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Background and motivations
Fifth-order KdV equation

ut + uxxx − uxxxxx + 2uux = 0

has traveling wave solutions u = φ(z), z = x− ct, where φ(z)
solves the fourth-order ODE

φ(iv) − φ′′ + cφ = φ2.

Applications:
• capillary-gravity water waves (Craig–Groves, 1994)
• chains of coupled oscillators (Gorshkov–Ostrovsky, 1979)
• magneto–acoustic waves in plasma (Kawahara, 1972)
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Solitary waves
Stability of the critical point (0, 0, 0, 0) in the fourth-order ODE:

φ ∼ eκz : κ4 − κ2 + c = 0.

Existence of localized solutions:

• c < 0 - no pulse solutions (Tovbis, 2000; Lombardi, 2000)
• 0 < c < 1

4
- unique one-pulse solution (Amick–Toland, 1992;

Groves, 1998)
• c > 1

4
- unique one-pulse and infinite countable set of two-pulse

solutions (Buffoni–Sere, 1996)

⇒ The domain of our studies is c > 1
4
.
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Mathematical problems
(1) Numerical approximations of two-pulse solutions

• numerical shooting method and continuation techniques
(Champneys, 1993)

• iterations in Fourier space (Petviashvili’s method)

⇒ Petviashvili’s iterations diverge for two-pulse solutions!

(2) Spectral stability of two-pulse solutions

• Lyapunov–Schmidt reductions (Sandstede, 1998)
• Count of eigenvalues in Pontryagin space (Krein’s signatures)

⇒ The count of eigenvalues is inconclusive for two-pulse solutions!
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Part I: Petviashvili’s method (1976)
ODE for solitary waves

φ(iv) − φ′′ + cφ = φ2, z ∈ R

The ODE becomes the fixed-point problem in H2(R):

φ̂(k) =
φ̂2(k)

(c+ k2 + k4)
, k ∈ R

where c > 0 and φ̂(k) is the Fourier transform of φ(z).
Iterations {ûn(k)}∞n=0 are defined recursively in H2

ev(R):

ûn+1(k) = M 2
n

û2
n(k)

(c+ k2 + k4)
, M [ûn] =

∫
R(c+ k2 + k4) [ûn(k)]2 dk

∫
R ûn(k)û2

n(k)dk
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Convergence Theorem (2004)
• Let φ̂(k) be a solution of the fixed-point problem in H2

ev(R)

• Let H be the Jacobian operator of the ODE at φ(z):
H = c− ∂2

z + ∂4
z − 2φ(z)

Theorem: IfH has exactly one negative eigenvalue and a simple
zero eigenvalue and if

either φ(z) ≥ 0 or

∣∣∣∣inf
z∈R

φ(z)

∣∣∣∣ <
c

2
,

then there exists an open neighborhood of φ̂ in H2
ev(R), in which φ̂

is the unique fixed point and the sequence of iterations {ûn(k)}∞n=0

converges to φ̂.
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One-pulse solutions
Let φ ≡ Φ(z) be a one-pulse solution in H = c− ∂2

z + ∂4
z − 2Φ(z).

Then, H has exactly one negative eigenvalue and a simple kernel
with Φ′(z) in H2(R).
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Analysis of convergence
Numerical factors for numerical error:
• truncation of z ∈ R to the interval z ∈ [−d, d]

• truncation of Fourier series by the discrete sum with N terms
• small tolerance ε for EM = |Mn − 1| and
E∞ = ‖un+1 − un‖L∞
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Two-pulse solutions
Let φ(z) be a two-pulse solution. Then,

φ(z) = Φ(z − s) + Φ(z + s) + ϕ(z),

where ‖ϕ‖L∞ = O(e−2κs) and |s− s0| = O(e−2κs), where κ is the
decay rate of Φ(z) and s0 is a non-degenerate extremum point of
W (s) in

W =

∫

R
Φ2(z)Φ(z + 2s)dz.

The operator H has two finite negative eigenvalues, a simple kernel
with φ′(z), and a small eigenvalue µ in H2(R), such that

∣∣∣∣µ+
2W ′′(2s0)

‖Φ′‖2
L2

∣∣∣∣ ≤ Ce−4κs0 .
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Note to the proof
The function ϕ(z) satisfies the ODE
(
c− ∂2

z + ∂4
z − 2Φ(z − s)− 2Φ(z + s)

)
ϕ−ϕ2 = 2Φ(z−s)Φ(z+s),

such that ϕ̃(z) = ϕ(z + s) satisfies

Hϕ̃ = 2Φ(z + 2s)ϕ̃+ ϕ̃2 + 2Φ(z)Φ(z + 2s).

Since s is not yet defined, let ϕ̃ ∈ Xc ⊂ L2 : (ϕ̃,Φ′) = 0. By the
method of Lyapunov–Schmidt reductions, s must be the root of

F (s, ε) =
(
Φ′(z), 2Φ(z + 2s)ϕ̃+ ϕ̃2 + 2Φ(z)Φ(z + 2s)

)

= −W ′(s) + o(e−2κs).

If the extremum of W (s) is non-degenerate at s = s0, a unique
two-pulse solution persists near s = s0.
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Construction of two-pulse solutions
Iterations of the Petviashvili’s method:
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Numerical algorithm
Theorem: There exists s = s∗ near s = s0 such that the iteration
method with u0 = Φ(z − s0) + Φ(z + s0) converges to a two-pulse
solution φ(z) in a local neighborhood of φ in H2

ev(R).
Minimum error for root search:
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Numerical two-pulse solutions

distance s effective potential root finding
s1 5.058733328146916 5.079717398028492

s2 8.196800619090793 8.196620796452045
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Part II: Spectral stability
Linearized problem for spectral stability

∂zHv = λv, v ∈ X∗c ⊂ L2 : (v, φ) = 0.

