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Domain walls
@ Bulk energy with stable states

W: R> =R, W(u)>0,
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Domain walls

@ Bulk energy with stable states
W:R2 SR, W()>0, Wps)=W(p.)=0

@ The total energy

E(u):/RB|Vu|2-I-W(u)] d
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Domain walls

@ Bulk energy with stable states
W: R2=R, W(u)>0, W(py)=W(p_)=0
@ The total energy
E(u) = /R [%|Vu|2 + W(u)] d
@ Domain walls are stationary layers with profile U connecting p.:

-U"+DW(U) =0, U— ptr as x = £o0
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Example: Gross-Pitaevskii System

Motivated by two-component Bose-Einstein condensates,

i0p1 = =031 + (gu1|¥1]* + gralto2|*)on,
i0pby = —0%1b2 + (gralt1|? + g2o|t2|?) 2,

with ¢12(x,t) € C, g11,82 > 0, and g12 > \/g11822
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Example: Gross-Pitaevskii System

Motivated by two-component Bose-Einstein condensates,

i0by = —0%1 + (gu1lva]? + grolv2|?)¥n,
i0phy = — 0212 + (gr2|W1]? + g2a|th2|?)t2,

with ¢12(x,t) € C, g11,82 >0, and g2 > /811822
For g11 = g2 =1, g1o = v > 1, and ¢j(x, t) = e "*u;(x),

—uf + (uf + 703 — D =0,
—uf + (yu? + 13 — 1) = 0.

The bulk energy is:

1 2
W (ur, up) = 5 (Jur? + |2 = 1) + (v = 1)|wn?

|uz)?.

Barankov (2002), Dror-Malomed-Zeng (2011), Filatrella—Malomed (2014)
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Domain walls versus black solitons
Domain walls (u1, up) satisfy the boundary-value problem:

—uf + (v 4+ yud —1)uy =0,
—uf + (yuf + uj — 1)up = 0,

with (u1, u2) — (0,1) as x — —oo, and (u1, u2) — (1,0) as x — +o0.

Exact solution for v = 3:
[1 — tanh ( >] .

N

ui(x) = % [1 + tanh <%)] L w(x) =

S
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Domain walls versus black solitons

Domain walls (u1, up) satisfy the boundary-value problem:

—uf + (v 4+ yud —1)uy =0,
—uf + (yuf + uj — 1)up = 0,

with (u1, u2) — (0,1) as x — —oo, and (u1, u2) — (1,0) as x — +o0.

Exact solution for v = 3:

up(x) = % [1 + tanh <%)]  w(x) = % [1 — tanh (\%)] .

Black solitons satisfy the same problem and exist for all values of ~:

(u1,u2) = (up,0) and (u1,u2) = (0, up)
where 1, = tanh(x/v/2).
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Existence Theorem
Recall the energy E(U) = [p[3|U'|> + W(U)]dx with U = (u1, 1) and

1

2
W) =5 (Jur? + [ = 1)7 + (v = Dl Pl

Theorem (Alama-Bronsard-Contreras-P., 2015)

@ The infimum of E(U) is attained at a solution with U(x) — e4 as
x — £00, where ey = (1,0) and e_ = (0,1).

e Every minimizer U = (u1, up) satisfies
(a) ul(x) = uy(—x) for all x € R.
(b) u?(x)+ u3(x) <1 forall x € R.
(c) ul(x) > 0 and u4(x) < 0 for all x € R.
(d) 0 < u12(x) < 1 with exponential convergence to constant states.

Uniqueness was proven Aftalion-Sourdis (2016);
Farina-Sciunzi-Soave (2017).
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Spaces for Minimization
Recall the energy E(U) = [5[3|U'|? + W(U)]dx with U = (uy, u2) and

W) = = (lu? + wf? = 1) + (7 = 1)t [*| o]

N -

A minimizing sequence belongs to the energy space
D={U€Hp(R): |U(x)—er as x— Foo},

equipped with the family of distances parameterized by A > 0:

paW,®) = 3 ([} = Gl oy + 131 = 1illl gy + 15 = oill o]
j=12

Complex phases are not controlled far away from the domain wall.

