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o Modified Korteweg—de Vries (mKdV) equation
Az — 6t)° —3
4(x —6t)2+1

ur + 6UtUy + Uppy = 0, u(x,t)=

o Focusing nonlinear Schrodinger (NLS) equation

Az® + 16t° + 16it — 3 o,
iy = Upy + 2ul?u, ulx,t) = e
t = taw + 20 (@,%) 422 11662 + 1

o Massive Thirring model (MTM) equation
' — 20 = 20 9
“{t +w — 2[w| g 0, v(z,t) = . ,6225 (x—T1t)
—iwy + v — 2|v]*w = 0 40%(x + 1t) — 1
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Modified KdV equation

o Travelling solitary wave
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o Travelling breather
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o Linearized stability and a complete set of squared eigenfunctions

o Energy threshold and one-sided instability
P:/<U—1)2d332p():27('
R

o Bifurcations in spectra of Lax operators

Y, =L\ u)p, P = A\ u)p,

L(\u) = [2 _O“] + A [(1) _01]

uw(z,0)=1+w(x), lm |z|/Pw(x)=0bs, p>1
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where

and



V= —(1+w@)ps + M\pp, s = (14 w(x))h — Ao

Fundamental solutions for w(z) = 0:
Y(z) = er(\) e N7 k(N = VA2 -1
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o When w € LYR) and A € C\ {#£1}, there exist two sets of solutions:
lim ¢t (a; \)eTHNT = e (N)

r——00
and

lim Y (2 \)eTHIT = e (N).

o Evans function for A € Dy, where Re(k(\)) > 0
E(A) = det(¢™ (z; M), 4 (5 1))

o E(A) is analytic in A € D4
o E(A\p) = 01if Ay is an isolated eigenvalue in D
o F()\) is not analytic across A € 'y if w(x) decays algebraically



o Consider the AKNS problem with the algebraic potential
4

_1+4x2

wy(z) =

o Fundamental solutions in A € Dy

b (1)) = - (1A)6R<A>f [(ﬁ;()\) + rw(x)) es () — %wo(az)@r()\)] |

o Decaying eigenvector at A = 1:
20 — 1
o) = (5071 ) wla

o Evans function



o Consider a potential we(x), such that wg(x) is the algebraic soliton.
o Although FEy(A) is bounded on A € T'y, Ee(A) may diverge for € # 0.
o Zero of E(A) at A =1 occurs on A € 'y, where F/(\) is not analytic.
o How to define algebraic multiplicity of embedded eigenvalues?

o How to modify the Evans function for analysis of bifurcations?

o How to generalize analysis to other spectral systems (AKNS, ZS, KN)?



o Geometric construction based on re-scaling of differential equations

B. Sandstede and A. Scheel, Disc. Cont. Dyn. Sys. (2004)

o Spectral analysis of Dirac and Schrodinger problems at low energy
R. Newton, J. Math. Phys. (1986)

M. Klaus, J. Math. Phys. (1988)
M. Klaus, Inverse Problems (1988)

o Heuristic asymptotic multi-scale methods of the AKNS problem
D.Pelinovsky, R. Grimshaw, Physics Letters A (1997)



cOndely letA=vV1—k20<k<1

o Consider a two-sheet Riemann surface
Re(k(A) >0: —m<argA—1)<m,
Re(k(\) <0: wm<arg(A—1)<3nm

o Let w € LY(R). Fundamental solutions satisfy the integral equations:

$* k) = sl — [ " K(e, s k)g (s: k)ds,

where K (z, s; k) is a bounded kernel on 0 < k < 1 and (z, s) € R?,

o Evans function on 0 < k£ < 1 can be extended to the first sheet:
G(k) = E() = det (¢ (a: k), v~ (x:K)



lim  |zxfPw(z) = boo, p > 2
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o The point A = 1 is not an eigenvalue if p > 2 or it p = 2 and byo > —%

olf p = 2 and by < —%, the point A = 1 can be an eigenvalue of
geometric multiplicity one and finite algebraic multiplicity

o The function G(k)is CY at k=0if p>2and Clat k=0if p > 3

oLet p=2, by < —%, and ¢oo be a positive root of ¢(q + 1) = 2|bso|.
The renormalized Evans function G (k) is continuous at k = 0:
G(k) = kK9G(k) = ag + o(1).
If A =1 is an eigenvalue, then @ = 0 and
G(k) = agk?® + o(k?).

If A =1 is both a resonance and eigenvalue, then ap = 0.



o Consider the mKdV algebraic soliton:

(@)= ——"

wo(r) = —

! 1 + 4x?’

such that p =2, boo = —1, ¢ =1, ag = a9 = 0, and

AN

G(k) = k% + o(k?)

o Let we(zr) = wo(z) + ewi(zr) and wy(x) decays with p > 2. Then,
Ee¢(N) has a simple zero A € R near A = 1 in Dy for small € if
©.0
e/ wp(x)wi(x)dr > 0
—00
The function E¢(\) has a pair of simple zeros A € C near A = 1 in
D for small € it

E/OO wo(x)wi(x)dr < 0
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o Reduce to a Schrodinger problem with a long-range potential:

1
U(w) = LD i), o] 2> 0
X

o Scattering of Jost functions associated with the long-range potential:

U(z) — \/EHQ+ (kz), 0<k<1

1
2
o The Jost functions are renormalized in the limit k£ — O:

V() = lim k% (x)

k—0T

o Explicit calculations:

AN

a0 = W, 4], as = — /_ It (@1 (@)dx.

o By the Implicit Function Theorem, we have near k = 0 and € = 0:
Ge(r) = K>+ Gye + ofe).



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

