Symmetry-breaking bifurcations in a double-well potential

Panos Kevrekidis¹, Eduard Kirr², and Dmitry Pelinovsky³

¹ Department of Mathematics, University of Massachusetts at Amherst, USA
 ² Department of Mathematics, University of Illinois at Urbana–Champaign, USA
 ³ Department of Mathematics, McMaster University, Hamilton, Ontario, Canada

University of British Columbia, April 27, 2010

Bose–Einstein Condensation

- 1924: S. Bose and A. Einstein realize that Bose statistics predicts a maximum atom number in the excited states: a quantum phase transition.
- 1995: E. Cornell, C. Wieman and W. Ketterle trapped BEC in a dilute gas of *Rb*⁸⁷ and *Na*²³: 2001 Nobel Prize.
- 2010: 35 Experimental groups have achieved BEC (in Rb, Li, Na, H): $\mathcal{O}(10^4)$ theoretical and $\mathcal{O}(10^3)$ experimental papers were published!

Introduction

Experiments on symmetry-breaking bifurcations

- M.Obertaler's group in Heidelberg, Germany (BECs)
- Z. Chen's group at San Francisco, USA (photonics)

Double-well potentials

Density waves in cigar-shaped Bose-Einstein condensates are modeled by the Gross-Pitaevskii equation

$$iu_t = -u_{xx} + V(x)u + \sigma |u|^{2p}u = 0,$$

where $\sigma \in \{1, -1\}$, p > 0, and $V(x) : \mathbb{R} \mapsto \mathbb{R}$ satisfies

- (i) $V(x) \in L^{\infty}(\mathbb{R})$,
- (ii) $\lim_{|x|\to\infty} V(x) = 0$,
- (iii) V(-x) = V(x) for all $x \in \mathbb{R}$.

In particular, we consider the single-well potential splitting into two wells

$$V(x)=rac{1}{2}\left(V_0(x-s)+V_0(x+s)
ight)\equiv V_s(x),\quad s\geq 0,$$

where $V_0(x) = -\operatorname{sech}^2(x)$.

★ E ► ★ E ► _ E

Introduction

Phenomenology

Let V_0 support exactly one negative eigenvalue of $L_0 = -\partial_x^2 + V_0(x)$ and *s* be large. Then, operator $L = -\partial_x^2 + V_s(x)$ has two negative eigenvalues with symmetric and anti-symmetric eigenfunctions.

- 2004: R.Jackson & M.Weinstein: Geometric analysis of existence of stationary states using two Dirac delta-function potentials.
- 2005: A. Sacchetti: Semiclassical analysis of symmetry-breaking bifurcation.
- 2008: E. Kirr, P. Kevrekidis, E. Schlizerman, & M. Weinstein: Derivation of normal form equations in the limit of large separation between the wells.
- 2009: A. Sacchetti: Threshold on the power *p* of nonlinearity that separates supercritical and subcritical symmetry-breaking bifurcations.
- 2010: J. Marzuola & M. Weinstein: Justification of normal form equations on long but finite times in the limit of large separation between the wells.

Existence of stationary states

Substitution $u(x, t) = e^{iEt}\phi(x)$ gives the stationary GP equation

$$-\phi''(\mathbf{x}) + V(\mathbf{x})\phi(\mathbf{x}) + \sigma |\phi(\mathbf{x})|^{2p}\phi(\mathbf{x}) + E\phi(\mathbf{x}) = \mathbf{0}, \quad \mathbf{x} \in \mathbb{R},$$

where $E \in \mathbb{R}$ is arbitrary and $\phi(x) : \mathbb{R} \mapsto \mathbb{C}$ is the stationary state.

- Via standard regularity theory, if V(x) ∈ L[∞](ℝ), then any weak solution φ(x) ∈ H¹(ℝ) is a strong solution in H²(ℝ).
- A strong solution in $H^2(\mathbb{R}) \hookrightarrow C^1(\mathbb{R})$ is real-valued up to multiplication by $e^{i\theta}, \theta \in \mathbb{R}$.
- If E > 0, a strong solution in $H^2(\mathbb{R})$ decays exponentially fast to zero as $|x| \to \infty$.
- Note: -E is typically used as the chemical potential.

