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�Experimental motivations

� Bose-Einstein condensates in optical lattices

� Light-induced photonic lattices

� Coupled optical waveguides

�Persistence of localized solutions

� Implicit Function Theorem

� Lyapunov–Schmidt reductions

�Stability of localized solutions

� Splitting of zero eigenvalues

� Negative index theory
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Experimental pictures

◦ Discrete solitons

◦ Discrete vortices
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Main Formalism

1D : iu̇n + ε (un+1 − 2un + un−1) + |un|2un = 0, n ∈ Z

◦ Vector space Ω = L2(Z, C) for {un}n∈Z:

(u,w)Ω =
∑
n∈Z

ūnwn, ‖u‖2
Ω =

∑
n∈Z

|un|2 < ∞.

◦ Hamiltonian formulation:

iu̇n =
∂H

∂ūn
, H =

∑
n∈Z

ε|un+1 − un|2 −
1

2
|un|4
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◦ Existence problem for time-periodic solutions

un(t) = φnei(µ−2ε)t+iθ0, µ ∈ R, θ0 ∈ R

such that

(µ− |φn|2)φn = ε (φn+1 + φn−1) .
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◦ Existence problem for time-periodic solutions

un(t) = φnei(µ−2ε)t+iθ0, µ ∈ R, θ0 ∈ R

such that

(µ− |φn|2)φn = ε (φn+1 + φn−1) .

◦ Stability problem for time-periodic solutions

un(t) = ei(1−2ε)t+iθ0
(
φn + (un + iwn)eλt + (ūn + iw̄n)eλ̄t

)
such that (

1− 3φ2
n

)
un − ε (un+1 + un−1) = −λwn,(

1− φ2
n

)
wn − ε (wn+1 + wn−1) = λun.

where λ ∈ C and (u,w) ∈ Ω× Ω
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Existence problem in one dimension

(µ− |φn|2)φn = ε (φn+1 + φn−1)
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Existence problem in one dimension

(µ− |φn|2)φn = ε (φn+1 + φn−1)

◦ All localized solutions for ε 6= 0 are real-valued: φ ∈ L2(Z, R)

φ̄nφn+1 − φnφ̄n+1 = const n ∈ Z

φn+1

φ̄n+1
=

φn

φ̄n
: 2 arg(φn+1) = 2 arg(φn) = mod(2π)

6



Existence problem in one dimension

(µ− |φn|2)φn = ε (φn+1 + φn−1)

◦ All localized solutions for ε 6= 0 are real-valued: φ ∈ L2(Z, R)

φ̄nφn+1 − φnφ̄n+1 = const n ∈ Z

φn+1

φ̄n+1
=

φn

φ̄n
: 2 arg(φn+1) = 2 arg(φn) = mod(2π)

◦ There exists a transformation from ε < 0 to ε > 0

φn 7→ (−1)nφn, ε 7→ −ε
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Existence problem in one dimension

(µ− |φn|2)φn = ε (φn+1 + φn−1)

◦ There exists a spectral band for |µ| ≤ 2ε:

φn = eikn : µ = µ(k) = 2ε cos k, k ∈ R
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Existence problem in one dimension

(µ− |φn|2)φn = ε (φn+1 + φn−1)

◦ There exists a spectral band for |µ| ≤ 2ε:

φn = eikn : µ = µ(k) = 2ε cos k, k ∈ R

◦ Localized solutions do not exist for µ < −2ε < 0:

−(|µ| − 2ε)
∑
n∈Z

φ2
n −

∑
n∈Z

φ4
n = ε

∑
n∈Z

(φn+1 + φn)2
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Existence problem in one dimension

(µ− |φn|2)φn = ε (φn+1 + φn−1)

◦ There exists a spectral band for |µ| ≤ 2ε:

φn = eikn : µ = µ(k) = 2ε cos k, k ∈ R

◦ Localized solutions do not exist for µ < −2ε < 0:

−(|µ| − 2ε)
∑
n∈Z

φ2
n −

∑
n∈Z

φ4
n = ε

∑
n∈Z

(φn+1 + φn)2

◦ Scaling transformation for localized solutions with µ > 2ε > 0:

φn =
√

µφ̂n, ε = µε̂
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Existence problem in one dimension

(1− φ2
n)φn = ε (φn+1 + φn−1)

◦ There exists an analytic function φ(ε) for 0 < ε < ε0:

lim
ε→0

φn =

{
±1, n ∈ S,
0, n ∈ Z\S,

dim(S) < ∞

lim
|n|→∞

eκ|n||φn| = φ∞, κ > 0, φ∞ > 0.