F. Bethuel, P. Gravejat, J.C. Saut, D. Smets (2008)
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Spectral stability of domain walls

Define the second variation of energy D?E(U) at a minimizer U. For the
perturbation term ® = V + /W, the second variation is diagonalized:

D?E(U)[®] = (Ly V, V) + (L_W, W).

Theorem (ABCP, 2015)
o FEach operator Ly and L_ is positive semi-definite in H*(R).
e Zero is a simple eigenvalue of L., with eigenfunction U'(x).
@ 0ess(L_) =[0,00), and 3 g > 0 with oess(L+) = [X0,00).
o L Uy =L_U,=0 with Uy = (u1,0) and Uy = (0, ).

As a consequence, the domain walls are spectrally stable:
eigenvalues of the linearized flow satisfy Re (A) = 0.
DiMenza-Gallo (2007).
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Domain walls versus black solitons

e Domain walls (u1, u) are minimizers of energy with positive
semi-definite second variation.

@ Black solitons
(u1, ) = (up,0) and (w1, u2) = (0, up)

are saddle points of energy with a simple negative eigenvalue of the
second variation. They are constrained minimizers under the
conservation of the renormalized momentum.
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Domain walls versus black solitons

e Domain walls (u1, up) are minimizers of energy with positive
semi-definite second variation.

@ Black solitons
(u1, ) = (up,0) and (w1, u2) = (0, up)

are saddle points of energy with a simple negative eigenvalue of the
second variation. They are constrained minimizers under the
conservation of the renormalized momentum.

For black solitons of the scalar NLS, it was shown that the energy
functional is coercive in a weighted H! space. The family of distance pa is
abundant, since the weighted H' metric is introduced uniformly on R.
Both orbital stability and asymptotic stability is deduced from coercivity:
Gravejat-Smets (2015).
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Decomposition of energy
Recall the second variation of energy E(U) for & = V + iW:
D2E(U)[®] = (L, V, V) + (L_W, W),
where
(LyV, V)2 > G|\ V|7, forevery Ve H'(R): (V,0:U)2=0

but
(LW, W).>0, with LU =L_U,=0

with U; = (u1,0) and U, = (0, U2).
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Decomposition of energy
Recall the second variation of energy E(U) for & = V + iW:
D2E(U)[®] = (L, V, V) + (L_W, W),
where
(LyV, V)2 > G|\ V|7, forevery Ve H'(R): (V,0:U)2=0

but
(LW, W).>0, with LU =L_U,=0

with U; = (u1,0) and U, = (0, U2).

Energy can be decomposed in the form:

E(U+V+iW)—EU) = (L V, V)2 + (LW, W) 2+ O(|V + iW|3p),
The cubic terms cannot be controlled in H! norm because of modulations.
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Alternative decomposition of energy
Energy can be decomposed in the equivalent way [Gravejat-Smets (2015)]:

. 1
E(U+V 4+ W)~ E(U) = (L-V, V)ja + (LW, W)z + 2 (MY, Tz
where T = (n1,7m2) with nj == [uj + vj + iwj|* — u? = 2u;v; + v? + w? and

I\/I:[ ﬂ det(M) =1 —~? < 0.

v
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Alternative decomposition of energy
Energy can be decomposed in the equivalent way [Gravejat-Smets (2015)]:

1
E(U+V+ W) = E(U) = (LV, V) + (LW, W) + 5 (MY, )z

where T = (171,72) with 7 := |uj + vj + iwj|? — uj2 =2ujvj + vj2 + WJ-2 and

1o 12
M_[fy 1]. det(M) =1—-~° <0.

