Persistence and stability of discrete vortices

 Dmitry Pelinovsky

 Dmitry Pelinovsky}

Department of Mathematics, McMaster University, Canada
$i \dot{u}_{n, m}+\epsilon\left(u_{n+1, m}+u_{n-1, m}+u_{n, m+1}+u_{n, m-1}\right)+\left|u_{n, m}\right|^{2} u_{n, m}=0$

With P. Kevrekidis (University of Massachusetts at Amherst)

Physica D 212, 1-19 (2005)
Physica D 212, 20-53 (2005)
Proc. Roy. Soc. Lond. A 462, 2671-2694 (2006)
Physica D, submitted (2007)

- Discrete solitons

- Discrete vortices

1D: $\quad i u_{n}+\epsilon\left(u_{n+1}-2 u_{n}+u_{n-1}\right)+\left|u_{n}\right|^{2} u_{n}=0, \quad n \in \mathbb{Z}$

- Vector space $\Omega=L^{2}(\mathbb{Z}, \mathbb{C})$ for $\left\{u_{n}\right\}_{n \in \mathbb{Z}}$:

$$
(\mathbf{u}, \mathbf{w})_{\Omega}=\sum_{n \in \mathbb{Z}} \bar{u}_{n} w_{n}, \quad\|\mathbf{u}\|_{\Omega}^{2}=\sum_{n \in \mathbb{Z}}\left|u_{n}\right|^{2}<\infty
$$

- Hamiltonian formulation:

$$
i \dot{u}_{n}=\frac{\partial H}{\partial \bar{u}_{n}}, \quad H=\sum_{n \in \mathbb{Z}} \epsilon\left|u_{n+1}-u_{n}\right|^{2}-\frac{1}{2}\left|u_{n}\right|^{4}
$$

- Existence problem for time-periodic solutions

$$
u_{n}(t)=\phi_{n} e^{i(\mu-2 \epsilon) t+i \theta_{0}}, \quad \mu \in \mathbb{R}, \quad \theta_{0} \in \mathbb{R}
$$

such that

$$
\left(\mu-\left|\phi_{n}\right|^{2}\right) \phi_{n}=\epsilon\left(\phi_{n+1}+\phi_{n-1}\right)
$$

- Stability problem for time-periodic solutions

$$
u_{n}(t)=e^{i(1-2 \epsilon) t+i \theta_{0}}\left(\phi_{n}+\left(u_{n}+i w_{n}\right) e^{\lambda t}+\left(\bar{u}_{n}+i \bar{w}_{n}\right) e^{\bar{\lambda} t}\right)
$$

such that

$$
\begin{aligned}
& \left(1-3 \phi_{n}^{2}\right) u_{n}-\epsilon\left(u_{n+1}+u_{n-1}\right)=-\lambda w_{n} \\
& \left(1-\phi_{n}^{2}\right) w_{n}-\epsilon\left(w_{n+1}+w_{n-1}\right)=\lambda u_{n}
\end{aligned}
$$

where $\lambda \in \mathbb{C}$ and $(\mathbf{u}, \mathbf{w}) \in \Omega \times \Omega$

$$
\left(\mu-\left|\phi_{n}\right|^{2}\right) \phi_{n}=\epsilon\left(\phi_{n+1}+\phi_{n-1}\right)
$$

- All localized solutions for $\epsilon \neq 0$ are real-valued: $\boldsymbol{\phi} \in L^{2}(\mathbb{Z}, \mathbb{R})$

$$
\begin{gathered}
\bar{\phi}_{n} \phi_{n+1}-\phi_{n} \bar{\phi}_{n+1}=\text { const } n \in \mathbb{Z} \\
\frac{\phi_{n+1}}{\bar{\phi}_{n+1}}=\frac{\phi_{n}}{\bar{\phi}_{n}}: \quad 2 \arg \left(\phi_{n+1}\right)=2 \arg \left(\phi_{n}\right)=\bmod (2 \pi)
\end{gathered}
$$

- There exists a transformation from $\epsilon<0$ to $\epsilon>0$

$$
\phi_{n} \mapsto(-1)^{n} \phi_{n}, \quad \epsilon \mapsto-\epsilon
$$

$$
\left(\mu-\left|\phi_{n}\right|^{2}\right) \phi_{n}=\epsilon\left(\phi_{n+1}+\phi_{n-1}\right)
$$

