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Introduction

Bose–Einstein Condensation

1924: S. Bose and A. Einstein realize that Bose statistics predicts a maximum
atom number in the excited states: a quantum phase transition.

1995: E. Cornell, C. Wieman and W. Ketterle trapped BEC in a dilute gas of
Rb87 and Na23: 2001 Nobel Prize.

2010: 35 Experimental groups have achieved BEC (in Rb, Li, Na, H):
O(104) theoretical and O(103) experimental papers were published!
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Introduction

Experiments on symmetry-breaking bifurcations

M.Obertaler’s group in Heidelberg, Germany (BECs)

Z. Chen’s group at San Francisco, USA (photonics)
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Introduction

Double-well potentials

Density waves in cigar–shaped Bose–Einstein condensates are modeled by
the Gross-Pitaevskii equation

iut = −uxx + V (x)u + σ|u|2pu = 0,

where σ ∈ {1,−1}, p > 0, and V (x) : R 7→ R satisfies

(i) V (x) ∈ L∞(R),

(ii) lim|x|→∞ V (x) = 0,

(iii) V (−x) = V (x) for all x ∈ R.

In particular, we consider the single-well potential splitting into two wells

V (x) =
1
2

(V0(x − s) + V0(x + s)) ≡ Vs(x), s ≥ 0,

where V0(x) = −sech2(x).
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Introduction

Phenomenology

Let V0 support exactly one negative eigenvalue of L0 = −∂2
x + V0(x) and s be

large. Then, operator L = −∂2
x + Vs(x) has two negative eigenvalues with

symmetric and anti-symmetric eigenfunctions.
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Introduction

Mathematical literature

2004: R.Jackson & M.Weinstein: Geometric analysis of existence of stationary
states using two Dirac delta-function potentials.

2005: A. Sacchetti: Semiclassical analysis of symmetry-breaking bifurcation.

2008: E. Kirr, P. Kevrekidis, E. Schlizerman, & M. Weinstein: Derivation of
normal form equations in the limit of large separation between the wells.

2009: A. Sacchetti: Threshold on the power p of nonlinearity that separates
supercritical and subcritical symmetry-breaking bifurcations.

2010: J. Marzuola & M. Weinstein: Justification of normal form equations on
long but finite times in the limit of large separation between the wells.
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Background

Existence of stationary states

Substitution u(x , t) = eiEtφ(x) gives the stationary GP equation

−φ′′(x) + V (x)φ(x) + σ|φ(x)|2pφ(x) + Eφ(x) = 0, x ∈ R,

where E ∈ R is arbitrary and φ(x) : R 7→ C is the stationary state.

Via standard regularity theory, if V (x) ∈ L∞(R), then any weak solution
φ(x) ∈ H1(R) is a strong solution in H2(R).

A strong solution in H2(R) →֒ C1(R) is real-valued up to multiplication by
eiθ, θ ∈ R.

If E > 0, a strong solution in H2(R) decays exponentially fast to zero as
|x | → ∞.

Note: −E is typically used as the chemical potential.
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Background

Stability of stationary states

Substitution

u(x , t) = eiEt
[

φ(x) + (u(x) + iw(x))eλt + (ū(x) + iw̄(x))eλ̄t
]

gives the spectral stability problem

L+u = −λw , L−w = λu,

where
{

L+ = −∂2
x + E + V (x) + σ(2p + 1)φ2p(x),

L− = −∂2
x + E + V (x) + σφ2p(x),

Eigenvalues λ occur in real and purely imaginary pairs or in complex
quartets.

If φ(x) > 0 for all x ∈ R, then operator L− is positive and no complex
quartets occur.
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Background

Stability of stationary states

If operator L+ has two or more negative eigenvalues, the stationary state
φ is unstable because there exist real pairs of eigenvalues λ.

If operator L+ has one negative eigenvalue, the stationary state φ is
stable if N ′(E) > 0 and unstable if N ′(E) < 0, where N(E) = ‖φ‖2

L2 .

If operator L+ has no negative eigenvalues, the stationary state φ is
unconditionally stable.

