} :

$$\mathcal{M}_1 \mathbf{c} = \gamma \mathbf{c}$$

• First-order splitting of zero eigenvalues of $i\sigma \mathcal{H}$: $\mathcal{M}_1 \mathbf{c} = \frac{\lambda^2}{2} \mathbf{c}$

• Second-order splitting of zero eigenvalues of \mathcal{H} :

$$\mathcal{M}_1 = 0, \qquad \mathcal{M}_2 \mathbf{c} = \gamma \mathbf{c}$$

• Second-order splitting of zero eigenvalues of $i\sigma \mathcal{H}$:

$$\mathcal{M}_1 = 0, \qquad \mathcal{M}_2 \mathbf{c} = \frac{\lambda^2}{2} \mathbf{c} + \lambda \mathcal{L}_2 \mathbf{c}$$

where $\mathcal{M}_2^T = \mathcal{M}_2$ and $\mathcal{L}_2^T = -\mathcal{L}_2$.

• Six-order splitting : symbolic software algorithm

Negative index theory

Number of eigenvalues of \mathcal{H} :

 $\circ n(\mathcal{H})$ - negative

 $\circ p(\mathcal{H})$ - small positive

Number of eigenvalues of $i\sigma \mathcal{H}$:

- N_r small real (unstable)
- N_c small complex (unstable)
- N_i^+ small imaginary with positive energy
- N_i^- small imaginary with negative energy

By Lyapunov–Schmidt reductions,

 $n(\mathcal{H}) + p(\mathcal{H}) = 2N - 1,$ $2N_r + 2N_c + 2N_i^+ + 2N_i^- = 2N - 2$

By closure relation for negative index,

$$N_r + N_c + 2N_i^- = n(\mathcal{H}) - 1$$

Numerical analysis: symmetric vortex with L = 1 and M = 2

 $\mathcal{M}_1 \mathbf{c} = \gamma \mathbf{c}: \quad n(\mathcal{H}) = 8, p(\mathcal{H}) = 7, N_r = 7$

Numerical analysis: symmetric vortex with L = 3 and M = 2

 $\mathcal{M}_1 \mathbf{c} = \gamma \mathbf{c}: \quad n(\mathcal{H}) = 15, p(\mathcal{H}) = 0, N_i^- = 7$

Numerical analysis: symmetric vortex with L = M = 1

 $\mathcal{M}_2 \mathbf{c} = \gamma \mathbf{c} : \quad n(\mathcal{H}) = 5, \, p(\mathcal{H}) = 2, \, N_i^+ = 1, \, N_i^- = 2$

Numerical analysis: symmetric vortex with L = M = 2

 $\mathcal{M}_2 \mathbf{c} = \gamma \mathbf{c}: \quad n(\mathcal{H}) = 10, \, p(\mathcal{H}) = 5, \, N_r = 1, \, N_i^+ = 2, \, N_i^- = 4$

$$(1 - |\phi_{n,m}|^2 - \beta |\psi_{n,m}|^2)\phi_{n,m} = \epsilon (\phi_{n+1,m} + \phi_{n-1,m} + \phi_{n,m+1} + \phi_{n,m-1})$$
$$(1 - \beta |\phi_{n,m}|^2 - |\psi_{n,m}|^2)\psi_{n,m} = \epsilon (\psi_{n+1,m} + \psi_{n-1,m} + \psi_{n,m+1} + \psi_{n,m-1})$$

Diagonal discrete contour

$$S = \{(-1,0); (0,-1); (1,0); (0,1)\} \subset \mathbb{Z}^2$$

Limiting solution

$$\phi_{n,m}^{(0)} = \begin{cases} ae^{i\theta_j}, & (n,m) \in S \\ 0, & (n,m) \notin S \end{cases} \qquad \psi_{n,m}^{(0)} = \begin{cases} be^{i\nu_j}, & (n,m) \in S \\ 0, & (n,m) \notin S \end{cases}$$
 where

$$a^2 + \beta b^2 = 1, \qquad \beta a^2 + b^2 = 1.$$

Numerical pictures

• Off-site vortex (vortex cell) on a square contour

• On-site vector vortex (vortex cross) on a diagonal contour

 $\beta = \frac{2}{3}$ Left: (1,1) vector vortex. Right: (1,-1) vector vortex

 $(1, \pm 1): \quad n(\mathcal{H}) = 14, p(\mathcal{H}) = 0, N_i^- = 6$

 $\beta = 1$ Left: (1,1) vector vortex. Right: (1,-1) vector vortex

(1,1):
$$n(\mathcal{H}) = 9, p(\mathcal{H}) = 2, N_i^+ = 1, N_i^- = 4$$

(1,-1): $n(\mathcal{H}) = 9, p(\mathcal{H}) = 2, N_r = 2, N_i^- = 3$

 $\beta = 2$ Left: (1,1) vector vortex. Right: (1,-1) vector vortex

(1,1): $n(\mathcal{H}) = 9, p(\mathcal{H}) = 2, N_r = 2, N_i^+ = 1, N_i^- = 3$ (1,-1): $n(\mathcal{H}) = 9, p(\mathcal{H}) = 2, N_r = 4, N_i^- = 2$

- Systematic classification of discrete vortices
- Rigorous study of their existence and stability
- Predictions of stable and unstable vortices
- Interplay between analytical and numerical work