- There exists a spectral band for $|\mu| \leq 2 \epsilon$:

$$
\phi_{n}=e^{i k n}: \quad \mu=\mu(k)=2 \epsilon \cos k, \quad k \in \mathbb{R}
$$

- Localized solutions do not exist for $\mu<-2 \epsilon<0$:

$$
-(|\mu|-2 \epsilon) \sum_{n \in \mathbb{Z}} \phi_{n}^{2}-\sum_{n \in \mathbb{Z}} \phi_{n}^{4}=\epsilon \sum_{n \in \mathbb{Z}}\left(\phi_{n+1}+\phi_{n}\right)^{2}
$$

- Scaling transformation for localized solutions with $\mu>2 \epsilon>0$:

$$
\phi_{n}=\sqrt{\mu} \hat{\phi}_{n}, \quad \epsilon=\mu \hat{\epsilon}
$$

$$
\left(1-\phi_{n}^{2}\right) \phi_{n}=\epsilon\left(\phi_{n+1}+\phi_{n-1}\right)
$$

- There exists an analytic function $\boldsymbol{\phi}(\epsilon)$ for $0<\epsilon<\epsilon_{0}$:

$$
\begin{aligned}
& \lim _{\epsilon \rightarrow 0} \phi_{n}=\left\{\begin{array}{cc}
\pm 1, & n \in S, \\
0, & n \in \mathbb{Z} \backslash S,
\end{array} \quad \operatorname{dim}(S)<\infty\right. \\
& \lim _{|n| \rightarrow \infty} e^{\kappa|n|}\left|\phi_{n}\right|=\phi_{\infty}, \quad \kappa>0, \quad \phi_{\infty}>0
\end{aligned}
$$

- MacKay, Aubry (1994): inverse function theorem
- Hennig, Tsironis (1999): bounds on ϵ_{0}
- Bergamin, Bountis (2000): symbolic dynamics for invertible maps
- Alfimov, Konotop (2004): complete classification of localized modes
- Fundamental and two-node modes

- Three-node modes

$$
\begin{aligned}
& \left(1-3 \phi_{n}^{2}\right) u_{n}-\epsilon\left(u_{n+1}+u_{n-1}\right)=-\lambda w_{n} \\
& \left(1-\phi_{n}^{2}\right) w_{n}-\epsilon\left(w_{n+1}+w_{n-1}\right)=\lambda u_{n}
\end{aligned}
$$

- Matrix-vector form for $(\mathbf{u}, \mathbf{w}) \in L^{2}\left(\mathbb{Z}, \mathbb{C}^{2}\right)$

$$
\mathcal{L}_{+} \mathbf{u}=-\lambda \mathbf{w}, \quad \mathcal{L}_{-} \mathbf{w}=\lambda \mathbf{u}
$$

- Hamiltonian form for $\boldsymbol{\psi}=(\mathbf{u}, \mathbf{w})$:

$$
\mathcal{J H} \boldsymbol{\psi}=\lambda \boldsymbol{\psi}, \quad \mathcal{J}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad \mathcal{H}=\left(\begin{array}{cc}
\mathcal{L}_{+} & 0 \\
0 & \mathcal{L}_{-}
\end{array}\right) .
$$

Eigenvalues of \mathcal{H} at $\epsilon=0$: Eigenvalues of $\mathcal{J H}$ at $\epsilon=0$:

- $\gamma=-2$ of multiplicity N
- $\gamma=0$ of multiplicity N
- $\gamma=+1$ of multiplicity ∞
- $\lambda=0$ of multiplicity $2 N$
- $\lambda=+i$ of multiplicity ∞
- $\lambda=-i$ of multiplicity ∞

Lemma: Let γ_{j} be small eigenvalues of \mathcal{H} as $\epsilon \rightarrow 0$. There exists N pairs of small eigenvalues λ_{j} and $-\lambda_{j}$ of $\mathcal{J H}$:

$$
\lim _{\epsilon \rightarrow 0} \gamma_{j}=0, \quad \lim _{\epsilon \rightarrow 0} \frac{\lambda_{j}^{2}}{\gamma_{j}}=2, \quad 1 \leq j \leq N
$$

Corollary:

When $\gamma_{j}>0$, there exists one unstable EV $\lambda_{j}>0$.
When $\gamma_{j}<0$, there exists one pair $\lambda_{j} \in i \mathbb{R}$ with negative Krein signature:

$$
(\boldsymbol{\psi}, \mathcal{H} \boldsymbol{\psi})=\left(\mathbf{u}, \mathcal{L}_{+} \mathbf{u}\right)+\left(\mathbf{w}, \mathcal{L}_{-} \mathbf{w}\right)=2\left(\mathbf{w}, \mathcal{L}_{-} \mathbf{w}\right)<0
$$

Lemma: Let n_{0} be the number of sign-differences in the vector $\boldsymbol{\phi}$ at $\epsilon=0$. There exists n_{0} negative eigenvalues γ_{j} and $N-n_{0}-1$ positive eigenvalues γ_{j} for any $\epsilon \neq 0$.