M. Weinstein (1985,1986); M. Grillakis, J. Shatah, & W. Strauss (1987,1990);
M. Grillakis (1988,1990); V. Buslaev & G. Perelman (1993), D. Pelinovsky
(2005), S. Cuccagna, D. Pelinovsky, & V. Vougalter (2005), T.Kapitula, P.
Kevrekidis, & B. Sandstede (2004,2005), W. Schlag (2006), S.M. Chang, S.
Gustafson, K. Nakanishi, & T.P. Tsai (2007), M. Chugunova & D. Pelinovsky
(2010), and many others.
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Background

Plan of our work

Consider the focusing case with σ = −1:

−φ′′(x) + V (x)φ(x) − φ(x)2p+1 + Eφ(x) = 0, x ∈ R.

Continue the symmetric state from the local bifurcation E = E0 > 0 all
way to E = ∞.

Study existence of stationary states for large E → ∞.

Classify the pitchfork bifurcations for E = E∗, where E0 < E∗ <∞.

Obtain normal forms for the pitchfork bifurcations.

Note:
We shall make no assumption on large separation s > 0 between the wells.
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Numerical results

Double-well potential

Recall again our double-well potential for numerical computations

Vs(x) ≡ 1
2

(V0(x − s) + V0(x + s)) , s ≥ 0,

where V0(x) = −sech2(x).

V ′′
s (0) = V ′′

0 (s) = 6sech4(s) − 4sech2(s).

For s < s∗ = arccosh(
√

3/
√

2) ≈ 0.66, V ′′
s (0) > 0 and the potential Vs(x)

is still a single well centered at 0.

For s > s∗ ≈ 0.66, V ′′
s (0) < 0 and the potential Vs(x) contains two wells

centered at x ≈ ±s.
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Numerical results

Numerical results:
−φ′′(x) + Vs(x)φ(x) − φ3(x) + Eφ(x) = 0

Blue: s = 0.6 < s∗. Red: s = 0.7 > s∗.
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Numerical results

Numerical results: symmetric and asymmetric states

The location of the center of mass of the solution φ(x)
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Numerical results

Numerical results: supercritical focusing NLS

p = 3:
−φ′′(x) + Vs(x)φ(x) − φ7(x) + Eφ(x) = 0, x ∈ R.

Blue: s = 0.6 < s∗. Red: s = 0.7 > s∗.
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Analytical results

Local bifurcation at E = E0

Root-finding equation for F (φ,E) : H2(R) × R 7→ L2(R):

F (φ,E) := (−∂2
x + V (x) + E)φ− φ2p+1 = 0.

The Frechet derivative

DφF (φ,E) := −∂2
x + V + E − (2p + 1)φ2p ≡ L+.

Let −E0 < 0 be the smallest eigenvalue of L0 = −∂2
x + V so that

Ker(Dφ(F (0,E0))) = Ker(L0 + E0) = span{ψ0}.

Let Q : L2 7→ Ran(L0 + E0). Using the Lyapunov–Schmidt decomposition
φ = aψ0 + ϕ with ϕ ⊥ ψ0, we obtain

Q(L0 + E)Qϕ− Q(aψ0 + ϕ)2p+1 = 0,

(E − E0)a − 〈ψ0, (aψ0 + ϕ)2p+1〉 = 0.

D.Pelinovsky (McMaster University) Symmetry-breaking bifurcations in double wells 15 / 28



Analytical results

Local bifurcation at E = E0

Theorem

There exist ǫ > 0 and C > 0 such that for each E in the interval
Iǫ = (E0,E0 + ǫ), the stationary equation has a unique positive solution
ψE (x) ∈ H2(R) such that

‖ψE‖H2 ≤ C|E − E0|
1

2p .

Moreover the map E 7→ ψE is C1 from Iǫ to H2 and ψE(x) = ψE (−x) for each
x ∈ R and E ∈ Iǫ.

Since
L+ = L− − 2pψ2p

E and L−ψE = 0,

the lowest eigenvalue of L+ is strictly negative for E > E0.

The slope of ‖ψE‖2
L2 in E is always positive for E > E0 near E = E0.
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Analytical results

Bifurcation from infinity

As E → ∞, we expect ‖φ‖L∞ → ∞ and ‖φ‖H1 → ∞. Fix a ∈ R and consider
the scaling transformation

E = ε−1 − V (a), ξ = ε−1/2(x − a), ψ(ξ) = ε1/2pφ(x).

Then, ψ(ξ) satisfies the rescaled equation

−ψ′′(ξ) + Ṽε(ξ)ψ(ξ) − ψ2p+1(ξ) + ψ(ξ) = 0,

where

Ṽε(ξ) = ε
[

V (a + ε1/2ξ) − V (a)
]

⇒ ‖Ṽε‖L∞ → 0 as ε→ 0.