イロト イポト イヨト イヨト 一日

Stability of stationary states

Substitution

$$u(x,t) = e^{iEt} \left[\phi(x) + (u(x) + iw(x))e^{\lambda t} + (\bar{u}(x) + i\bar{w}(x))e^{\bar{\lambda}t} \right]$$

gives the spectral stability problem

$$L_+ u = -\lambda w, \quad L_- w = \lambda u,$$

where

$$\begin{cases} L_{+} = -\partial_{x}^{2} + E + V(x) + \sigma(2p+1)\phi^{2p}(x), \\ L_{-} = -\partial_{x}^{2} + E + V(x) + \sigma\phi^{2p}(x), \end{cases}$$

- Eigenvalues λ occur in real and purely imaginary pairs or in complex quartets.
- If φ(x) > 0 for all x ∈ ℝ, then operator L_− is positive and no complex quartets occur.

Stability of stationary states

- If operator L₊ has two or more negative eigenvalues, the stationary state φ is unstable because there exist real pairs of eigenvalues λ.
- If operator L₊ has one negative eigenvalue, the stationary state φ is stable if N'(E) > 0 and unstable if N'(E) < 0, where N(E) = ||φ||²_{L²}.
- If operator L₊ has no negative eigenvalues, the stationary state φ is unconditionally stable.

M. Weinstein (1985,1986); M. Grillakis, J. Shatah, & W. Strauss (1987,1990); M. Grillakis (1988,1990); V. Buslaev & G. Perelman (1993), D. Pelinovsky (2005), S. Cuccagna, D. Pelinovsky, & V. Vougalter (2005), T.Kapitula, P. Kevrekidis, & B. Sandstede (2004,2005), W. Schlag (2006), S.M. Chang, S. Gustafson, K. Nakanishi, & T.P. Tsai (2007), M. Chugunova & D. Pelinovsky (2010), and many others.

Plan of our work

Consider the focusing case with $\sigma = -1$:

$$-\phi''(\mathbf{x}) + V(\mathbf{x})\phi(\mathbf{x}) - \phi(\mathbf{x})^{2p+1} + E\phi(\mathbf{x}) = \mathbf{0}, \quad \mathbf{x} \in \mathbb{R}.$$

- Continue the symmetric state from the local bifurcation *E* = *E*₀ > 0 all way to *E* = ∞.
- Study existence of stationary states for large $E \to \infty$.
- Classify the pitchfork bifurcations for $E = E_*$, where $E_0 < E_* < \infty$.
- Obtain normal forms for the pitchfork bifurcations.

Note:

We shall make no assumption on large separation s > 0 between the wells.

Double-well potential

Recall again our double-well potential for numerical computations

$$V_{s}(x) \equiv rac{1}{2} \left(V_{0}(x-s) + V_{0}(x+s)
ight), \quad s \geq 0,$$

where $V_0(x) = -\operatorname{sech}^2(x)$.

$$V_{s}''(0) = V_{0}''(s) = 6 \operatorname{sech}^{4}(s) - 4 \operatorname{sech}^{2}(s).$$

- For $s < s_* = \operatorname{arccosh}(\sqrt{3}/\sqrt{2}) \approx 0.66$, $V_s''(0) > 0$ and the potential $V_s(x)$ is still a single well centered at 0.
- For s > s_{*} ≈ 0.66, V^{''}_s(0) < 0 and the potential V_s(x) contains two wells centered at x ≈ ±s.

Numerical results: $-\phi''(x) + V_s(x)\phi(x) - \phi^3(x) + E\phi(x) = 0$

Blue: $s = 0.6 < s_*$. Red: $s = 0.7 > s_*$.

Second eigenvalue of $L_{+} = -\partial_{x}^{2} + E + V_{s}(x) - 3\phi^{2}(x)$

D.Pelinovsky (McMaster University)

Numerical results

Numerical results: symmetric and asymmetric states

The location of the center of mass of the solution $\phi(x)$

Second eigenvalue of $L_{+} = -\partial_{x}^{2} + E + V_{s}(x) - 3\phi^{2}(x)$

Numerical results: supercritical focusing NLS

p = 3:

$$-\phi^{\prime\prime}(m{x})+V_{m{s}}(m{x})\phi(m{x})-\phi^7(m{x})+m{E}\phi(m{x})=m{0},\quadm{x}\in\mathbb{R}.$$

Blue: $s = 0.6 < s_*$. Red: $s = 0.7 > s_*$.