Proof:

- By discrete Sturm Theorem, $\#_{<0}\left(\mathcal{L}_{-}\right)=n_{0}$, since

$$
\mathcal{L}_{-} \phi=0 .
$$

- By theory of difference equations, $\operatorname{dim}\left(\mathcal{L}_{-}\right)=1$ for any $\epsilon \neq 0$, since

$$
\mathcal{L}_{-} \mathbf{w}=\mathbf{0}, \quad \mathbf{w}=c_{1} \boldsymbol{\phi}+c_{2} \mathbf{w}_{2} .
$$

- By our analysis, the number of sign-differences in the vector ϕ is continuous at $\epsilon=0$.

$$
N_{\text {real }}=N-1-n_{0}, \quad N_{\text {imag }}^{-}=n_{0}, \quad N_{\text {comp }}=0
$$

Theorem: The only stable N-pulse discrete soliton near $\epsilon=0$ is the soliton with an alternating sequence of up and down pulses.

- Weinstein (1999): stability of discrete soliton with $N=1$
- Kapitula, Kevrekidis, Malomed (2001): instabilities of twisted modes and other multi-pulse solitons
- Morgante, Johansson, Kopidakis, Aubry (2002): numerical analysis of instabilities of multi-pulse solitons with $N>1$
- Sandstede, Jones, Alexander (1997): analysis of the orbit-flip bifurcation and multi-pulse homoclinic orbits
- Page mode

- Twisted mode

$\Sigma^{0.0 .04} 0$
- Three-node modes

- Scalar NLS equation
$i \dot{u}_{n, m}+\epsilon\left(u_{n+1, m}+u_{n-1, m}+u_{n, m+1}+u_{n, m-1}\right)+\left|u_{n, m}\right|^{2} u_{n, m}=0$
- Vector NLS equation

$$
\begin{array}{r}
i u_{n, m}+\epsilon \Delta u_{n, m}+\left(\left|u_{n, m}\right|^{2}+\beta\left|v_{n, m}\right|^{2}\right) u_{n, m}=0 \\
i \dot{v}_{n, m}+\epsilon \Delta v_{n, m}+\left(\beta\left|u_{n, m}\right|^{2}+\left|v_{n, m}\right|^{2}\right) v_{n, m}=0
\end{array}
$$

where $\epsilon>0$ and $\beta>0$ are parameters.

umerical pictures

- Off-site vortex (vortex cell) on a square contour

- On-site vector vortex (vortex cross) on a diagonal contour

$$
\left(1-\left|\phi_{n, m}\right|^{2}\right) \phi_{n, m}=\epsilon\left(\phi_{n+1, m}+\phi_{n-1, m}+\phi_{n, m+1}+\phi_{n, m-1}\right)
$$

Limiting solution:

$$
\epsilon=0: \quad \phi_{n, m}^{(0)}=\left\{\begin{array}{l}
e^{i \theta_{n, m}}, \quad(n, m) \in S, \\
0, \quad(n, m) \in \mathbb{Z}^{2} \backslash S
\end{array}\right.
$$

Examples of a square discrete contour S

$$
\left(1-\left|\phi_{n, m}\right|^{2}\right) \phi_{n, m}=\epsilon\left(\phi_{n+1, m}+\phi_{n-1, m}+\phi_{n, m+1}+\phi_{n, m-1}\right)
$$

Limiting solution:

$$
\epsilon=0: \quad \phi_{n, m}^{(0)}=\left\{\begin{array}{l}
e^{i \theta_{n, m}}, \quad(n, m) \in S, \\
0, \quad(n, m) \in \mathbb{Z}^{2} \backslash S
\end{array}\right.
$$

Examples of a square discrete contour S

Which configurations $\theta_{n, m}$ can be continued for $\epsilon \neq 0$?

