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Background and motivations

Fifth-order KdV equation

has traveling wave solutions u = ¢(z), z = x — ct, where ¢(z2)
solves the fourth-order ODE

¢(iv) —¢//+C¢: ¢2.

Applications:
* capillary-gravity water waves (Craig—Groves, 1994)
* chains of coupled oscillators (Gorshkov—Ostrovsky, 1979)

* magneto—acoustic waves in plasma (Kawahara, 1972)



Solitary waves

Stability of the critical point (0, 0, 0, 0) in the fourth-order ODE:

O~ e k*— kK +c=0.

Existence of localized solutions:

* ¢ < 0 - no pulse solutions (Tovbis, 2000; Lombardi, 2000)

* 0<c< i - unique one-pulse solution (Amick—Toland, 1992;
Groves, 1998)

°* c> i - unique one-pulse and infinite countable set of two-pulse
solutions (Buffoni—Sere, 1996)

1
C> 7



Mathematical problems

(1) Numerical approximations of two-pulse solutions

* numerical shooting method and continuation techniques
(Champneys, 1993)

* 1terations in Fourier space (Petviashvili’s method)



Mathematical problems

(1) Numerical approximations of two-pulse solutions

* numerical shooting method and continuation techniques
(Champneys, 1993)

* 1terations in Fourier space (Petviashvili’s method)

(2) Spectral stability of two-pulse solutions

* Lyapunov—Schmidt reductions (Sandstede, 1998)

* Count of eigenvalues in Pontryagin space (Krein’s signatures)



Part I: Petviashvili’s method (1976)

ODE for solitary waves

600 ¢ tep=¢?,  :cR
The ODE becomes the fixed-point problem in H?(RR):

o (k)
pk) = (c+ k2 + k%)’

ke R

where ¢ > 0 and ¢(k) is the Fourier transform of ¢(z).

Iterations {u, (k)}°, are defined recursively in HZ (R):

lng1 (k) = My tn () Mlii,] = Jrlc+ K+ ’f4) [A ())* dk

"(c+ k2 + kY’ [ i (k)2 (K )




Convergence Theorem (2004)

* Let ¢(k) be a solution of the fixed-point problem in H2 (R)

* Let H be the Jacobian operator of the ODE at ¢(z):
H=c— 024 0; —2¢(z2)

If 'H has exactly one negative eigenvalue and a simple
zero eigenvalue and if

either ¢(z) >0 or |inf ¢(z)

z€R

<

)

DO | O

then there exists an open neighborhood of ¢ in H 2 (R), in which o

is the unique fixed point and the sequence of iterations {u,(k)}>2,

converges 1o o.



One-pulse solutions

Let ¢ = ®(2) be a one-pulse solution in H = ¢ — 9% + 9% — 2®(z).
Then, H has exactly one negative eigenvalue and a simple kernel
with ®'(2) in H*(R).




Analysis of convergence

Numerical factors for numerical error:
* truncation of z € R to the interval z € [—d, d]

* truncation of Fourier series by the discrete sum with /V terms

* small tolerance ¢ for £y, = |M,, — 1| and
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Two-pulse solutions

Let ¢(z) be a two-pulse solution. Then,
P(2) = (2 = 5) + (2 +5) + ¢(2),

where ||¢||r~ = O(e™2%%) and |s — sg| = O(e%"*), where & is the
decay rate of ®(z) and s is a non-degenerate extremum point of
W(s) in

W = / ®2(2)®(2 + 25)dz.

The operator H has two finite negative eigenvalues, a simple kernel
with ¢/(z), and a small eigenvalue . in H*(IR), such that
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Note to the proof

The function (z) satisfies the ODE
(0= 0240 = 20(: — ) — 20(: + ) p—p* = 20(:—5)D(2+5),
such that p(z) = (2 + s) satisfies

HE = 28(2 + 25)p + @ + 28(2)P(2 + 25).

Since s is not yet defined, let p € X. C L*: (¢, ®’) = 0. By the
method of Lyapunov—Schmidt reductions, s must be the root of

F(s,e) = (9'(2),29(z+2s)p + ¢° + 28(2)P(z + 25))
= —W'(s) + o(e ).

If the extremum of ¥/ (s) is non-degenerate at s = s, a unique
two-pulse solution persists near s = s.



Construction of two-pulse solutions

Iterations of the Petviashvili’s method:




Numerical algorithm

There exists s = s, near s = sg such that the iteration
method with uy = ®(z — sg) + ®(2 + s¢) converges to a two-pulse
solution ¢(z) in a local neighborhood of ¢ in H? (R).

Minimum error for root search:




Numerical two-pulse solutions

distance s

effective potential

root finding

5.058733328146916

5.079717398028492

8.196800619090793

8.196620796452045




Part 11: Spectral stability

Linearized problem for spectral stability
0, Hv = Av, veEX CL?: (v,9)=0.

Eigenvalues with Re(\) > 0 result in spectral instability.