◦MacKay, Aubry (1994): inverse function theorem

◦ Hennig, Tsironis (1999): bounds on ε0

◦ Bergamin, Bountis (2000): symbolic dynamics for invertible maps

◦ Alfimov, Konotop (2004): complete classification of localized modes
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Families of discrete solitons

•Fundamental and two-node modes
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Families of discrete solitons

•Fundamental and two-node modes

•Three-node modes
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Stability problem in one dimension(
1− 3φ2

n

)
un − ε (un+1 + un−1) = −λwn,(

1− φ2
n

)
wn − ε (wn+1 + wn−1) = λun.

◦Matrix-vector form for (u,w) ∈ L2(Z, C2)

L+u = −λw, L−w = λu,

◦ Hamiltonian form for ψ = (u,w):

JHψ = λψ, J =

(
0 1
−1 0

)
, H =

(
L+ 0
0 L−

)
.
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Splitting of zero eigenvalues

Eigenvalues of H at ε = 0:

◦ γ = −2 of multiplicity N

◦ γ = 0 of multiplicity N

◦ γ = +1 of multiplicity ∞

Eigenvalues of JH at ε = 0:

◦ λ = 0 of multiplicity 2N

◦ λ = +i of multiplicity ∞
◦ λ = −i of multiplicity ∞
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Splitting of zero eigenvalues

Eigenvalues of H at ε = 0:

◦ γ = −2 of multiplicity N

◦ γ = 0 of multiplicity N

◦ γ = +1 of multiplicity ∞

Eigenvalues of JH at ε = 0:

◦ λ = 0 of multiplicity 2N

◦ λ = +i of multiplicity ∞
◦ λ = −i of multiplicity ∞

Lemma: Let γj be small eigenvalues of H as ε → 0. There exists N
pairs of small eigenvalues λj and −λj of JH:

lim
ε→0

γj = 0, lim
ε→0

λ2
j

γj
= 2, 1 ≤ j ≤ N.
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Splitting of zero eigenvalues

Eigenvalues of H at ε = 0:

◦ γ = −2 of multiplicity N

◦ γ = 0 of multiplicity N

◦ γ = +1 of multiplicity ∞

Eigenvalues of JH at ε = 0:

◦ λ = 0 of multiplicity 2N

◦ λ = +i of multiplicity ∞
◦ λ = −i of multiplicity ∞

Lemma: Let γj be small eigenvalues of H as ε → 0. There exists N
pairs of small eigenvalues λj and −λj of JH:

lim
ε→0

γj = 0, lim
ε→0

λ2
j

γj
= 2, 1 ≤ j ≤ N.

Corollary:
When γj > 0, there exists one unstable EV λj > 0.
When γj < 0, there exists one pair λj ∈ iR with negative Krein signature:

(ψ,Hψ) = (u,L+u) + (w,L−w) = 2 (w,L−w) < 0.
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Count of small eigenvalues of H

Lemma: Let n0 be the number of sign-differences in the vector φ at
ε = 0. There exists n0 negative eigenvalues γj and N − n0 − 1 positive
eigenvalues γj for any ε 6= 0.
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Count of small eigenvalues of H

Lemma: Let n0 be the number of sign-differences in the vector φ at
ε = 0. There exists n0 negative eigenvalues γj and N − n0 − 1 positive
eigenvalues γj for any ε 6= 0.

◦ By discrete Sturm Theorem, #<0(L−) = n0, since

L−φ = 0.

◦ By theory of difference equations, dim (L−) = 1 for any ε 6= 0, since

L−w = 0, w = c1φ + c2w2.

◦ By our analysis, the number of sign-differences in the vector φ is con-
tinuous at ε = 0.
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Count of unstable eigenvalues of JH

Nreal = N − 1− n0, N−
imag = n0, Ncomp = 0

Theorem: The only stable N -pulse discrete soliton near ε = 0 is the
soliton with an alternating sequence of up and down pulses.

◦Weinstein (1999): stability of discrete soliton with N = 1

◦ Kapitula, Kevrekidis, Malomed (2001):
instabilities of twisted modes and other multi-pulse solitons

◦Morgante, Johansson, Kopidakis, Aubry (2002):
numerical analysis of instabilities of multi-pulse solitons with N > 1

◦ Sandstede, Jones, Alexander (1997): analysis of the orbit-flip bifurca-
tion and multi-pulse homoclinic orbits

13



Numerical analysis of discrete solitons

•Page mode
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Numerical analysis of discrete solitons

•Page mode

•Twisted mode
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•Three-node modes
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Remarks on related results