Proposition: Let $N=\operatorname{dim}(S)$ and \mathcal{T} be the torus on $[0,2 \pi]^{N}$. There exists a vector-valued function $\mathbf{g}: \mathcal{T} \mapsto \mathbb{R}^{N}$, such that the limiting solution is continued to $\epsilon \neq 0$ if and only if $\boldsymbol{\theta} \in \mathcal{T}$ is a root of $\mathbf{g}(\boldsymbol{\theta}, \epsilon)=\mathbf{0}$.

- The Jacobian of the nonlinear system:

$$
\mathcal{H}=\left(\begin{array}{cc}
1-2\left|\phi_{n, m}\right|^{2} & -\phi_{n, m}^{2} \\
-\bar{\phi}_{n, m}^{2} & 1-2\left|\phi_{n, m}\right|^{2}
\end{array}\right)-\epsilon\left(\delta_{+1,0}+\ldots+\delta_{0,-1}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

$-\mathcal{H}$ is a self-adjoint Fredholm operator of index zero:

$$
\operatorname{dim}\left(\operatorname{ker}\left(\mathcal{H}^{(0)}\right)=N\right.
$$

$\circ \mathbf{g}$ is analytic, such that

$$
\mathbf{g}(\boldsymbol{\theta}, \epsilon)=\sum_{k=1}^{\infty} \epsilon^{k} \mathbf{g}^{(k)}(\boldsymbol{\theta})
$$

$\circ \mathbf{g}$ has gauge symmetry, such that

$$
\mathbf{g}\left(\boldsymbol{\theta}_{*}, \epsilon\right)=\mathbf{0} \quad \mapsto \quad \mathbf{g}\left(\boldsymbol{\theta}_{*}+\theta_{0} \mathbf{1}, \epsilon\right)=\mathbf{0}
$$

- If $\mathbf{g}^{(1)}\left(\boldsymbol{\theta}_{*}\right)=\mathbf{0}$ and $\mathcal{M}_{1}=\mathcal{D} \mathbf{g}^{(1)}\left(\boldsymbol{\theta}_{*}\right)$ has a kernel with eigenvector $\mathbf{1}$, there exists a unique continuation of the limiting solution for $\epsilon \neq 0$.
- If $\mathbf{g}^{(1)}\left(\boldsymbol{\theta}_{*}\right)=\mathbf{0}$, the kernel of \mathcal{M}_{1} is $(1+d)$-dimensional, and

$$
\left(\mathbf{g}^{(2)}\left(\boldsymbol{\theta}_{*}\right), \operatorname{ker}\left(\mathcal{M}_{1}\right)\right) \neq 0
$$

the limiting solution can not be continued to $\epsilon \neq 0$.

$$
\mathbf{g}_{j}^{(1)}(\boldsymbol{\theta})=\sin \left(\theta_{j}-\theta_{j+1}\right)+\sin \left(\theta_{j}-\theta_{j-1}\right)=0, \quad 1 \leq j \leq 4 M
$$

- (1) Discrete solitons

$$
\theta_{j}=\{0, \pi\}, \quad 1 \leq j \leq 4 M
$$

- (2) Symmetric vortices of charge L

$$
\theta_{j}=\frac{\pi L(j-1)}{2 M}, \quad 1 \leq j \leq 4 M
$$

- (3) One-parameter asymmetric vortices of charge $L=M$

$$
\theta_{j+1}-\theta_{j}=\left\{\begin{array}{c}
\theta \\
\pi-\theta
\end{array}\right\} \bmod (2 \pi), \quad 1 \leq j \leq 4 M
$$

where M is number of nodes at each side of the square contour and L is the vortex charge along the discrete contour.

$$
\mathcal{M}_{1}=\mathcal{D g}^{(1)}(\boldsymbol{\theta})=\left(\begin{array}{ccccc}
a_{1}+a_{2} & -a_{2} & 0 & \ldots & a_{1} \\
-a_{2} & a_{2}+a_{3} & -a_{3} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
-a_{1} & 0 & 0 & \ldots & a_{N-1}+a_{N}
\end{array}\right)
$$

where $a_{j}=\cos \left(\theta_{j+1}-\theta_{j}\right)$

- \mathcal{M}_{1} has a simple zero eigenvalue if all $a_{j} \neq 0$ and

$$
\left(\prod_{i=1}^{N} a_{i}\right)\left(\sum_{i=1}^{N} \frac{1}{a_{i}}\right) \neq 0
$$

Family (1) persists for $\epsilon \neq 0$.