@ The first two quadratic forms are coercive in H under two constraints:
— L= 4 (v = 1)(1 = u))y ;| dx,

where v > 1and 1 — uf > 0. Then, [|[V]y < C||V||4.
@ Only one constraint can be set on V.
@ The third quadratic form is sign-indefinite.
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Orbital Stability
Weighted H! space:

dy; dg, 2\ =
W¢H—Z/[dxdx+ = 1)(1 = w3 dx,
equipped H with the family of distances parameterized by R > 0:

PRV, @) = [[W — o[, + > [[lo* - 1271|212 )
j=12

Theorem (Contreras-P-Plum, 2018)

Let Wo € DN L®(R). There exists Ry > 0 such that for any R > Ry and
for every € > 0, there is § > 0 and real functions «(t), 01(t), 02(t) such
that if pr(Wo, U) < 0, then supicr pr(V (), Uae),0.(1),00()) < €, where

Un(e),61(),05(0) = (&7 g (- — (1)), e Do (- — (1))

v
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Remarks

@ Modulation parameters «, 61, and 65 in the orbit of domain walls

Un(tyon().65(0) = (€O uy (- — a(t)), e 2D up(- — (1))

are uniquely determined by the projection algorithm.
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Remarks

@ Modulation parameters «, 61, and 65 in the orbit of domain walls

Ua(e).01().02(0) = (€7 Oun(- — a(2)), e Du(- - a(t)))
are uniquely determined by the projection algorithm.

@ The time evolution of the modulation parameters is controlled:
()] +102(8)] +102(t)[ < Ce(1 +[t]), teR
for some C > 0.
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Remarks
@ Modulation parameters «, 61, and 65 in the orbit of domain walls
Un(ey.or(6).00(t) = (€7 Ou (- — a(t)), e (- — (1))
are uniquely determined by the projection algorithm.
@ The time evolution of the modulation parameters is controlled:
()] +102(8)] +102(t)[ < Ce(1 +[t]), teR
for some C > 0.

o If R is large, then § and e are exponentially small in R.
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Remarks
@ Modulation parameters «, 61, and 65 in the orbit of domain walls
Un(ey.or(6).00(t) = (€7 Ou (- — a(t)), e (- — (1))
are uniquely determined by the projection algorithm.
@ The time evolution of the modulation parameters is controlled:
la(t)] +[01(t)] + |02(2)| < Ce(1 + [t]), teR
for some C > 0.
o If R is large, then § and e are exponentially small in R.
@ The distances pa and pgr are not comparable:
paW,®) = 3 (15 = ey + 151 = Vol ey + 145 = 4l i)
Jj=1,2
and

PRV, @) = [[W =@l + > 157 = 195 22y
=12
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Coercivity of (L_W, W),. in H
Consider
(LW, W) = W5 — v (TW, W)y,

where T : H — H is the compact positive operator defined by

(T, d)yy = /R (1—uf — u3) (Y11 + YaP2) dx.
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Coercivity of (L_W, W),. in H
Consider

(LW, W) = W = A(TW, W)y,
where T : H — H is the compact positive operator defined by

(T, d)yy = /R (1—uf — u3) (Y11 + YaP2) dx.

Lemma
There exists A_ > 0 such that

(LW, W) >A_||W|3, YWEeH: (W,U)y = (W, Uy =0.

@ The spectrum of L_ in H consists of isolated eigenvalues
accumulating to 1.

@ The smallest eigenvalue of L_ is a double zero
with Uy = (u1,0) € H and U, = (0, U2) e H.
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Coercivity of (L+V, V). in H
Break R into (—oo, —R) U (—R, R) U (R, 00). Then, define

2
_ uy yuiruz
Lg = L_+2 [7U1u2 02 } X[-R,R]

2
. uy yuipuz
= L,-2 [Vmuz ug ] X(—00,—R)U(R,00)

As R — oo, Lg — Ly and L 0,U = 0 with 0,U € H.
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Coercivity of (L+V, V). in H
Break R into (—oo, —R) U (—R, R) U (R, 00). Then, define

2
. uy yuiup
Lg = L_+2 |:’7U1U2 02 ] X[-R,R]

>
uiy  yuiu
Ly -2 |:"YU1U2 2 ] X(—o0,—R)U(R,0)-

As R — oo, Lg — Ly and L 0,U = 0 with 0,U € H.

