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Domain walls

Bulk energy with stable states

W : R2 → R, W (u) ≥ 0, W (p+) = W (p−) = 0

The total energy

E (u) =

∫
R

[
1

2
|∇u|2 + W (u)

]
dx

Domain walls are stationary layers with profile U connecting p±:

−U ′′ + DW (U) = 0, U → p± as x → ±∞

p� p+
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D. Pelinovsky () Stability of domain walls December 2017 2 / 20



Domain walls

Bulk energy with stable states

W : R2 → R, W (u) ≥ 0, W (p+) = W (p−) = 0

The total energy

E (u) =

∫
R

[
1

2
|∇u|2 + W (u)

]
dx

Domain walls are stationary layers with profile U connecting p±:

−U ′′ + DW (U) = 0, U → p± as x → ±∞

p� p+

�0

D. Pelinovsky () Stability of domain walls December 2017 2 / 20



Domain walls

Bulk energy with stable states

W : R2 → R, W (u) ≥ 0, W (p+) = W (p−) = 0

The total energy

E (u) =

∫
R

[
1

2
|∇u|2 + W (u)

]
dx

Domain walls are stationary layers with profile U connecting p±:

−U ′′ + DW (U) = 0, U → p± as x → ±∞

p� p+

�0

D. Pelinovsky () Stability of domain walls December 2017 2 / 20



Example: Gross-Pitaevskii System

Motivated by two-component Bose-Einstein condensates,

i∂tψ1 = −∂2xψ1 + (g11|ψ1|2 + g12|ψ2|2)ψ1,

i∂tψ2 = −∂2xψ2 + (g12|ψ1|2 + g22|ψ2|2)ψ2,

with ψ1,2(x , t) ∈ C, g11, g22 > 0, and g12 >
√

g11g22

For g11 = g22 = 1, g12 = γ > 1, and ψj(x , t) = e−ituj(x),

−u′′1 + (u2
1 + γu2

2 − 1)u1 = 0,

−u′′2 + (γu2
1 + u2

2 − 1)u2 = 0.

The bulk energy is:

W (u1, u2) =
1

2

(
|u1|2 + |u2|2 − 1

)2
+ (γ − 1)|u1|2|u2|2.

Barankov (2002), Dror-Malomed-Zeng (2011), Filatrella–Malomed (2014)
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Domain walls versus black solitons

Domain walls (u1, u2) satisfy the boundary-value problem:

−u′′1 + (u2
1 + γu2

2 − 1)u1 = 0,

−u′′2 + (γu2
1 + u2

2 − 1)u2 = 0,

with (u1, u2)→ (0, 1) as x → −∞, and (u1, u2)→ (1, 0) as x → +∞.

Exact solution for γ = 3:

u1(x) =
1

2

[
1 + tanh

(
x√
2

)]
, u2(x) =

1

2

[
1− tanh

(
x√
2

)]
.

Black solitons satisfy the same problem and exist for all values of γ:

(u1, u2) = (ub, 0) and (u1, u2) = (0, ub)

where ub = tanh(x/
√

2).
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Existence Theorem
Recall the energy E (U) =

∫
R[12 |U

′|2 + W (U)]dx with U = (u1, u2) and

W (U) =
1

2

(
|u1|2 + |u2|2 − 1

)2
+ (γ − 1)|u1|2|u2|2.

Theorem (Alama-Bronsard-Contreras-P., 2015)

The infimum of E (U) is attained at a solution with U(x)→ e± as
x → ±∞, where e+ = (1, 0) and e− = (0, 1).

Every minimizer U = (u1, u2) satisfies

(a) u1(x) = u2(−x) for all x ∈ R.
(b) u2

1(x) + u2
2(x) ≤ 1 for all x ∈ R.

(c) u′1(x) > 0 and u′2(x) < 0 for all x ∈ R.
(d) 0 < u1,2(x) < 1 with exponential convergence to constant states.

Uniqueness was proven Aftalion-Sourdis (2016);
Farina-Sciunzi-Soave (2017).
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Spaces for Minimization

Recall the energy E (U) =
∫
R[12 |U

′|2 + W (U)]dx with U = (u1, u2) and

W (U) =
1

2

(
|u1|2 + |u2|2 − 1

)2
+ (γ − 1)|u1|2|u2|2.

A minimizing sequence belongs to the energy space

D =
{

U ∈ H1
loc(R) : |U(x)| → e± as x → ±∞

}
,

equipped with the family of distances parameterized by A > 0:

ρA(Ψ,Φ) :=
∑
j=1,2

[∥∥ψ′j − ϕ′j∥∥L2(R) +
∥∥|ψj | − |ϕj |

∥∥
L2(R) +

∥∥ψj − ϕj

∥∥
L∞(−A,A)

]
Complex phases are not controlled far away from the domain wall.

F. Bethuel, P. Gravejat, J.C. Saut, D. Smets (2008)
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Spectral stability of domain walls

Define the second variation of energy D2E (U) at a minimizer U. For the
perturbation term Φ = V + iW , the second variation is diagonalized:

D2E (U)[Φ] = 〈L+V ,V 〉+ 〈L−W ,W 〉.

