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Algebraic solitons in integrable evolution equations

◦Modified Korteweg–de Vries (mKdV) equation

ut + 6u2ux + uxxx = 0, u(x, t) =
4(x− 6t)2 − 3

4(x− 6t)2 + 1

◦ Focusing nonlinear Schrödinger (NLS) equation

iut = uxx + 2|u|2u, u(x, t) =
4x2 + 16t2 + 16it− 3

4x2 + 16t2 + 1
e−2it

◦Massive Thirring model (MTM) equation

ivt + w − 2|w|2v = 0,

−iwx + v − 2|v|2w = 0
v(x, t) =

2δ

4δ2(x + τt)− i
e2iδ

2(x−τt)
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Stability of algebraic solitons in nonlinear time-evolution

Modified KdV equation

◦ Travelling solitary wave

◦ Travelling breather
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Methods of solution

◦ Linearized stability and a complete set of squared eigenfunctions

◦ Energy threshold and one-sided instability

P =

∫
R

(u− 1)2dx ≥ P0 = 2π

◦ Bifurcations in spectra of Lax operators

ψx = L(λ;u)ψ, ψt = A(λ;u)ψ,
where

L(λ;u) =

[
0 −u
u 0

]
+ λ

[
1 0
0 −1

]
and

u(x, 0) = 1 + w(x), lim
x→±∞

|x|pw(x) = b∞, p > 1
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Spectral problem

ψ′1 = −(1 + w(x))ψ2 + λψ1, ψ′2 = (1 + w(x))ψ1 − λψ2.

Fundamental solutions for w(x) = 0:

ψ(x) = e±(λ) e±κ(λ)x, κ(λ) =
√
λ2 − 1
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Evans function

◦When w ∈ L1(R) and λ ∈ C \ {±1}, there exist two sets of solutions:

lim
x→−∞

φ±(x;λ)e∓κ(λ)x = e±(λ)

and

lim
x→+∞

ψ±(x;λ)e∓κ(λ)x = e±(λ).

◦ Evans function for λ ∈ D+, where Re(κ(λ)) > 0

E(λ) = det(φ+(x;λ),ψ−(x;λ))

◦ E(λ) is analytic in λ ∈ D+

◦ E(λp) = 0 if λp is an isolated eigenvalue in D+

◦ E(λ) is not analytic across λ ∈ Γ+ if w(x) decays algebraically
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Explicit Evans function for algebraic potential

◦ Consider the AKNS problem with the algebraic potential

w0(x) = − 4

1 + 4x2

◦ Fundamental solutions in λ ∈ D+:

φ+(x;λ) =
1

κ(λ)
eκ(λ)x

[
(κ(λ) + xw0(x)) e+(λ)− 1

2
w0(x)ξ+(λ)

]
.

◦ Decaying eigenvector at λ = 1:

φ(x) =

(
2x− 1
2x + 1

)
w0(x).

◦ Evans function

E(λ) = 2κ(λ) = 2
√
λ2 − 1
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Technical problems and questions

◦ Consider a potential wε(x), such that w0(x) is the algebraic soliton.

◦ Although E0(λ) is bounded on λ ∈ Γ+, Eε(λ) may diverge for ε 6= 0.

◦ Zero of E(λ) at λ = 1 occurs on λ ∈ Γ+, where E(λ) is not analytic.

◦ How to define algebraic multiplicity of embedded eigenvalues?

◦ How to modify the Evans function for analysis of bifurcations?

◦ How to generalize analysis to other spectral systems (AKNS, ZS, KN)?
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Previous results

◦ Geometric construction based on re-scaling of differential equations

B. Sandstede and A. Scheel, Disc. Cont. Dyn. Sys. (2004)

◦ Spectral analysis of Dirac and Schrodinger problems at low energy

R. Newton, J. Math. Phys. (1986)

M. Klaus, J. Math. Phys. (1988)

M. Klaus, Inverse Problems (1988)

◦ Heuristic asymptotic multi-scale methods of the AKNS problem

D.Pelinovsky, R. Grimshaw, Physics Letters A (1997)
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Reformulation of the problem

◦ On λ ∈ Γ+, let λ =
√

1− k2, 0 ≤ k < 1

◦ Consider a two-sheet Riemann surface

Re(κ(λ)) > 0 : −π < arg(λ− 1) < π,

Re(κ(λ)) < 0 : π < arg(λ− 1) < 3π

◦ Let w ∈ L1(R). Fundamental solutions satisfy the integral equations:

φ±(x; k) = e±(k)e±ikx −
∫ x

−∞
K(x, s; k)φ±(s; k)ds,

where K(x, s; k) is a bounded kernel on 0 < k < 1 and (x, s) ∈ R2.

◦ Evans function on 0 < k < 1 can be extended to the first sheet:

G(k) = E(λ) = det
(
φ+(x; k),ψ−(x; k)

)
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Main results

lim
x→±∞

|x|pw(x) = b∞, p ≥ 2

◦ The point λ = 1 is not an eigenvalue if p > 2 or if p = 2 and b∞ > −3
8

◦ If p = 2 and b∞ < −3
8, the point λ = 1 can be an eigenvalue of

geometric multiplicity one and finite algebraic multiplicity

◦ The function G(k) is C0 at k = 0 if p > 2 and C1 at k = 0 if p > 3

◦ Let p = 2, b∞ < −3
8, and q∞ be a positive root of q(q + 1) = 2|b∞|.

The renormalized Evans function Ĝ(k) is continuous at k = 0:

Ĝ(k) = k2qG(k) = α0 + o(1).

If λ = 1 is an eigenvalue, then α = 0 and

Ĝ(k) = α2k
2 + o(k2).

If λ = 1 is both a resonance and eigenvalue, then α2 = 0.
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Example of eigenvalue and resonance

◦ Consider the mKdV algebraic soliton:

w0(x) = − 4

1 + 4x2
,

such that p = 2, b∞ = −1, q = 1, α0 = α2 = 0, and

Ĝ(k) = k3 + o(k3)

◦ Let wε(x) = w0(x) + εw1(x) and w1(x) decays with p > 2. Then,
Êε(λ) has a simple zero λ ∈ R near λ = 1 in D+ for small ε if

ε

∫ ∞

−∞
w0(x)w1(x)dx > 0

The function Êε(λ) has a pair of simple zeros λ ∈ C near λ = 1 in
D+ for small ε if

ε

∫ ∞

−∞
w0(x)w1(x)dx < 0
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Numerical illustration of the bifurcation
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Ideas of analysis and proofs

◦ Reduce to a Schrödinger problem with a long-range potential:

U(x) =
q(q + 1)

x2
+W (x), |x| ≥ x0 > 0

◦ Scattering of Jost functions associated with the long-range potential:

ψ(x) →
√
kxH

q+1
2
(kx), 0 < k < 1

◦ The Jost functions are renormalized in the limit k → 0:

ψ̂(x) = lim
k→0+

kqψ(x)

◦ Explicit calculations:

α0 = W [ψ̂+, ψ̂−], α2 = −
∫ ∞

−∞
ψ̂+(x)ψ̂−(x)dx.

◦ By the Implicit Function Theorem, we have near κ = 0 and ε = 0:

Ĝε(κ) = κ3 +G1ε + o(ε).
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