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Background and motivations
Fifth-order KdV equation

ut + uxxx − uxxxxx + 2uux = 0

has traveling wave solutions u = φ(z), z = x− ct, where φ(z)
solves the fourth-order ODE

φ(iv) − φ′′ + cφ = φ2.

Applications:
• capillary-gravity water waves (Craig–Groves, 1994)
• chains of coupled oscillators (Gorshkov–Ostrovsky, 1979)
• magneto–acoustic waves in plasma (Kawahara, 1972)
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Solitary waves
Stability of the critical point (0, 0, 0, 0) in the fourth-order ODE:

φ ∼ eκz : κ4 − κ2 + c = 0.

Existence of localized solutions:

• c < 0 - no pulse solutions (Tovbis, 2000; Lombardi, 2000)
• 0 < c < 1

4
- unique one-pulse solution (Amick–Toland, 1992;

Groves, 1998)
• c > 1

4
- unique one-pulse and infinite countable set of two-pulse

solutions (Buffoni–Sere, 1996)

⇒ The domain of our studies is c > 1
4
.
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Mathematical problems
Numerical approximations of two-pulse solutions

• numerical shooting method and continuation techniques
(Champneys, 1993)

• iterations in Fourier space (Petviashvili’s method)

⇒ Iterations diverge for two-pulse solutions!

Spectral stability of two-pulse solutions

• Lyapunov–Schmidt reductions (Sandstede, 1998)
• Count of eigenvalues in Pontryagin space (Krein’s signatures)

⇒ The count of eigenvalues is inconclusive for two-pulse solutions!
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Petviashvili’s method
ODE for solitary waves

φ(iv) − φ′′ + cφ = φ2, z ∈ R

The ODE becomes the fixed-point problem in H2(R):

φ̂(k) =
φ̂2(k)

(c+ k2 + k4)
, k ∈ R

where c > 0 and φ̂(k) is the Fourier transform of φ(z).
Iterations {ûn(k)}∞n=0 are defined recursively in H2

ev(R):

ûn+1(k) = M 2
n

û2
n(k)

(c+ k2 + k4)
, M [ûn] =

∫
R(c+ k2 + k4) [ûn(k)]2 dk

∫
R ûn(k)û2

n(k)dk
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Convergence Theorem
• Let φ̂(k) be a solution of the fixed-point problem in H2

ev(R)

• Let H be the Jacobian operator of the ODE at φ(z):
H = c− ∂2

z + ∂4
z − 2φ(z)

Theorem: IfH has exactly one negative eigenvalue and a simple
zero eigenvalue and if

either φ(z) ≥ 0 or

∣∣∣∣inf
z∈R

φ(z)

∣∣∣∣ <
c

2
,

then there exists an open neighborhood of φ̂ in H2
ev(R), in which φ̂

is the unique fixed point and the sequence of iterations {ûn(k)}∞n=0

converges to φ̂.
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One-pulse solutions
Let φ ≡ Φ(z) be a one-pulse solution in H = c− ∂2

z + ∂4
z − 2Φ(z).

Then, H has exactly one negative eigenvalue and a simple kernel
with Φ′(z) in H2(R).
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Analysis of convergence
Numerical factors for numerical error:
• truncation of z ∈ R to the interval z ∈ [−d, d]

• truncation of Fourier series by the discrete sum with N terms
• small tolerance ε for EM = |Mn − 1| and
E∞ = ‖un+1 − un‖L∞
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Two-pulse solutions
Let φ ≡ φn(z) be a two-pulse solution. Then,

φ(z) = Φ(z − s) + Φ(z + s) + ϕ(z),

where ‖ϕ‖L∞ = O(e−2κs) and |s− sn| = O(e−2κs), where sn is an
extremum point of W (2s) in

W =

∫

R
Φ2(z)Φ(z + 2s)dz.