Local bifurcation at $E = E_0$

Root-finding equation for $F(\phi, E) : H^2(\mathbb{R}) \times \mathbb{R} \mapsto L^2(\mathbb{R})$:

$$F(\phi, E) := (-\partial_x^2 + V(x) + E)\phi - \phi^{2p+1} = 0.$$

The Frechet derivative

$$D_{\phi}F(\phi,E) := -\partial_x^2 + V + E - (2p+1)\phi^{2p} \equiv L_+.$$

Let $-E_0 < 0$ be the smallest eigenvalue of $L_0 = -\partial_x^2 + V$ so that

$$\operatorname{Ker}(D_{\phi}(F(0, E_0))) = \operatorname{Ker}(L_0 + E_0) = \operatorname{span}\{\psi_0\}.$$

Let $Q: L^2 \mapsto \operatorname{Ran}(L_0 + E_0)$. Using the Lyapunov–Schmidt decomposition $\phi = a\psi_0 + \varphi$ with $\varphi \perp \psi_0$, we obtain

$$\begin{array}{rcl} Q(L_0+E)Q\varphi-Q(a\psi_0+\varphi)^{2p+1}&=&0,\\ (E-E_0)a-\langle\psi_0,(a\psi_0+\varphi)^{2p+1}\rangle&=&0. \end{array}$$

イロト イポト イヨト イヨト 二日

Local bifurcation at $E = E_0$

Theorem

There exist $\epsilon > 0$ and C > 0 such that for each E in the interval $\mathcal{I}_{\epsilon} = (E_0, E_0 + \epsilon)$, the stationary equation has a unique positive solution $\psi_E(\mathbf{x}) \in H^2(\mathbb{R})$ such that

$$\|\psi_E\|_{H^2} \leq C|E - E_0|^{\frac{1}{2p}}.$$

Moreover the map $E \mapsto \psi_E$ is C^1 from \mathcal{I}_{ϵ} to H^2 and $\psi_E(x) = \psi_E(-x)$ for each $x \in \mathbb{R}$ and $E \in \mathcal{I}_{\epsilon}$.

Since

$$L_{+} = L_{-} - 2p\psi_{E}^{2p} \quad \text{and} \quad L_{-}\psi_{E} = 0,$$

the lowest eigenvalue of L_+ is strictly negative for $E > E_0$.

The slope of $\|\psi_E\|_{L^2}^2$ in *E* is always positive for $E > E_0$ near $E = E_0$.

・ロット (雪) (小田) (日) (

Bifurcation from infinity

As $E \to \infty$, we expect $\|\phi\|_{L^{\infty}} \to \infty$ and $\|\phi\|_{H^1} \to \infty$. Fix $a \in \mathbb{R}$ and consider the scaling transformation

$$E = \varepsilon^{-1} - V(a), \quad \xi = \varepsilon^{-1/2} (\mathbf{x} - \mathbf{a}), \quad \psi(\xi) = \varepsilon^{1/2p} \phi(\mathbf{x}).$$

Then, $\psi(\xi)$ satisfies the rescaled equation

$$-\psi''(\xi) + \tilde{V}_{\varepsilon}(\xi)\psi(\xi) - \psi^{2p+1}(\xi) + \psi(\xi) = \mathbf{0},$$

where

$$ilde{V}_{\varepsilon}(\xi) = \varepsilon \left[V(a + \varepsilon^{1/2}\xi) - V(a) \right] \Rightarrow \| ilde{V}_{\varepsilon} \|_{L^{\infty}} \to 0 \ \ ext{as} \ \ \varepsilon \to 0.$$

The truncated problem

$$-\psi_{\infty}''(\xi) - \psi_{\infty}^{2p+1}(\xi) + \psi_{\infty}(\xi) = 0$$

admits a unique (up to translation in $\xi \in \mathbb{R}$) positive solution

$$\psi_{\infty} = (\mathbf{1} + \boldsymbol{\rho})^{\frac{1}{2p}} \operatorname{sech}^{\frac{1}{p}}(\boldsymbol{\rho}\xi).$$

Bifurcation from infinity as $E \to \infty$

Theorem

Let $V(x) \in L^{\infty}(\mathbb{R}) \cap C^{2}(\mathbb{R})$. For each $a \in \mathbb{R}$ such that $V'(a) \neq 0$, no solutions $\psi(\xi) \in H^{2}(\mathbb{R})$ of the stationary equation exist for small $\varepsilon > 0$. For each $a \in \mathbb{R}$ such that

$$V'(a)=0, \quad V''(a) \neq 0$$

there exists an $\varepsilon_0 > 0$ such that for any $\varepsilon \in (0, \varepsilon_0)$, there exists a unique solution $\psi(\xi) \in H^2(\mathbb{R})$ of the stationary equation such that

$$\exists \mathbf{C} > \mathbf{0} : \quad \|\psi - \psi_{\infty}\|_{H^2} \leq \mathbf{C}\varepsilon^2.$$