The truncated problem

−ψ′′
∞(ξ) − ψ2p+1

∞ (ξ) + ψ∞(ξ) = 0

admits a unique (up to translation in ξ ∈ R) positive solution

ψ∞ = (1 + p)
1

2p sech
1
p (pξ).
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Analytical results

Bifurcation from infinity as E → ∞

Theorem

Let V (x) ∈ L∞(R) ∩ C2(R). For each a ∈ R such that V ′(a) 6= 0, no solutions
ψ(ξ) ∈ H2(R) of the stationary equation exist for small ε > 0. For each a ∈ R

such that
V ′(a) = 0, V ′′(a) 6= 0

there exists an ε0 > 0 such that for any ε ∈ (0, ε0), there exists a unique
solution ψ(ξ) ∈ H2(R) of the stationary equation such that

∃C > 0 : ‖ψ − ψ∞‖H2 ≤ Cε2.

Previous works:

1986 A.Floer & A. Weinstein: semi-classical analysis

2008 Y. Sivan, G. Fibich, N. Efremidis, & S. Bar-Ad: narrow lattice solitons in
periodic potentials
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Analytical results

Bifurcation from infinity as E → ∞

Theorem

Let V (x) ∈ L∞(R) ∩ C2(R). There exists ε0 > 0 such that for any ε ∈ (0, ε0),
the second eigenvalue of L+ is negative if V ′′(a) < 0 and positive if V ′′(a) > 0.

Localized modes at the maximum of V (x) are unstable.

Localized modes at the minimum of V (x) are stable if d
dE ‖φ‖2

L2 > 0.

From the asymptotic scaling, we have

‖φ‖2
L2 = ε−

1
p +

1
2 ‖ψ‖2

L2 ∼ E
1
p −

1
2 ‖ψ∞‖2

L2 as E → ∞,

so that the localized modes are stable only if p < 2.
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Analytical results

Pitchfork bifurcation at E = E∗ ∈ (E0,∞)

Let Vs(x) is a double-well potential for s > s∗ with the maximum at x = 0 and
two symmetric minima at x = ±x0, x0 ≈ s.

The symmetric state ψE centered at x = 0 bifurcates for E > E0 and it is
stable.

The symmetric state ψE is unstable as E → ∞ but two asymmetric states
ψ±

E centered at x = ±x0 exist and stable if p < 2.

There exists E∗ ∈ (E0,∞), when the second eigenvalue of L+ at ψE crosses
zero and become negative for E > E∗. We anticipate bifurcation of
asymmetric states from the symmetric state at E = E∗.

Assumption: There exists ϕ∗ ∈ H2
odd(R) such that Ker(L+|E=E∗

) = span{ϕ∗}
and λ′(E∗) < 0, where λ(E) is the second eigenvalue of L+.
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Analytical results

Pitchfork bifurcation at E = E∗ ∈ (E0,∞)

Consider again

F (φ,E) := (−∂2
x + V (x) + E)φ− φ2p+1 = 0.

and let φ = ψ∗ + aϕ∗ + θ, where ψ∗ ∈ H2
even(R) and φ∗ ∈ H2

odd(R).

Then F (φ,E) = 0 is equivalent to

PL∗Pθ = −(E − E∗)P(ψ∗ + θ) + PN(aϕ∗ + θ),

G(θ, a,E) := −(E − E∗)a + 〈ϕ∗,N(aϕ∗ + θ)〉L2 = 0,

where

N(ϕ) = (ψ∗ + ϕ)2p+1 − ψ2p+1
∗ − (2p + 1)ψ2p

∗ ϕ = O(‖ϕ‖2).

From the first equation, we have a unique C3 map
R2 ∋ (a,E) 7→ θ = θ∗(a,E) ∈ H2 near a = 0 and E = E∗.
We denote

G(a,E) ≡ G(θ∗(a,E), a,E) : R
2 7→ R.
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Analytical results

Pitchfork bifurcation at E = E∗ ∈ (E0,∞)

From symmetries, we know that

G(0,E) = 0, G(−a,E) = G(a,E), (a,E) ∈ R
2.

