Evans function for Lax operators with algebraic potentials

Dmitry Pelinovsky

Department of Mathematics, McMaster University, Canada

Collaboration: Martin Klaus (Virginia Tech, USA) Vassilis Rothos (Queen Mary College, UK)

Reference: J. Nonlinear Science, in print (2005)

SIAM Southeast Atlantic Section Meeting, March 26, 2005

Algebraic solitons in integrable evolution equations

• Modified Korteweg–de Vries (mKdV) equation

$$u_t + 6u^2u_x + u_{xxx} = 0, \quad u(x,t) = \frac{4(x-6t)^2 - 3}{4(x-6t)^2 + 1}$$

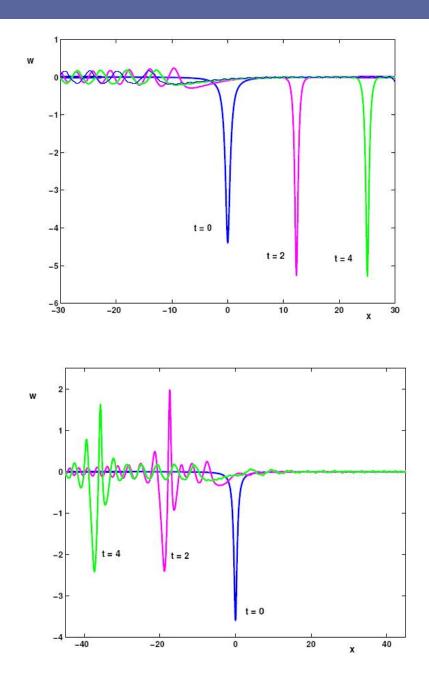
• Focusing nonlinear Schrödinger (NLS) equation

$$iu_t = u_{xx} + 2|u|^2 u$$
, $u(x,t) = \frac{4x^2 + 16t^2 + 16it - 3}{4x^2 + 16t^2 + 1}e^{-2it}$

• Massive Thirring model (MTM) equation

$$iv_t + w - 2|w|^2 v = 0, \quad v(x,t) = \frac{2\delta}{4\delta^2(x+\tau t) - i}e^{2i\delta^2(x-\tau t)}$$

Stability of algebraic solitons in nonlinear time-evolution



Modified KdV equation

• Travelling solitary wave

• Travelling breather

Methods of solution

• Linearized stability and a complete set of squared eigenfunctions

• Energy threshold and one-sided instability

$$P = \int_{\mathbb{R}} (u-1)^2 dx \ge P_0 = 2\pi$$

• Bifurcations in spectra of Lax operators

$$\boldsymbol{\psi}_x = \mathcal{L}(\lambda; u) \boldsymbol{\psi}, \quad \boldsymbol{\psi}_t = \mathcal{A}(\lambda; u) \boldsymbol{\psi},$$

where

$$\mathcal{L}(\lambda; u) = \begin{bmatrix} 0 & -u \\ u & 0 \end{bmatrix} + \lambda \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

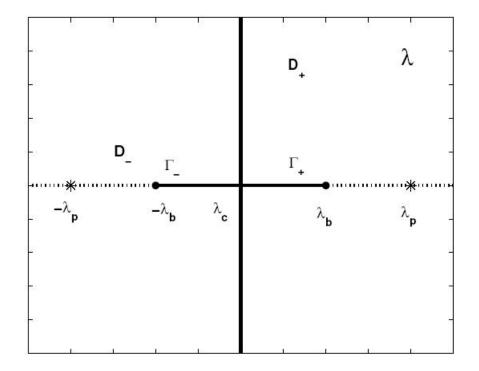
and

$$u(x,0) = 1 + w(x), \quad \lim_{x \to \pm \infty} |x|^p w(x) = b_{\infty}, \ p > 1$$

Spectral problem

$$\psi'_1 = -(1 + w(x))\psi_2 + \lambda\psi_1, \quad \psi'_2 = (1 + w(x))\psi_1 - \lambda\psi_2.$$

Fundamental solutions for w(x) = 0: $\psi(x) = \mathbf{e}_{\pm}(\lambda) \ e^{\pm \kappa(\lambda)x}, \quad \kappa(\lambda) = \sqrt{\lambda^2 - 1}$