Lemma
There exist Ry > 0 and Ay > 0 such that for every R > Ry,

(LRV, V)2 > ALV, YV eH: (W, 0U)y =0.

@ The spectrum of Lg in H consists of isolated eigenvalues
accumulating to 1.

o The spectrum of L, is only defined in H1(R) and includes a
continuous part bounded from below by 1.
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Energy estimates
Decomposition of energy:

E(U+V +iW) — E(U) = (LgV, V) o + (LW, W)

+/’; [N3(V, W) + Na(V, W)] dx+% (/_j+/l?°°) (3 +75) dx

_R 0o
—G—fy/ n2(2uivi + vl2 + W12)dx + 'y/ 1 (2uavo + v22 + W22)dX.

oo R

The rest of the proof:

@ Estimates of nonlinear terms with
IV + iW | _rry < CEF|V +iW |3

@ Estimates of the last terms with
o0
’/ m(2uzve + v3 + wi)dx| < Ce " RIIV + iW |l Imill iz (> ) -
R
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Domain walls versus black solitons
Persistence of stationary solutions in the e-perturbed system:

i0br = =01 + eV () + ([1]* + v[eal ),
iOpha = =022 + eV ()2 + (V|11 ]* + 12?1,

under a smooth and integrable potential V € C?(R) N L}(R).

e Domain walls (uy, u) are pinned to the extremal points of the
potential V' and the pinning is stable at the maximum of the
potential. (Dror-Malomed-Zeng 2011, ABCP 2015).

@ Black solitons
(u1,u2) = (up,0) and (u1, u2) = (0, up)

are also pinned to the extremal points of the potential V' but the
pinning is unstable both at the maximum and minimum of the
potential. (P—Kevrekidis 2008).
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Persistence of domain walls
Persistence of domain walls in the e-perturbed system:

i0pp1 = —0%01 + eV ()1 + (|91]? + Y[vl*),
iOppa = =022 + eV ()2 + (VU1 + |12

Theorem (Alama-Bronsard-Contreras-P., 2015)

Let Up = (u1, u2) be a domain wall with v > 1 and € = 0. For a given
V € C3(R) N LY(R), assume that there exists xg € R such that

/ V/(x + xo) (v + u3 — 1)dx = 0.
R

There exists 9 > 0 such that for all € € (—eg, £0), the system admits a
unique branch of the domain walls U = (u1, u2) such that

Su% |U(x) — Up(x — x0)| < Cle|, € € (—¢o,€0)-
x€

If V is even in x, then xg = 0.
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Stability of domain walls

Theorem (ABCP, 2015)

The domain walls in the e-perturbed system are spectrally stable if 0 > 0
and unstable if o < 0, where

1
&7 o= §/ V"(x 4+ x0)(u? + u3 — 1)dx # 0.
R

e L_(e) remains semi-positive operator with no spectral gap.

@ The isolated zero eigenvalue of L () becomes positive if ¢ > 0 and
negative if o < 0.

If V is even and V”(x) > 0, then the domain wall at xg = 0 is unstable.
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Summary

Domain walls (uz, up) (with v = 3)

i (x) = % [1 + tanh <%)]  (x)

@ minimizers of energy without any constraints

Il
N~
| —|

—

|

—+

O

=]

>
7N
Nk
~
| I

@ orbitally stable

@ persist under small perturbations

@ are pinned to the maximum of potential
e asymptotically stable (conjecture)

@ do not travel in space (conjecture)
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Happy Holidays!
Joyeuse Fétes!
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