Previous works:

1986 A.Floer & A. Weinstein: semi-classical analysis

2008 Y. Sivan, G. Fibich, N. Efremidis, & S. Bar-Ad: narrow lattice solitons in periodic potentials

Bifurcation from infinity as $E \to \infty$

Theorem

Let $V(x) \in L^{\infty}(\mathbb{R}) \cap C^{2}(\mathbb{R})$. There exists $\varepsilon_{0} > 0$ such that for any $\varepsilon \in (0, \varepsilon_{0})$, the second eigenvalue of L_{+} is negative if V''(a) < 0 and positive if V''(a) > 0.

- Localized modes at the maximum of V(x) are unstable.
- Localized modes at the minimum of V(x) are stable if d/dE ||φ||²_{L²} > 0.

From the asymptotic scaling, we have

$$\|\phi\|_{L^2}^2 = \varepsilon^{-\frac{1}{p} + \frac{1}{2}} \|\psi\|_{L^2}^2 \sim E^{\frac{1}{p} - \frac{1}{2}} \|\psi_{\infty}\|_{L^2}^2 \text{ as } E \to \infty,$$

so that the localized modes are stable only if p < 2.

Let $V_s(x)$ is a double-well potential for $s > s_*$ with the maximum at x = 0 and two symmetric minima at $x = \pm x_0$, $x_0 \approx s$.

- The symmetric state \u03c6_E centered at x = 0 bifurcates for E > E₀ and it is stable.
- The symmetric state ψ_E is unstable as $E \to \infty$ but two asymmetric states ψ_E^{\pm} centered at $x = \pm x_0$ exist and stable if p < 2.

There exists $E_* \in (E_0, \infty)$, when the second eigenvalue of L_+ at ψ_E crosses zero and become negative for $E > E_*$. We anticipate bifurcation of asymmetric states from the symmetric state at $E = E_*$.

Assumption: There exists $\varphi_* \in H^2_{\text{odd}}(\mathbb{R})$ such that $\text{Ker}(L_+|_{E=E_*}) = \text{span}\{\varphi_*\}$ and $\lambda'(E_*) < 0$, where $\lambda(E)$ is the second eigenvalue of L_+ .

《曰》《圖》《臣》《臣》。

Consider again

$$F(\phi, E) := (-\partial_x^2 + V(x) + E)\phi - \phi^{2p+1} = 0.$$

and let $\phi = \psi_* + a\varphi_* + \theta$, where $\psi_* \in H^2_{even}(\mathbb{R})$ and $\phi_* \in H^2_{odd}(\mathbb{R})$.

Then $F(\phi, E) = 0$ is equivalent to

$$\begin{array}{rcl} \mathsf{PL}_*\mathsf{P}\theta &=& -(\mathsf{E}-\mathsf{E}_*)\mathsf{P}(\psi_*+\theta)+\mathsf{PN}(\mathsf{a}\varphi_*+\theta),\\ \mathsf{G}(\theta,\mathsf{a},\mathsf{E}) &:=& -(\mathsf{E}-\mathsf{E}_*)\mathsf{a}+\langle\varphi_*,\mathsf{N}(\mathsf{a}\varphi_*+\theta)\rangle_{\mathsf{L}^2}=\mathsf{0}, \end{array}$$

where

$$N(\varphi) = (\psi_* + \varphi)^{2p+1} - \psi_*^{2p+1} - (2p+1)\psi_*^{2p}\varphi = \mathcal{O}(\|\varphi\|^2).$$

From the first equation, we have a unique C^3 map $\mathbb{R}^2 \ni (a, E) \mapsto \theta = \theta_*(a, E) \in H^2$ near a = 0 and $E = E_*$. We denote

$$G(a, E) \equiv G(\theta_*(a, E), a, E) : \mathbb{R}^2 \mapsto \mathbb{R}$$

From symmetries, we know that

$$G(0,E)=0, \quad G(-a,E)=G(a,E), \quad (a,E)\in \mathbb{R}^2.$$

The near-identity transformation is needed to obtain the leading order of G(a, E):

$$\theta = (E - E_*)\partial_E\psi_* + a^2(2p + 1)pL_*^{-1}\psi_*^{2p-1}\varphi_*^2 + o_{H^2}(|E - E_*|, a^2).$$