◦ Negative Index Theorem

Nreal + 2N−
imag + 2Ncomp = N + n0 − 1 = n(H)− 1

◦ Kapitula, Kevrekidis, Sandstede (2004): Grillakis’ Diagonalization

◦ Pelinovsky (2005): Sylvester’ Inertia Law
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Remarks on related results

◦ Negative Index Theorem

Nreal + 2N−
imag + 2Ncomp = N + n0 − 1 = n(H)− 1

◦ Kapitula, Kevrekidis, Sandstede (2004): Grillakis’ Diagonalization

◦ Pelinovsky (2005): Sylvester’ Inertia Law

◦ Perturbation Theory

Mc = γc, c ∈ RN , M = H
∣∣∣∣
ker(H(0))

where

M =

 a1 −a1 0 ... 0
−a1 a1 + a2 −a2 ... 0

... ... ... ... ...
0 0 0 ... aN−1


and aj = ±1 depending on the sign-difference in φ.
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Existence problem in two dimension

(1− |φn,m|2)φn,m = ε
(
φn+1,m + φn−1,m + φn,m+1 + φn,m−1

)
Limiting solution:

ε = 0 : φ
(0)
n,m =

{
eiθn,m, (n, m) ∈ S,

0, (n, m) ∈ Z2\S,

Examples of a square discrete contour S
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Existence problem in two dimension

(1− |φn,m|2)φn,m = ε
(
φn+1,m + φn−1,m + φn,m+1 + φn,m−1

)
Limiting solution:

ε = 0 : φ
(0)
n,m =

{
eiθn,m, (n, m) ∈ S,

0, (n, m) ∈ Z2\S,

Examples of a square discrete contour S

What phase configurations θn,m can be continued for ε 6= 0?
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Lyapunov-Schmidt reductions

Proposition: Let N = dim(S) and T be the torus on [0, 2π]N . There
exists a vector-valued function g : T 7→ RN , such that the limiting
solution is continued to ε 6= 0 if and only if θ ∈ T is a root of g(θ, ε) = 0.
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Lyapunov-Schmidt reductions

Proposition: Let N = dim(S) and T be the torus on [0, 2π]N . There
exists a vector-valued function g : T 7→ RN , such that the limiting
solution is continued to ε 6= 0 if and only if θ ∈ T is a root of g(θ, ε) = 0.

◦ The Jacobian of the nonlinear system:

H =

(
1− 2|φn,m|2 −φ2

n,m

−φ̄2
n,m 1− 2|φn,m|2

)
− εδ±1,±1

(
1 0
0 1

)

◦ H is a self-adjoint Fredholm operator of index zero:

dim(ker(H(0)) = N
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◦ Analytic functions:

g(θ, ε) =

∞∑
k=1

εkg(k)(θ)
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◦ Analytic functions:

g(θ, ε) =

∞∑
k=1

εkg(k)(θ)

◦ Gauge symmetry:

g(θ∗, ε) = 0 7→ g(θ∗ + θ0p0, ε) = 0,

where p0 = (1, 1, ..., 1).
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◦ Analytic functions:

g(θ, ε) =

∞∑
k=1

εkg(k)(θ)

◦ Gauge symmetry:

g(θ∗, ε) = 0 7→ g(θ∗ + θ0p0, ε) = 0,

where p0 = (1, 1, ..., 1).

◦ Let θ∗ be the root of g(1)(θ) = 0 andM1 = Dg(1)(θ∗). If dim(ker(M1)) =
1, there exists a unique analytic continuation of the limiting solution
for ε 6= 0.
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◦ Analytic functions:

g(θ, ε) =

∞∑
k=1

εkg(k)(θ)

◦ Gauge symmetry:

g(θ∗, ε) = 0 7→ g(θ∗ + θ0p0, ε) = 0,

where p0 = (1, 1, ..., 1).

◦ Let θ∗ be the root of g(1)(θ) = 0 andM1 = Dg(1)(θ∗). If dim(ker(M1)) =
1, there exists a unique analytic continuation of the limiting solution
for ε 6= 0.

◦ Let θ∗ be a (1 + d)-parameter solution of g(1)(θ) = 0. The limiting

solution can not be continued to ε 6= 0 if g(2)(θ∗) is not orthogonal to
ker(M1).
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First-order reductions : classification of solutions

g
(1)
j (θ) = sin(θj − θj+1) + sin(θj − θj−1) = 0, 1 ≤ j ≤ 4M
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First-order reductions : classification of solutions

g
(1)
j (θ) = sin(θj − θj+1) + sin(θj − θj−1) = 0, 1 ≤ j ≤ 4M

◦ (1) Discrete solitons

θj = {0, π}, 1 ≤ j ≤ 4M

◦ (2) Symmetric vortices of charge L

θj =
πL(j − 1)

2M
, 1 ≤ j ≤ 4M,

◦ (3) One-parameter asymmetric vortices of charge L = M

θj+1 − θj =

{
θ

π − θ

}
mod(2π), 1 ≤ j ≤ 4M,
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First-order reductions : persistence of solutions

M1 =

 a1 + a2 −a2 0 ... a1

−a2 a2 + a3 −a3 ... 0
... ... ... ... ...