The operator H has two finite negative eigenvalues, a simple kernel
with φ′n(z), and a small eigenvalue µ in H2(R), such that

∣∣∣∣µ+
2W ′′(2sn)

Q

∣∣∣∣ ≤ Cne
−4κsn , Q = ‖Φ′‖2

L2 > 0.
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Two-pulse solutions
Iterations of the method

Minimum error for root search
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Numerical algorithm
Theorem: There exists s = s∗ near s = sn such that the iteration
method with u0 = Φ(z − s) + Φ(z + s) converges to φn(z) in a
local neighborhood of φn in H2

ev(R).
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Spectral stability
Linearized problem for spectral stability

∂zHv = λv, v ∈ L2(R)

Eigenvalues with Re(λ) > 0 result in spectral instability.
Let φ ≡ φn(z) be a two-pulse solution. There exists a pair of small
eigenvalues λ of the linearized operator ∂zH, such that

∣∣∣∣λ2 +
4W ′′(2sn)

P ′(c)

∣∣∣∣ ≤ Cne
−4κsn, P ′(c) =

d

dc
‖Φ‖2

L2 > 0.

• W ′′(2sn) > 0 - pair of purely imaginary eigenvalues
• W ′′(2sn) < 0 - pair of real eigenvalues
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Spectral stability theorem
Notations:

• Nreal - the number of real positive eigenvalues
• Ncomp - the number of complex eigenvalues in the first open

quadrant
• N−imag - the number of simple positive imaginary eigenvalues

with (Hv, v) ≤ 0

• The kernel of H is simple and P ′(c) > 0

Theorem: Then,

Nreal + 2Ncomp + 2N−imag = n(H)− 1,

where n(H) is the number of negative eigenvalues of H.
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Applications of the Theorem
Counts of eigenvalues:
• One-pulse solutions

n(H) = 1, Nreal = Ncomp = N−imag = 0

The one-pulse solution is a ground state (Levandosky, 1999)

• Two-pulse solutions with W ′′(2sn) < 0

n(H) = 2, Nreal = 1, Ncomp = N−imag = 0

The two-pulse solution with W ′′(2sn) < 0 is spectrally
unstable.
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Applications of the Theorem
Counts of eigenvalues:
• Two-pulse solutions with W ′′(2sn) > 0

n(H) = 3, Nreal = 0, Ncomp +N−imag = 1

The "standard" count is inconclusive for these solutions.

Theorem: Let λ be a simple purely imaginary eigenvalue of ∂zH in
L2(R). Then, it is structurally stable to parameter continuation, i.e.
it remains purely imaginary eigenvalue upon an addition of a
relatively compact perturbation to ∂zH.

Ncomp = 0, N−imag = 1

The two-pulse solution with W ′′(2sn) > 0 is spectrally stable.
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Numerical spectrum
Exponentially weighted space

H2
α =

{
v ∈ H2

loc(R) : eαzv(z) ∈ H2(R)
}
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Numerical spectrum
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Conclusions
Outcomes of our work:
• Application of Pontryagin spaces to KdV equations
• Numerical approximations of two-pulse solutions
• Proof of structural stability of embedded eigenvalues

Open problems:
• Error bounds on validity of the Newton’s particle law:

P ′(c)L̈ = −W ′′(L),

where L(t) = 2s is the distance between two pulses.
• Numerical approximations of three- and multi-pulse solutions
• Proof of asymptotic stability of multi-pulse solutions
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Software for relevant computations

Two-pulse solutions in the fifth-order KdV equation – p. 19/19


	Background and motivations
	Background and motivations

	Solitary waves
	Mathematical problems
	Mathematical problems

	Petviashvili's method
	Convergence Theorem
	One-pulse solutions
	One-pulse solutions

	Analysis of convergence
	Analysis of convergence

	Two-pulse solutions
	Two-pulse solutions

	Two-pulse solutions
	Two-pulse solutions

	Numerical algorithm
	Spectral stability
	Spectral stability theorem
	Spectral stability theorem

	Applications of the Theorem
	Applications of the Theorem

	Applications of the Theorem
	Applications of the Theorem

	Numerical spectrum
	Numerical spectrum

	Numerical spectrum
	Conclusions
	Conclusions

	Software for relevant computations