Eigenvalues with Re(λ) > 0 result in spectral instability.
Let φ(z) be a two-pulse solution. There exists a pair of small
eigenvalues λ of the linearized operator ∂zH, such that

∣∣∣∣λ2 +
4W ′′(2s0)

P ′(c)

∣∣∣∣ ≤ Ce−4κs0 , P ′(c) =
d

dc
‖Φ‖2

L2 > 0.

• W ′′(2s0) > 0 - pair of purely imaginary eigenvalues
• W ′′(2s0) < 0 - pair of real eigenvalues
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Spectral stability theorem
Notations:

• Nreal - the number of real positive eigenvalues
• Ncomp - the number of complex eigenvalues in the first open

quadrant
• N−imag - the number of simple positive imaginary eigenvalues

with (Hv, v) ≤ 0

• The kernel of H is simple and P ′(c) > 0

Theorem: Then,

Nreal + 2Ncomp + 2N−imag = n(H)− 1,

where n(H) is the number of negative eigenvalues of H.
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Sylvester–Pontryagin–Grillakis Theorem
Theorem: Let L and M be self-adjoint operators in H with finitely
many negative eigenvalues n(L) and n(M) and empty kernels.
Then, there are exactly n(L) and n(M) eigenvalues γ of
Lu = γMu in L2(R) such that (u, Lu) ≤ 0 and (u,Mu) ≤ 0.

References:
L. Pontryagin, Izv. Acad. Nauk SSSR 8, 243–280 (1944)
M. Grillakis, Comm. Pure Appl. Math. 43, 299–333 (1990)
T. Kapitula, P. Kevrekidis, and B. Sandstede, Physica D 195,
263–282 (2004)

For the KdV linearization,

H = Xc, γ = −λ2, L = −∂zH∂z, M = H−1.
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Applications of the Theorem
Counts of eigenvalues:
• One-pulse solutions

n(H) = 1, Nreal = Ncomp = N−imag = 0

The one-pulse solution is a ground state (Levandosky, 1999)

• Two-pulse solutions with W ′′(2s0) < 0

n(H) = 2, Nreal = 1, Ncomp = N−imag = 0

The two-pulse solution with W ′′(2s0) < 0 is spectrally
unstable.
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Applications of the Theorem
Counts of eigenvalues:
• Two-pulse solutions with W ′′(2s0) > 0

n(H) = 3, Nreal = 0, Ncomp +N−imag = 1

The count is inconclusive for these solutions.

Theorem: Let λ ∈ iR be a simple eigenvalue of ∂zH with
eigenfunction v0 ∈ Xc such that (Hv0, v0) < 0. Then, it is
structurally stable to parameter continuations.
Corollary: The two-pulse solution with W ′′(2s0) > 0 is spectrally
stable with

Ncomp = 0, N−imag = 1.
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Note to the proof
Exponentially weighted space

H2
α =

{
v ∈ H2

loc(R) : eαzv(z) ∈ H2(R)
}
.

The continuous spectrum of ∂zH for small α > 0 resides at a
simply-connected curve in the left half-plane of λ ∈ C.

• If v0 ∈ H2(R) for a simple eigenvalue λ0 ∈ iR+, then
v0 ∈ H2

α(R) for the same eigenvalue.
• If (Hv0, v0) < 0, there exists w0 ∈ H2(R), such that v0 = w′0

and (w0, v0) ∈ iR+.
• For a parameter continuation in ∂z(H + δV (z)) where
V ∈ L∞(R), we show that vδ ∈ H2(R), vδ = w′δ(z), and
(wδ, vδ) are all continuous in δ. Therefore, (wδ, vδ) ∈ iR+ and
λδ ∈ iR+ in the relation λδ(wδ, vδ) = (Hvδ, vδ) < 0.
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Numerical spectrum
First two-pulse solution:
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Numerical spectrum
Second (left) and third (right) two-pulse solutions:
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Numerical spectrum
Table of numerical approximations of small eigenvalues:

first solution second solution
"Zero" EV ofH 1.2156 · 10−9 2.6678 · 10−9

Small EV ofH 1.7845 · 10−2 7.6638 · 10−5

"Zero" EVs of Lα 0.3653 · 10−5 0.5321 · 10−5

Re of small EVs of Lα 4.5291 · 10−6 3.2845 · 10−3

Im of small EVs of Lα 0.5021 · 10−1 1.1523 · 10−8
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Time-evolution simulations
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Comparison with the Newton’s particle equation
Conjecture (Gorshkov–Ostrovskii): If the initial value u(x, 0) is
locally close to the two-pulse solution Φ(x− s0) + Φ(x+ s0), the
solution u(x, t) remains close to the two-pulse solution
Φ(x− ct− s(t)) + Φ(x− ct+ s(t)) for 0 ≤ t ≤ Ceκ0s, where s(t)
satisfies the Newton’s particle law P ′(c)s̈ = −W ′′(2s).
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Conclusions
Outcomes of our work:
• Application of Pontryagin spaces to KdV equations
• Numerical approximations of two-pulse solutions
• Proof of structural stability of embedded eigenvalues

Open problems:
• Error bounds on validity of the Newton’s particle law
• Numerical approximations of three- and multi-pulse solutions
• Proof of asymptotic stability of multi-pulse solutions
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Software for relevant computations
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