- If all $a_{j}=a=\cos \left(\frac{\pi L}{2 M}\right)$, eigenvalues of \mathcal{M}_{1} are:

$$
\lambda_{n}=4 a \sin ^{2} \frac{\pi n}{4 M}, \quad 1 \leq n \leq 4 M
$$

Family (2) persists for $\epsilon \neq 0$ and $L \neq M$.

- If all $a_{j}= \pm a=\cos \theta$, there are $2 M-1$ negative eigenvalues of $\mathcal{M}_{1}, 2$ zero eigenvalues and $2 M-1$ positive eigenvalues of \mathcal{M}_{1}.
- Persistence of family (3) depends on $\mathbf{g}^{(2)}(\boldsymbol{\theta})$

$$
\begin{aligned}
& \mathbf{g}_{j}^{(2)}=\frac{1}{2} \sin \left(\theta_{j+1}-\theta_{j}\right)\left[\cos \left(\theta_{j}-\theta_{j+1}\right)+\cos \left(\theta_{j+2}-\theta_{j+1}\right)\right] \\
& \quad+\frac{1}{2} \sin \left(\theta_{j-1}-\theta_{j}\right)\left[\cos \left(\theta_{j}-\theta_{j-1}\right)+\cos \left(\theta_{j-2}-\theta_{j-1}\right)\right]
\end{aligned}
$$

- We have $\left(\mathbf{g}^{(2)}, \operatorname{ker}\left(\mathcal{M}_{1}\right)\right) \neq 0$ for all members of family (3) excluding the only configuration:

$$
\theta_{1}=0, \quad \theta_{2}=\theta, \quad \theta_{3}=\pi, \quad \theta_{4}=\pi+\theta
$$

- Symbolic software algorithm is used on a squared domain of N_{0}-byN_{0} lattice nodes, where $N_{0}=2 K+2 M+1$, and K is the order of the Lyapunov-Schmidt reductions.
- Super-symmetric family (3) has $\mathbf{g}^{(k)}(\boldsymbol{\theta})=0$ for $k=1,2,3,4,5$ but $\mathbf{g}^{(6)}(\boldsymbol{\theta}) \neq 0$, unless $\theta_{j+1}-\theta_{j}=\frac{\pi}{2}$.
- Moreover, $\left(\mathbf{g}^{(6)}, \operatorname{ker}\left(\mathcal{M}_{1}\right)\right) \neq 0$, such that all asymmetric vortices (3) terminate.

Matrix-vector Hamiltonian form of the stability problem:

$$
\mathcal{H} \boldsymbol{\psi}=i \lambda \sigma \psi
$$

where

- $\boldsymbol{\psi} \in l^{2}\left(\mathbb{Z}^{2}, \mathbb{C}^{2}\right)$
$-\mathcal{H}$ is the Jacobian (energy) operator
$-\sigma$ is the diagonal matrix of $(1,-1)$

Eigenvalues of \mathcal{H} at $\epsilon=0$:

- $\gamma=-2$ of multiplicity N
- $\gamma=0$ of multiplicity N
- $\gamma=+1$ of multiplicity ∞

Eigenvalues of $i \sigma \mathcal{H}$ at $\epsilon=0$:

- $\lambda=0$ of multiplicity $2 N$
- $\lambda=+i$ of multiplicity ∞
- $\lambda=-i$ of multiplicity ∞

How do zero eigenvalues split?

- First-order splitting of zero eigenvalues of \mathcal{H} :

$$
\mathcal{M}_{1} \mathbf{c}=\gamma \mathbf{c}
$$

- First-order splitting of zero eigenvalues of $i \sigma \mathcal{H}$:

$$
\mathcal{M}_{1} \mathbf{c}=\frac{\lambda^{2}}{2} \mathbf{c}
$$

- Second-order splitting of zero eigenvalues of \mathcal{H} :

$$
\mathcal{M}_{1}=0, \quad \mathcal{M}_{2} \mathbf{c}=\gamma \mathbf{c}
$$

- Second-order splitting of zero eigenvalues of $i \sigma \mathcal{H}$:

$$
\mathcal{M}_{1}=0, \quad \mathcal{M}_{2} \mathbf{c}=\frac{\lambda^{2}}{2} \mathbf{c}+\lambda \mathcal{L}_{2} \mathbf{c}
$$

where $\mathcal{M}_{2}^{T}=\mathcal{M}_{2}$ and $\mathcal{L}_{2}^{T}=-\mathcal{L}_{2}$.