−a1 0 0 ... aN−1 + aN

 , aj = cos(θj+1 − θj)
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First-order reductions : persistence of solutions

M1 =

 a1 + a2 −a2 0 ... a1

−a2 a2 + a3 −a3 ... 0
... ... ... ... ...

−a1 0 0 ... aN−1 + aN

 , aj = cos(θj+1 − θj)

◦M1 has a simple zero eigenvalue if all aj 6= 0 and N∏
i=1

ai

  N∑
i=1

1

ai

 6= 0.

Family (1) persists for ε 6= 0
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First-order reductions : persistence of solutions

M1 =

 a1 + a2 −a2 0 ... a1

−a2 a2 + a3 −a3 ... 0
... ... ... ... ...

−a1 0 0 ... aN−1 + aN

 , aj = cos(θj+1 − θj)

◦M1 has a simple zero eigenvalue if all aj 6= 0 and N∏
i=1

ai

  N∑
i=1

1

ai

 6= 0.

Family (1) persists for ε 6= 0

◦ If all aj = a = cos( πL
2M ), eigenvalues of M1 are:

λn = 4a sin2 πn

4M
, 1 ≤ n ≤ 4M

Family (2) persists for ε 6= 0 and L 6= M
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Second-order reductions : termination of solutions

◦ If all aj = ±a = cos θ, there are 2M − 1 negative eigenvalues of
M1, 2 zero eigenvalues and 2M − 1 positive eigenvalues of M1.

◦ Persistence of family (3) depends on g(2)(θ)

g
(2)
j =

1

2
sin(θj+1 − θj)

[
cos(θj − θj+1) + cos(θj+2 − θj+1)

]
+

1

2
sin(θj−1 − θj)

[
cos(θj − θj−1) + cos(θj−2 − θj−1)

]
◦ If ker(M1) = {p0,p1}, then (g(2),p1) 6= 0.

◦ Family (3) terminates except for one super-symmetric configuration:

θ1 = 0, θ2 = θ, θ3 = π, θ4 = π + θ,
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Higher-order reductions : termination of super-symmetric family

◦ Symbolic software algorithm is used on a squared domain of N0-by-
N0 lattice nodes, where N0 = 2K + 2M + 1, and K is the order of
the Lyapunov-Schmidt reductions.

◦ Super-symmetric family (3) has g(k)(θ) = 0 for k = 1, 2, 3, 4, 5 but

g(6)(θ) 6= 0, unless θj+1 − θj = π
2 .

◦Moreover, (g(6),p1) 6= 0.

◦ All asymmetric vortices (3) terminate

◦ All symmetric vortices (2) persist.
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Stability of solutions in Lyapunov-Schmidt reductions

◦ First-order splitting of zero eigenvalues of H:

M1c = γc

◦ First-order splitting of zero eigenvalues of JH:

M1c =
λ2

2
c
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Stability of solutions in Lyapunov-Schmidt reductions

◦ First-order splitting of zero eigenvalues of H:

M1c = γc

◦ First-order splitting of zero eigenvalues of JH:

M1c =
λ2

2
c

◦ Second-order splitting of zero eigenvalues of H:

M1 = 0, M2c = γc

◦ Second-order splitting of zero eigenvalues of JH:

M1 = 0, M2c =
λ2

2
c + λL2c
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Stability of solutions in Lyapunov-Schmidt reductions

◦ First-order splitting of zero eigenvalues of H:

M1c = γc

◦ First-order splitting of zero eigenvalues of JH:

M1c =
λ2

2
c

◦ Second-order splitting of zero eigenvalues of H:

M1 = 0, M2c = γc

◦ Second-order splitting of zero eigenvalues of JH:

M1 = 0, M2c =
λ2

2
c + λL2c

◦ Six-order splitting : symbolic software algorithm
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Numerical analysis: symmetric vortex with L = M = 1
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Numerical analysis: symmetric vortex with L = 1 and M = 2
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Numerical analysis: symmetric vortex with L = M = 2
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Numerical analysis: symmetric vortex with L = 3 and M = 2
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Summary:

• Systematic classification of discrete vortices

•Rigorous study of their existence and stability

•Predictions of stable and unstable localized modes
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