Evans function

• When $w \in L^1(\mathbb{R})$ and $\lambda \in \mathbb{C} \setminus \{\pm 1\}$, there exist two sets of solutions: $\lim_{x \to -\infty} \phi^{\pm}(x; \lambda) e^{\mp \kappa(\lambda)x} = \mathbf{e}_{\pm}(\lambda)$ and

$$\lim_{x \to +\infty} \psi^{\pm}(x;\lambda) e^{\mp \kappa(\lambda)x} = \mathbf{e}_{\pm}(\lambda).$$

• Evans function for $\lambda \in \mathcal{D}_+$, where $\operatorname{Re}(\kappa(\lambda)) > 0$ $E(\lambda) = \det(\phi^+(x;\lambda), \psi^-(x;\lambda))$

E(λ) is analytic in λ ∈ D₊
E(λ_p) = 0 if λ_p is an isolated eigenvalue in D₊
E(λ) is not analytic across λ ∈ Γ₊ if w(x) decays algebraically

Explicit Evans function for algebraic potential

• Consider the AKNS problem with the algebraic potential

$$w_0(x) = -\frac{4}{1+4x^2}$$

• Fundamental solutions in $\lambda \in \mathcal{D}_+$:

$$\boldsymbol{\phi}^{+}(x;\lambda) = \frac{1}{\kappa(\lambda)} e^{\kappa(\lambda)x} \left[\left(\kappa(\lambda) + xw_0(x)\right) \mathbf{e}_{+}(\lambda) - \frac{1}{2}w_0(x)\boldsymbol{\xi}_{+}(\lambda) \right].$$

• Decaying eigenvector at $\lambda = 1$:

$$\boldsymbol{\phi}(x) = \begin{pmatrix} 2x - 1\\ 2x + 1 \end{pmatrix} w_0(x).$$

• Evans function

$$E(\lambda) = 2\kappa(\lambda) = 2\sqrt{\lambda^2 - 1}$$

- Consider a potential $w_{\epsilon}(x)$, such that $w_0(x)$ is the algebraic soliton.
- Although $E_0(\lambda)$ is bounded on $\lambda \in \Gamma_+$, $E_{\epsilon}(\lambda)$ may diverge for $\epsilon \neq 0$.
- Zero of $E(\lambda)$ at $\lambda = 1$ occurs on $\lambda \in \Gamma_+$, where $E(\lambda)$ is not analytic.
- How to define algebraic multiplicity of embedded eigenvalues?
- How to modify the Evans function for analysis of bifurcations?
- How to generalize analysis to other spectral systems (AKNS, ZS, KN)?

Previous results

- Geometric construction based on re-scaling of differential equations
 B. Sandstede and A. Scheel, Disc. Cont. Dyn. Sys. (2004)
- Spectral analysis of Dirac and Schrodinger problems at low energy R. Newton, J. Math. Phys. (1986)
 M. Klaus, J. Math. Phys. (1988)
 - M. Klaus, Inverse Problems (1988)
- Heuristic asymptotic multi-scale methods of the AKNS problem
 D.Pelinovsky, R. Grimshaw, Physics Letters A (1997)

Reformulation of the problem

• On
$$\lambda \in \Gamma_+$$
, let $\lambda = \sqrt{1 - k^2}$, $0 \le k < 1$

• Consider a two-sheet Riemann surface

$$\begin{aligned} \operatorname{Re}(\kappa(\lambda)) &> 0: \quad -\pi < \arg(\lambda - 1) < \pi, \\ \operatorname{Re}(\kappa(\lambda)) &< 0: \quad \pi < \arg(\lambda - 1) < 3\pi \end{aligned}$$

• Let $w \in L^1(\mathbb{R})$. Fundamental solutions satisfy the integral equations: $\phi^{\pm}(x;k) = \mathbf{e}_{\pm}(k)e^{\pm ikx} - \int_{-\infty}^{x} K(x,s;k)\phi^{\pm}(s;k)ds,$ where K(x,s;k) is a bounded kernel on 0 < k < 1 and $(x,s) \in \mathbb{R}^2$.