Theorem (ABCP, 2015)

Each operator L+ and L− is positive semi-definite in H1(R).

Zero is a simple eigenvalue of L+, with eigenfunction U ′(x).

σess(L−) = [0,∞), and ∃ Σ0 > 0 with σess(L+) = [Σ0,∞).

L−U1 = L−U2 = 0 with U1 = (u1, 0) and U2 = (0, u2).

As a consequence, the domain walls are spectrally stable:
eigenvalues of the linearized flow satisfy Re (λ) = 0.
DiMenza-Gallo (2007).
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Domain walls versus black solitons

Domain walls (u1, u2) are minimizers of energy with positive
semi-definite second variation.

Black solitons

(u1, u2) = (ub, 0) and (u1, u2) = (0, ub)

are saddle points of energy with a simple negative eigenvalue of the
second variation. They are constrained minimizers under the
conservation of the renormalized momentum.

For black solitons of the scalar NLS, it was shown that the energy
functional is coercive in a weighted H1 space. The family of distance ρA is
abundant, since the weighted H1 metric is introduced uniformly on R.
Both orbital stability and asymptotic stability is deduced from coercivity:
Gravejat–Smets (2015).
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Decomposition of energy

Recall the second variation of energy E (U) for Φ = V + iW :

D2E (U)[Φ] = 〈L+V ,V 〉+ 〈L−W ,W 〉,

where

(L+V ,V )L2 ≥ C0‖V ‖2H1 for every V ∈ H1(R) : (V , ∂xU)L2 = 0

but
(L−W ,W )L2 ≥ 0, with L−U1 = L−U2 = 0

with U1 = (u1, 0) and U2 = (0, u2).

Energy can be decomposed in the form:

E (U + V + iW )− E (U) = (L+V ,V )L2 + (L−W ,W )L2 +O(‖V + iW ‖3H1),

The cubic terms cannot be controlled in H1 norm because of modulations.
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Alternative decomposition of energy
Energy can be decomposed in the equivalent way [Gravejat–Smets (2015)]:

E (U + V + iW )− E (U) = (L−V ,V )L2 + (L−W ,W )L2 +
1

2
(MΥ,Υ)L2 ,

where Υ = (η1, η2) with ηj := |uj + vj + iwj |2 − u2
j = 2ujvj + v2

j + w2
j and

M =

[
1 γ
γ 1

]
: det(M) = 1− γ2 < 0.

The first two quadratic forms are coercive in H under two constraints:

〈Ψ,Φ〉H :=
2∑

j=1

∫
R

[
dψj

dx

dϕ̄j

dx
+ (γ − 1)(1− u2

j )ψj ϕ̄j

]
dx ,

where γ > 1 and 1− u2
j > 0. Then, ‖Ψ‖H ≤ C‖Ψ‖H1 .

Only one constraint can be set on V .

The third quadratic form is sign-indefinite.
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Orbital Stability
Weighted H1 space:

〈Ψ,Φ〉H :=
2∑

j=1

∫
R

[
dψj

dx

dϕ̄j

dx
+ (γ − 1)(1− u2

j )ψj ϕ̄j

]
dx ,

equipped H with the family of distances parameterized by R > 0:

ρR(Ψ,Φ) :=
∥∥Ψ− Φ

∥∥
H +

∑
j=1,2

∥∥|ψj |2 − |ϕj |2
∥∥
L2(|x |≥R)

.

Theorem (Contreras-P-Plum, 2018)

Let Ψ0 ∈ D ∩ L∞(R). There exists R0 > 0 such that for any R > R0 and
for every ε > 0, there is δ > 0 and real functions α(t), θ1(t), θ2(t) such
that if ρR(Ψ0,U) ≤ δ, then supt∈R ρR(Ψ(t),Uα(t),θ1(t),θ2(t)) ≤ ε, where

Uα(t),θ1(t),θ2(t) = (e−iθ1(t)u1(· − α(t)), e−iθ2(t)u2(· − α(t))).
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Remarks
Modulation parameters α, θ1, and θ2 in the orbit of domain walls

Uα(t),θ1(t),θ2(t) = (e−iθ1(t)u1(· − α(t)), e−iθ2(t)u2(· − α(t)))

are uniquely determined by the projection algorithm.

The time evolution of the modulation parameters is controlled:

|α(t)|+ |θ1(t)|+ |θ2(t)| ≤ Cε(1 + |t|), t ∈ R

for some C > 0.

If R is large, then δ and ε are exponentially small in R.

The distances ρA and ρR are not comparable:

ρA(Ψ,Φ) :=
∑
j=1,2

[∥∥ψ′j − ϕ′j∥∥L2(R) +
∥∥|ψj | − |ϕj |

∥∥
L2(R) +

∥∥ψj − ϕj

∥∥
L∞(−A,A)

]
and

ρR(Ψ,Φ) :=
∥∥Ψ− Φ

∥∥
H +

∑
j=1,2

∥∥|ψj |2 − |ϕj |2
∥∥
L2(|x |≥R)

.
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Coercivity of (L−W ,W )L2 in H
Consider

(L−W ,W )L2 = ‖W ‖2H − γ〈TW ,W 〉H,

where T : H → H is the compact positive operator defined by

〈T Ψ,Φ〉H :=

∫
R

(
1− u2

1 − u2
2

)
(ψ1ϕ̄1 + ψ2ϕ̄2) dx .