- Six-order splitting : symbolic software algorithm

Number of eigenvalues of \mathcal{H} :

- $n(\mathcal{H})$ - negative
- $p(\mathcal{H})$ - small positive

Number of eigenvalues of $i \sigma \mathcal{H}$:

- N_{r} - small real (unstable)
- N_{c} - small complex (unstable)
- N_{i}^{+}- small imaginary with positive energy
- N_{i}^{-}- small imaginary with negative energy

By Lyapunov-Schmidt reductions,

$$
n(\mathcal{H})+p(\mathcal{H})=2 N-1, \quad 2 N_{r}+2 N_{c}+2 N_{i}^{+}+2 N_{i}^{-}=2 N-2
$$

By closure relation for negative index,

$$
N_{r}+N_{c}+2 N_{i}^{-}=n(\mathcal{H})-1
$$

$\mathcal{M}_{1} \mathbf{c}=\gamma \mathbf{c}: \quad n(\mathcal{H})=8, p(\mathcal{H})=7, N_{r}=7$

$\mathcal{M}_{2} \mathbf{c}=\gamma \mathbf{c}: \quad n(\mathcal{H})=5, p(\mathcal{H})=2, N_{i}^{+}=1, N_{i}^{-}=2$

$\mathcal{M}_{2} \mathbf{c}=\gamma \mathbf{c}: \quad n(\mathcal{H})=10, p(\mathcal{H})=5, N_{r}=1, N_{i}^{+}=2, N_{i}^{-}=4$

$$
\begin{aligned}
& \left(1-\left|\phi_{n, m}\right|^{2}-\beta\left|\psi_{n, m}\right|^{2}\right) \phi_{n, m}=\epsilon\left(\phi_{n+1, m}+\phi_{n-1, m}+\phi_{n, m+1}+\phi_{n, m-1}\right) \\
& \left(1-\beta\left|\phi_{n, m}\right|^{2}-\left|\psi_{n, m}\right|^{2}\right) \psi_{n, m}=\epsilon\left(\psi_{n+1, m}+\psi_{n-1, m}+\psi_{n, m+1}+\psi_{n, m-1}\right)
\end{aligned}
$$

Diagonal discrete contour

$$
S=\{(-1,0) ;(0,-1) ;(1,0) ;(0,1)\} \subset \mathbb{Z}^{2}
$$

Limiting solution

$$
\phi_{n, m}^{(0)}=\left\{\begin{array}{c}
a e^{i \theta_{j}}, \quad(n, m) \in S \\
0, \quad(n, m) \notin S
\end{array} \quad \psi_{n, m}^{(0)}=\left\{\begin{array}{c}
b e^{i \nu_{j}}, \quad(n, m) \in S \\
0, \quad(n, m) \notin S
\end{array}\right.\right.
$$

where

$$
a^{2}+\beta b^{2}=1, \quad \beta a^{2}+b^{2}=1
$$

umerical pictures

- Off-site vortex (vortex cell) on a square contour

- On-site vector vortex (vortex cross) on a diagonal contour

$\beta=\frac{2}{3}$ Left: $(1,1)$ vector vortex. Right: $(1,-1)$ vector vortex

$$
(1, \pm 1): \quad n(\mathcal{H})=14, p(\mathcal{H})=0, N_{i}^{-}=6
$$

$\beta=1$ Left: $(1,1)$ vector vortex. Right: $(1,-1)$ vector vortex

$$
\begin{array}{ll}
(1,1): & n(\mathcal{H})=9, p(\mathcal{H})=2, N_{i}^{+}=1, N_{i}^{-}=4 \\
(1,-1): & n(\mathcal{H})=9, p(\mathcal{H})=2, N_{r}=2, N_{i}^{-}=3
\end{array}
$$

$\beta=2$ Left: $(1,1)$ vector vortex. Right: $(1,-1)$ vector vortex

$$
\begin{gathered}
(1,1): \quad n(\mathcal{H})=9, p(\mathcal{H})=2, N_{r}=2, N_{i}^{+}=1, N_{i}^{-}=3 \\
(1,-1): \quad n(\mathcal{H})=9, p(\mathcal{H})=2, N_{r}=4, N_{i}^{-}=2
\end{gathered}
$$

- Systematic classification of discrete vortices
- Rigorous study of their existence and stability
- Predictions of stable and unstable vortices
- Interplay between analytical and numerical work