• Evans function on 0 < k < 1 can be extended to the first sheet:

$$G(k) = E(\lambda) = \det\left(\boldsymbol{\phi}^+(x;k), \boldsymbol{\psi}^-(x;k)\right)$$

Main results

$$\lim_{x \to \pm \infty} |x|^p w(x) = b_{\infty}, \ p \ge 2$$

• The point $\lambda = 1$ is not an eigenvalue if p > 2 or if p = 2 and $b_{\infty} > -\frac{3}{8}$

• If p = 2 and $b_{\infty} < -\frac{3}{8}$, the point $\lambda = 1$ can be an eigenvalue of geometric multiplicity *one* and *finite* algebraic multiplicity

- The function G(k) is C^0 at k = 0 if p > 2 and C^1 at k = 0 if p > 3
- Let p = 2, $b_{\infty} < -\frac{3}{8}$, and q_{∞} be a positive root of $q(q+1) = 2|b_{\infty}|$. The renormalized Evans function $\hat{G}(k)$ is continuous at k = 0:

$$\hat{G}(k) = k^{2q}G(k) = \alpha_0 + o(1).$$

If $\lambda = 1$ is an eigenvalue, then $\alpha = 0$ and

$$\hat{G}(k) = \alpha_2 k^2 + \mathrm{o}(k^2).$$

If $\lambda = 1$ is both a resonance and eigenvalue, then $\alpha_2 = 0$.

Example of eigenvalue and resonance

• Consider the mKdV algebraic soliton:

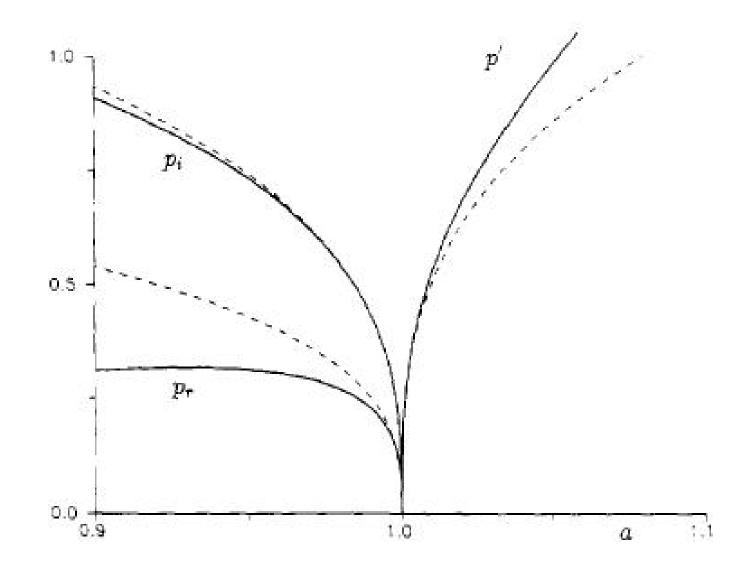
$$w_0(x) = -\frac{4}{1+4x^2},$$

such that $p = 2, b_{\infty} = -1, q = 1, \alpha_0 = \alpha_2 = 0,$ and
 $\hat{G}(k) = k^3 + o(k^3)$

• Let $w_{\epsilon}(x) = w_0(x) + \epsilon w_1(x)$ and $w_1(x)$ decays with p > 2. Then, $\hat{E}_{\epsilon}(\lambda)$ has a simple zero $\lambda \in \mathbb{R}$ near $\lambda = 1$ in \mathcal{D}_+ for small ϵ if $\epsilon \int_{-\infty}^{\infty} w_0(x) w_1(x) dx > 0$ The function $\hat{E}_{\epsilon}(\lambda)$ has a pair of simple zeros $\lambda \in \mathbb{C}$ near $\lambda = 1$ in \mathcal{D}_+ for small ϵ if

$$\epsilon \int_{-\infty}^{\infty} w_0(x) w_1(x) dx < 0$$

Numerical illustration of the bifurcation



Ideas of analysis and proofs

• Reduce to a Schrödinger problem with a long-range potential:

$$U(x) = \frac{q(q+1)}{x^2} + W(x), \quad |x| \ge x_0 > 0$$

• Scattering of Jost functions associated with the long-range potential:

$$\psi(x) \rightarrow \sqrt{kx} H_{q+\frac{1}{2}}(kx), \quad 0 < k < 1$$

• The Jost functions are renormalized in the limit $k \to 0$:

$$\hat{\psi}(x) = \lim_{k \to 0^+} k^q \psi(x)$$

• Explicit calculations:

$$\alpha_0 = W[\hat{\psi}^+, \hat{\psi}^-], \quad \alpha_2 = -\int_{-\infty}^{\infty} \hat{\psi}^+(x)\hat{\psi}^-(x)dx.$$

• By the Implicit Function Theorem, we have near $\kappa = 0$ and $\epsilon = 0$: $\hat{G}_{\epsilon}(\kappa) = \kappa^3 + G_1 \epsilon + o(\epsilon).$