Lemma

There exists Λ− > 0 such that

(L−W ,W )L2 ≥ Λ−‖W ‖2H ∀W ∈ H : 〈W ,U1〉H = 〈W ,U2〉H = 0.

The spectrum of L− in H consists of isolated eigenvalues
accumulating to 1.

The smallest eigenvalue of L− is a double zero
with U1 = (u1, 0) ∈ H and U2 = (0, u2) ∈ H.
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Coercivity of (L+V ,V )L2 in H
Break R into (−∞,−R) ∪ (−R,R) ∪ (R,∞). Then, define

LR = L− + 2

[
u2
1 γu1u2

γu1u2 u2
2

]
χ[−R,R]

= L+ − 2

[
u2
1 γu1u2

γu1u2 u2
2

]
χ(−∞,−R)∪(R,∞).

As R →∞, LR → L+ and L+∂xU = 0 with ∂xU ∈ H.

Lemma

There exist R0 > 0 and Λ+ > 0 such that for every R > R0,

(LRV ,V )L2 ≥ Λ+‖V ‖2H ∀V ∈ H : 〈W , ∂xU〉H = 0.

The spectrum of LR in H consists of isolated eigenvalues
accumulating to 1.

The spectrum of L+ is only defined in H1(R) and includes a
continuous part bounded from below by 1.
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Energy estimates
Decomposition of energy:

E (U + V + iW )− E (U) = (LRV ,V )L2 + (L−W ,W )L2

+

∫ R

−R
[N3(V ,W ) + N4(V ,W )] dx +

1

2

(∫ −R
−∞

+

∫ ∞
R

)
(η21 + η22)dx

+γ

∫ −R
−∞

η2(2u1v1 + v2
1 + w2

1 )dx + γ

∫ ∞
R

η1(2u2v2 + v2
2 + w2

2 )dx .

The rest of the proof:

Estimates of nonlinear terms with

‖V + iW ‖H1(−R,R) ≤ CeκR‖V + iW ‖H

Estimates of the last terms with∣∣∣∣∫ ∞
R

η1(2u2v2 + v2
2 + w2

2 )dx

∣∣∣∣ ≤ Ce−κR‖V + iW ‖H‖η1‖L2(|x |≥R).
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Domain walls versus black solitons
Persistence of stationary solutions in the ε-perturbed system:

i∂tψ1 = −∂2xψ1 + εV (x)ψ1 + (|ψ1|2 + γ|ψ2|2)ψ1,

i∂tψ2 = −∂2xψ2 + εV (x)ψ2 + (γ|ψ1|2 + |ψ2|2)ψ2,

under a smooth and integrable potential V ∈ C 2(R) ∩ L1(R).

Domain walls (u1, u2) are pinned to the extremal points of the
potential V and the pinning is stable at the maximum of the
potential. (Dror-Malomed-Zeng 2011, ABCP 2015).

Black solitons

(u1, u2) = (ub, 0) and (u1, u2) = (0, ub)

are also pinned to the extremal points of the potential V but the
pinning is unstable both at the maximum and minimum of the
potential. (P–Kevrekidis 2008).
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Let U0 = (u1, u2) be a domain wall with γ > 1 and ε = 0. For a given
V ∈ C 2(R) ∩ L1(R), assume that there exists x0 ∈ R such that∫

R
V ′(x + x0)(u2

1 + u2
2 − 1)dx = 0.

There exists ε0 > 0 such that for all ε ∈ (−ε0, ε0), the system admits a
unique branch of the domain walls U = (u1, u2) such that

sup
x∈R
|U(x)− U0(x − x0)| ≤ C |ε|, ε ∈ (−ε0, ε0).

If V is even in x , then x0 = 0.
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Stability of domain walls

Theorem (ABCP, 2015)

The domain walls in the ε-perturbed system are spectrally stable if σ > 0
and unstable if σ < 0, where

σ :=
1

2

∫
R

V ′′(x + x0)(u2
1 + u2

2 − 1)dx 6= 0.

L−(ε) remains semi-positive operator with no spectral gap.

The isolated zero eigenvalue of L+(ε) becomes positive if σ > 0 and
negative if σ < 0.

If V is even and V ′′(x) > 0, then the domain wall at x0 = 0 is unstable.
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Summary

Domain walls (u1, u2) (with γ = 3)

u1(x) =
1

2

[
1 + tanh

(
x√
2

)]
, u2(x) =

1

2

[
1− tanh

(
x√
2

)]
.

minimizers of energy without any constraints

orbitally stable

persist under small perturbations

are pinned to the maximum of potential

asymptotically stable (conjecture)

do not travel in space (conjecture)
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Happy Holidays!

Joyeuse Fêtes!
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