Let ¢(z) be a two-pulse solution. There exists a pair of small
eigenvalues \ of the linearized operator 0,’H, such that

AW (2s0)
P'(c)

d
A+ < Ce %0, P'(c) = %chuig > 0.

* W"(2s¢) > 0 - pair of purely imaginary eigenvalues

* W"(2s¢) < 0 - pair of real eigenvalues



Spectral stability theorem

Notations:

® N,eal - the number of real positive eigenvalues

* Necomp - the number of complex eigenvalues 1n the first open
quadrant

* Njnae - the number of simple positive imaginary eigenvalues
with (Hv,v) <0

* The kernel of H is simple and P’'(c) > 0
Then,
Nreal + 2‘chomp + 2Nir_nag — n(H) — 17

where n(H) is the number of negative eigenvalues of .



Sylvester—Pontryagin—Grillakis Theorem

Theorem: Let L and M be self-adjoint operators in // with finitely
many negative eigenvalues n(L) and n(M ) and empty kernels.
Then, there are exactly n(L) and n(M) eigenvalues ~ of

Lu = vMu in L*(R) such that (u, Lu) < 0 and (u, Mu) < 0.

References:
L. Pontryagin, Izv. Acad. Nauk SSSR 8, 243-280 (1944)

M. Grillakis, Comm. Pure Appl. Math. 43, 299-333 (1990)

T. Kapitula, P. Kevrekidis, and B. Sandstede, Physica D 195,
263-282 (2004)

For the KdV linearization,

H=X. ~v=-), L=-90,H6, M=H"



Applications of the Theorem

Counts of eigenvalues:

* One-pulse solutions

n(H) — 17 Nreal — Ncomp = N_ =3

imag

The one-pulse solution 1s a ground state (Levandosky, 1999)

* Two-pulse solutions with W"(2sq) < 0

n(H) — 27 Nreal — 17 Ncomp = N 0o = 0

imag

The two-pulse solution with W (2sq) < 0 is spectrally
unstable.



Applications of the Theorem

Counts of eigenvalues:

* Two-pulse solutions with " (2sy) > 0

n(H) — 37 Nreal — 07 Ncomp + N =1

imag =~

The count 1s inconclusive for these solutions.



Applications of the Theorem

Counts of eigenvalues:

* Two-pulse solutions with " (2sy) > 0

n(H) — 37 Nreal — 07 Ncomp + N, = |

imag =~

The count 1s inconclusive for these solutions.

Let A € 2R be a simple eigenvalue of 0,’H with
eigenfunction vy € X, such that (Hvg, vy) < 0. Then, it is
structurally stable to parameter continuations.

The two-pulse solution with W (2sq) > 0 is spectrally
stable with

Neomp =0, N =1.

imag =~



Note to the proof

Exponentially weighted space
H.={ve H, (R): e*v(z) € H(R)}.

The continuous spectrum of 0.H for small o > 0 resides at a
simply-connected curve in the left half-plane of \ € C.

° If vy € H*(R) for a simple eigenvalue \q € iR, then
vo € H?(R) for the same eigenvalue.

° If (Hug, vy) < 0, there exists wy € H*(R), such that vy = wy},
and (wy, vy) € iR,

* For a parameter continuation in 0, (H + 6V (z)) where
V € L>(R), we show that v; € H*(R), vs = wj(z), and
(ws, vs) are all continuous in §. Therefore, (ws, vs) € ¢R, and
A\s € 1R in the relation \s(ws, vs) = (Hvs, vs) < 0.



Numerical spectrum

First two-pulse solution:




Numerical spectrum

Second (left) and third (right) two-pulse solutions:




Numerical spectrum

Table of numerical approximations of small eigenvalues:

first solution

second solution

"Zero" EV of 'H

1.2156 - 10~*

2.6678 - 10~

Small EV of H

1.7845 - 1072

7.6638 - 107°

"Zero" EVs of L,

0.3653 - 107°

0.5321-107°

Re of small EVs of £,

4.5291 - 107

3.2845 - 1073

Im of small EVs of L,

0.5021 - 101

1.1523-107®




Time-evolution simulations




nparison with the Newton’s particle equa

If the initial value u(x,0) is
locally close to the two-pulse solution ®(x — sg) + ®(z + s), the
solution u(x, t) remains close to the two-pulse solution
O(x —ct —s(t)) + P(x — ct + s(t)) for 0 <t < Ce0?, where s(t)
satisfies the Newton’s particle law P’(c)s = —W"(2s).




Conclusions

Outcomes of our work:
* Application of Pontryagin spaces to KdV equations
* Numerical approximations of two-pulse solutions

* Proof of structural stability of embedded eigenvalues

Open problems:
* Error bounds on validity of the Newton’s particle law
* Numerical approximations of three- and multi-pulse solutions

* Proof of asymptotic stability of multi-pulse solutions



Software for relevant computations
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