Evans function for Lax operators with algebraic potentials

Dmitry Pelinovsky

Department of Mathematics, McMaster University, Canada

> Collaboration:
> Martin Klaus (Virginia Tech, USA)
> Vassilis Rothos (Queen Mary College, UK)

Reference:
J. Nonlinear Science, in print (2005)

- Modified Korteweg-de Vries (mKdV) equation

$$
u_{t}+6 u^{2} u_{x}+u_{x x x}=0, \quad u(x, t)=\frac{4(x-6 t)^{2}-3}{4(x-6 t)^{2}+1}
$$

- Focusing nonlinear Schrödinger (NLS) equation

$$
i u_{t}=u_{x x}+2|u|^{2} u, \quad u(x, t)=\frac{4 x^{2}+16 t^{2}+16 i t-3}{4 x^{2}+16 t^{2}+1} e^{-2 i t}
$$

- Massive Thirring model (MTM) equation

$$
\begin{gathered}
i v_{t}+w-2|w|^{2} v=0, \\
-i w_{x}+v-2|v|^{2} w=0
\end{gathered} \quad v(x, t)=\frac{2 \delta}{4 \delta^{2}(x+\tau t)-i} e^{2 i \delta^{2}(x-\tau t)}
$$

Modified KdV equation

- Travelling solitary wave

- Travelling breather
- Linearized stability and a complete set of squared eigenfunctions
- Energy threshold and one-sided instability

$$
P=\int_{\mathbb{R}}(u-1)^{2} d x \geq P_{0}=2 \pi
$$

- Bifurcations in spectra of Lax operators

$$
\boldsymbol{\psi}_{x}=\mathcal{L}(\lambda ; u) \boldsymbol{\psi}, \quad \boldsymbol{\psi}_{t}=\mathcal{A}(\lambda ; u) \boldsymbol{\psi}
$$

where

$$
\mathcal{L}(\lambda ; u)=\left[\begin{array}{cc}
0 & -u \\
u & 0
\end{array}\right]+\lambda\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

and

$$
u(x, 0)=1+w(x), \quad \lim _{x \rightarrow \pm \infty}|x|^{p} w(x)=b_{\infty}, \quad p>1
$$

$$
\psi_{1}^{\prime}=-(1+w(x)) \psi_{2}+\lambda \psi_{1}, \quad \psi_{2}^{\prime}=(1+w(x)) \psi_{1}-\lambda \psi_{2}
$$

Fundamental solutions for $w(x)=0$:

$$
\boldsymbol{\psi}(x)=\mathbf{e}_{ \pm}(\lambda) e^{ \pm \kappa(\lambda) x}, \quad \kappa(\lambda)=\sqrt{\lambda^{2}-1}
$$

- When $w \in L^{1}(\mathbb{R})$ and $\lambda \in \mathbb{C} \backslash\{ \pm 1\}$, there exist two sets of solutions:

$$
\lim _{x \rightarrow-\infty} \phi^{ \pm}(x ; \lambda) e^{\mp \kappa(\lambda) x}=\mathbf{e}_{ \pm}(\lambda)
$$

and

$$
\lim _{x \rightarrow+\infty} \boldsymbol{\psi}^{ \pm}(x ; \lambda) e^{\mp \kappa(\lambda) x}=\mathbf{e}_{ \pm}(\lambda)
$$

- Evans function for $\lambda \in \mathcal{D}_{+}$, where $\operatorname{Re}(\kappa(\lambda))>0$

$$
E(\lambda)=\operatorname{det}\left(\boldsymbol{\phi}^{+}(x ; \lambda), \boldsymbol{\psi}^{-}(x ; \lambda)\right)
$$

- $E(\lambda)$ is analytic in $\lambda \in \mathcal{D}_{+}$
- $E\left(\lambda_{p}\right)=0$ if λ_{p} is an isolated eigenvalue in \mathcal{D}_{+}
- $E(\lambda)$ is not analytic across $\lambda \in \Gamma_{+}$if $w(x)$ decays algebraically
- Consider the AKNS problem with the algebraic potential

$$
w_{0}(x)=-\frac{4}{1+4 x^{2}}
$$

- Fundamental solutions in $\lambda \in \mathcal{D}_{+}$:

$$
\boldsymbol{\phi}^{+}(x ; \lambda)=\frac{1}{\kappa(\lambda)} e^{\kappa(\lambda) x}\left[\left(\kappa(\lambda)+x w_{0}(x)\right) \mathbf{e}_{+}(\lambda)-\frac{1}{2} w_{0}(x) \boldsymbol{\xi}_{+}(\lambda)\right]
$$

- Decaying eigenvector at $\lambda=1$:

$$
\phi(x)=\binom{2 x-1}{2 x+1} w_{0}(x)
$$

- Evans function

$$
E(\lambda)=2 \kappa(\lambda)=2 \sqrt{\lambda^{2}-1}
$$

- Consider a potential $w_{\epsilon}(x)$, such that $w_{0}(x)$ is the algebraic soliton.
- Although $E_{0}(\lambda)$ is bounded on $\lambda \in \Gamma_{+}, E_{\epsilon}(\lambda)$ may diverge for $\epsilon \neq 0$.
- Zero of $E(\lambda)$ at $\lambda=1$ occurs on $\lambda \in \Gamma_{+}$, where $E(\lambda)$ is not analytic.
- How to define algebraic multiplicity of embedded eigenvalues?
- How to modify the Evans function for analysis of bifurcations?
- How to generalize analysis to other spectral systems (AKNS, ZS, KN)?
- Geometric construction based on re-scaling of differential equations B. Sandstede and A. Scheel, Disc. Cont. Dyn. Sys. (2004)
- Spectral analysis of Dirac and Schrodinger problems at low energy R. Newton, J. Math. Phys. (1986) M. Klaus, J. Math. Phys. (1988)
M. Klaus, Inverse Problems (1988)
- Heuristic asymptotic multi-scale methods of the AKNS problem D.Pelinovsky, R. Grimshaw, Physics Letters A (1997)
- On $\lambda \in \Gamma_{+}$, let $\lambda=\sqrt{1-k^{2}}, 0 \leq k<1$
- Consider a two-sheet Riemann surface

$$
\begin{array}{cc}
\operatorname{Re}(\kappa(\lambda))>0: & -\pi<\arg (\lambda-1)<\pi \\
\operatorname{Re}(\kappa(\lambda))<0: & \pi<\arg (\lambda-1)<3 \pi
\end{array}
$$

- Let $w \in L^{1}(\mathbb{R})$. Fundamental solutions satisfy the integral equations:

$$
\boldsymbol{\phi}^{ \pm}(x ; k)=\mathbf{e}_{ \pm}(k) e^{ \pm i k x}-\int_{-\infty}^{x} K(x, s ; k) \boldsymbol{\phi}^{ \pm}(s ; k) d s
$$

where $K(x, s ; k)$ is a bounded kernel on $0<k<1$ and $(x, s) \in \mathbb{R}^{2}$.

- Evans function on $0<k<1$ can be extended to the first sheet:

$$
G(k)=E(\lambda)=\operatorname{det}\left(\phi^{+}(x ; k), \boldsymbol{\psi}^{-}(x ; k)\right)
$$

$$
\lim _{x \rightarrow \pm \infty}|x|^{p} w(x)=b_{\infty}, \quad p \geq 2
$$

- The point $\lambda=1$ is not an eigenvalue if $p>2$ or if $p=2$ and $b_{\infty}>-\frac{3}{8}$
- If $p=2$ and $b_{\infty}<-\frac{3}{8}$, the point $\lambda=1$ can be an eigenvalue of geometric multiplicity one and finite algebraic multiplicity
- The function $G(k)$ is C^{0} at $k=0$ if $p>2$ and C^{1} at $k=0$ if $p>3$
- Let $p=2, b_{\infty}<-\frac{3}{8}$, and q_{∞} be a positive root of $q(q+1)=2\left|b_{\infty}\right|$. The renormalized Evans function $\hat{G}(k)$ is continuous at $k=0$:

$$
\hat{G}(k)=k^{2 q} G(k)=\alpha_{0}+\mathrm{o}(1) .
$$

If $\lambda=1$ is an eigenvalue, then $\alpha=0$ and

$$
\hat{G}(k)=\alpha_{2} k^{2}+\mathrm{o}\left(k^{2}\right) .
$$

If $\lambda=1$ is both a resonance and eigenvalue, then $\alpha_{2}=0$.

- Consider the mKdV algebraic soliton:

$$
w_{0}(x)=-\frac{4}{1+4 x^{2}}
$$

such that $p=2, b_{\infty}=-1, q=1, \alpha_{0}=\alpha_{2}=0$, and

$$
\hat{G}(k)=k^{3}+\mathrm{o}\left(k^{3}\right)
$$

- Let $w_{\epsilon}(x)=w_{0}(x)+\epsilon w_{1}(x)$ and $w_{1}(x)$ decays with $p>2$. Then, $\hat{E}_{\epsilon}(\lambda)$ has a simple zero $\lambda \in \mathbb{R}$ near $\lambda=1$ in \mathcal{D}_{+}for small ϵ if

$$
\epsilon \int_{-\infty}^{\infty} w_{0}(x) w_{1}(x) d x>0
$$

The function $\hat{E}_{\epsilon}(\lambda)$ has a pair of simple zeros $\lambda \in \mathbb{C}$ near $\lambda=1$ in \mathcal{D}_{+}for small ϵ if

$$
\epsilon \int_{-\infty}^{\infty} w_{0}(x) w_{1}(x) d x<0
$$

Numerical illustration of the bifurcation

- Reduce to a Schrödinger problem with a long-range potential:

$$
U(x)=\frac{q(q+1)}{x^{2}}+W(x), \quad|x| \geq x_{0}>0
$$

- Scattering of Jost functions associated with the long-range potential:

$$
\psi(x) \rightarrow \sqrt{k x} H_{q+\frac{1}{2}}(k x), \quad 0<k<1
$$

- The Jost functions are renormalized in the limit $k \rightarrow 0$:

$$
\hat{\psi}(x)=\lim _{k \rightarrow 0^{+}} k^{q} \psi(x)
$$

- Explicit calculations:

$$
\alpha_{0}=W\left[\hat{\psi}^{+}, \hat{\psi}^{-}\right], \quad \alpha_{2}=-\int_{-\infty}^{\infty} \hat{\psi}^{+}(x) \hat{\psi}^{-}(x) d x
$$

- By the Implicit Function Theorem, we have near $\kappa=0$ and $\epsilon=0$:

$$
\hat{G}_{\epsilon}(\kappa)=\kappa^{3}+G_{1} \epsilon+\mathrm{o}(\epsilon) .
$$