The near-identity transformation is needed to obtain the leading order of
G(a,E):

θ = (E − E∗)∂Eψ∗ + a2(2p + 1)pL−1
∗ ψ2p−1

∗ ϕ2
∗ + oH2(|E − E∗|, a2).

G(a,E) reduces to the normal form

C(E − E∗)a + Qa3 + O((E − E∗)
2a, (E − E∗)a3, a5) = 0,

where
C = 2p(2p + 1)〈ϕ2

∗, ψ
2p−1
E∗

∂EψE∗
〉L2 − 1 = −λ′(E∗) > 0

and

Q = 2p2(2p+1)2〈ϕ2
∗ψ

2p−1
E∗

, L−1
∗ ψ2p−1

E∗

ϕ2
∗〉L2 +

1
3

p(2p+1)(2p−1)〈ϕ2
∗ , ψ

2p−2
E∗

ϕ2
∗〉L2

are numerical coefficients.
D.Pelinovsky (McMaster University) Symmetry-breaking bifurcations in double wells 22 / 28



Analytical results

Pitchfork bifurcation at E = E∗ ∈ (E0,∞)

Theorem

There exists ǫ > 0 such that the branch of symmetric states (ψE ,E) can be
continued smoothly (C1) on (E∗ − ǫ,E∗ + ǫ). Moreover, there exist two
branches of asymmetric states (ψ±

E ,E) for E ∈ Iǫ = (E∗ − ǫ,E∗] if Q > 0 and
for E ∈ Iǫ = [E∗,E∗ + ǫ) if Q < 0 such that

∃C > 0 : ‖ψ±
E − ψE∗

‖H2 ≤ C|E − E∗|1/2.

Under conditions of the theorem, the second eigenvalue of L+ = DφF (ψ±
E ,E)

is negative for Q > 0 and is positive for Q < 0.
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Analytical results

Pitchfork bifurcation at E = E∗ ∈ (E0,∞)

Left: Supercritical bifurcation. Right: Subcritical bifurcation.

Here z is the center of localization and η ≡ E is the bifurcation parameter.

What is the correct parameter for bifurcation and stability in the
Gross–Pitaevskii equation?
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Analytical results

Pitchfork bifurcation at E = E∗ ∈ (E0,∞)

Question: What is the correct parameter for bifurcation and stability in the
Gross–Pitaevskii equation?

Answer: N = ‖φ‖2
L2 (the power or charge invariant).

Under conditions of the theorem, near E = E∗, we have

‖ψ±
E ‖2

L2 < ‖ψE∗
‖2

L2 if R < 0;

‖ψ±
E ‖2

L2 > ‖ψE∗
‖2

L2 if R > 0,

where

R := −Q
d

dE
‖ψE∗

‖2
L2 − C2.
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Analytical results

Pitchfork bifurcation at E = E∗ ∈ (E0,∞)

As s → ∞ (large separation between potential wells), we have

ψE∗
(x) ∼ 1√

2
(ϕ0(x − s) + ϕ0(x + s)), ϕ∗(x) ∼ 1√

2
(ϕ0(x − s) − ϕ0(x + s)).

In particular,

ϕ2
∗ ∼ ψ2

∗

‖ψ∗‖2
L2

.

Performing direct computations, we obtain

Q = −4p(p + 1)(2p + 1)

3

‖ψ∗‖2p+2
L2p+2

‖ψ∗‖4
L2

< 0, R = −4
3

(p2 − 3p − 1).

Supercritical pitchfork occurs for p < p∗ ≈ 3.5.
Subcritical pitchfork occurs for p > p∗.

A. Sacchetti, “Universal critical power for nonlinear Schrödinger
equations with a symmetric double well potential”, Phys. Rev. Lett. 103,
194101 (4 pages) (December, 2009)
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Analytical results

Numerical results in the focusing case

Subcritical pitchfork bifurcation for p = 5 and s = 4.
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Analytical results

Conclusion

Summary:

Existence and bifurcations of solution branches are studied from
Lyapunov–Schmidt reductions applied to the stationary equation.

Stability of solution branches is studied from the information on the
number of negative eigenvalues of L+ and the slope of ‖φ‖2

L2 versus E .

Normal form dynamics should follow separately from the time-dependent
Gross–Pitaevskii equation.

More results?
We proved a unique connection of the branch of symmetric states in the
focusing case between local bifurcation at E = E0 and bifurcation from infinity
at E = ∞.
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