G(a, E) reduces to the normal form

$$C(E - E_*)a + Qa^3 + O((E - E_*)^2a, (E - E_*)a^3, a^5) = 0,$$

where

$$C = 2p(2p+1)\langle \varphi_*^2, \psi_{E_*}^{2p-1} \partial_E \psi_{E_*} \rangle_{L^2} - 1 = -\lambda'(E_*) > 0$$

and

$$Q = 2p^{2}(2p+1)^{2}\langle \varphi_{*}^{2}\psi_{E_{*}}^{2p-1}, L_{*}^{-1}\psi_{E_{*}}^{2p-1}\varphi_{*}^{2}\rangle_{L^{2}} + \frac{1}{3}p(2p+1)(2p-1)\langle \varphi_{*}^{2}, \psi_{E_{*}}^{2p-2}\varphi_{*}^{2}\rangle_{L^{2}}$$

are numerical coefficients.

D.Pelinovsky (McMaster University)

Theorem

There exists $\epsilon > 0$ such that the branch of symmetric states (ψ_E, E) can be continued smoothly (C^1) on $(E_* - \epsilon, E_* + \epsilon)$. Moreover, there exist two branches of asymmetric states (ψ_E^{\pm}, E) for $E \in \mathcal{I}_{\epsilon} = (E_* - \epsilon, E_*]$ if Q > 0 and for $E \in \mathcal{I}_{\epsilon} = [E_*, E_* + \epsilon)$ if Q < 0 such that

$$\exists C > 0: \quad \|\psi_E^{\pm} - \psi_{E_*}\|_{H^2} \le C|E - E_*|^{1/2}.$$

Under conditions of the theorem, the second eigenvalue of $L_+ = D_{\phi}F(\psi_E^{\pm}, E)$ is negative for Q > 0 and is positive for Q < 0.

Left: Supercritical bifurcation. Right: Subcritical bifurcation.

Here *z* is the center of localization and $\eta \equiv E$ is the bifurcation parameter.

What is the correct parameter for bifurcation and stability in the Gross–Pitaevskii equation?

Question: What is the correct parameter for bifurcation and stability in the Gross–Pitaevskii equation?

Answer: $N = \|\phi\|_{L^2}^2$ (the power or charge invariant).

Under conditions of the theorem, near $E = E_*$, we have

•
$$\|\psi_E^{\pm}\|_{L^2}^2 < \|\psi_{E_*}\|_{L^2}^2$$
 if $R < 0$;

•
$$\|\psi_E^{\pm}\|_{L^2}^2 > \|\psi_{E_*}\|_{L^2}^2$$
 if $R > 0$,

where

$$\mathsf{R}:=-\mathsf{Q}\frac{\mathsf{d}}{\mathsf{d}\mathsf{E}}\|\psi_{\mathsf{E}_*}\|_{L^2}^2-\mathsf{C}^2.$$

As $s \to \infty$ (large separation between potential wells), we have

$$\psi_{E_*}(x) \sim \frac{1}{\sqrt{2}}(\varphi_0(x-s)+\varphi_0(x+s)), \quad \varphi_*(x) \sim \frac{1}{\sqrt{2}}(\varphi_0(x-s)-\varphi_0(x+s)).$$

In particular,

$$\varphi_*^2 \sim \frac{\psi_*^2}{\|\psi_*\|_{L^2}^2}$$

Performing direct computations, we obtain

$$\mathsf{Q} = -rac{4 p (p+1) (2 p+1)}{3} rac{\|\psi_*\|_{L^{2p+2}}^{2p+2}}{\|\psi_*\|_{L^2}^4} < 0, \quad R = -rac{4}{3} (p^2 - 3 p - 1).$$

Supercritical pitchfork occurs for $p < p_* \approx 3.5$. Subcritical pitchfork occurs for $p > p_*$.

 A. Sacchetti, "Universal critical power for nonlinear Schrödinger equations with a symmetric double well potential", Phys. Rev. Lett. 103, 194101 (4 pages) (December, 2009)

Numerical results in the focusing case

Subcritical pitchfork bifurcation for p = 5 and s = 4.

D.Pelinovsky (McMaster University)

Summary:

- Existence and bifurcations of solution branches are studied from Lyapunov–Schmidt reductions applied to the stationary equation.
- Stability of solution branches is studied from the information on the number of negative eigenvalues of L₊ and the slope of ||φ||²₁₂ versus E.
- Normal form dynamics should follow separately from the time-dependent Gross–Pitaevskii equation.

More results?

We proved a unique connection of the branch of symmetric states in the focusing case between local bifurcation at $E = E_0$ and bifurcation from infinity at $E = \infty$.