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Fractional Korteweg de Vries Equation

The fractional KdV is a popular model for dynamics of waves in shallow fluids:

ut + 2uux − (Dαu)x = 0,

where the fractional derivative operator Dα is defined by

D̂αu(ξ) = |ξ|α û(ξ), ξ ∈ R.

Integrable cases: Benjamin–Ono equation (α = 1) and KdV equation (α = 2).
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Fractional Korteweg de Vries Equation

The fractional KdV is a popular model for dynamics of waves in shallow fluids:

ut + 2uux − (Dαu)x = 0,

where the fractional derivative operator Dα is defined by

D̂αu(ξ) = |ξ|α û(ξ), ξ ∈ R.

Integrable cases: Benjamin–Ono equation (α = 1) and KdV equation (α = 2).

Here we consider 2π-periodic solutions on T := (−π, π), so that ξ ∈ Z.

1 Positivity of periodic travelling wave solution

2 Convergence of Petviashvili method for fixed-point iterations

3 New variational formulation of periodic wave solutions
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Background

Well-posedness in Sobolev spaces:

F. Linares, D. Pilod, J.C. Saut (2014)
L. Molinet, D. Pilod, S. Vento (2018)

Existence and modulation stability of periodic waves by using

pertubative methods in M. Johnson (2013),
variational methods in H. Chen, J. Bona (2013), V.Hur, M. Johnson (2015)
fixed-point methods in H. Chen (2004)

Existence and stability of solitary waves in J. Angulo (2018):

stable for 1
2
< α ≤ 2

unstable for 1
3
< α < 1

2

Convergence of Petviashvili’s method near periodic waves in

J. Alvarez, A. Duran (2017)
D. Clamond, D. Dutykh (2018)
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Stationary equations for periodic waves

The right propagating, periodic travelling wave solution takes the form

u(x , t) = ψ(x − ct), c > 0.

Integrating the equation with zero constant yields the boundary value problem

(c + Dα)ψ = ψ2, ψ ∈ Hα
per (−π, π).

Advantage: c + Dα is positive (useful for fixed-point iterations).
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Stationary equations for periodic waves

The right propagating, periodic travelling wave solution takes the form

u(x , t) = ψ(x − ct), c > 0.

Integrating the equation with zero constant yields the boundary value problem

(c + Dα)ψ = ψ2, ψ ∈ Hα
per (−π, π).

Advantage: c + Dα is positive (useful for fixed-point iterations).

The left propagating wave u(x , t) = φ(x + ct) with same c > 0 is related to ψ by

φ(x) = ψ(x)− c ,

and satisfies the boundary value problem

(c − Dα)φ+ φ2 = 0, φ ∈ Hα
per (−π, π).

Advantage: c − Dα may vanish (useful for local bifurcation theory).
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Stokes expansions of small-amplitude waves

Consider the BVP as a bifurcation problem:

(c − Dα)φ+ φ2 = 0, φ ∈ Hα
per (−π, π),

with σ(c − Dα) = {c , c − 1, c − 2α, c − 3α, . . . }.
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Stokes expansions of small-amplitude waves

Consider the BVP as a bifurcation problem:

(c − Dα)φ+ φ2 = 0, φ ∈ Hα
per (−π, π),

with σ(c − Dα) = {c , c − 1, c − 2α, c − 3α, . . . }.
Theorem. For every α > 1

2 , there exists a locally unique even solution φ
bifurcating from zero solution. The wave profile φ and the wave speed c are real
analytic in wave amplitude a and satisfy the following Stokes expansions

φ = a cos(x) + a2φ2(x) + a3φ3(x) +O(a4),

c = 1 + c2a
2 +O(a4).

with

φ2(x) = −1

2
+

1

2(2α − 1)
cos(2x) and c2 = 1− 1

2(2α − 1)
.
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Stokes expansions of small-amplitude waves

Consider the BVP as a bifurcation problem:

(c − Dα)φ+ φ2 = 0, φ ∈ Hα
per (−π, π),

with σ(c − Dα) = {c , c − 1, c − 2α, c − 3α, . . . }.
Theorem. For every α > 1

2 , there exists a locally unique even solution φ
bifurcating from zero solution. The wave profile φ and the wave speed c are real
analytic in wave amplitude a and satisfy the following Stokes expansions

φ = a cos(x) + a2φ2(x) + a3φ3(x) +O(a4),

c = 1 + c2a
2 +O(a4).

with

φ2(x) = −1

2
+

1

2(2α − 1)
cos(2x) and c2 = 1− 1

2(2α − 1)
.

Note the threshold behavior: c2 > 0 for α > α0 and c2 < 0 for α < α0,
where α0 ≈ 0.585.
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Fractional Korteweg de Vries Equation

The fractional KdV is a popular model for dynamics of waves in shallow fluids:

ut + 2uux − (Dαu)x = 0,

where the fractional derivative operator Dα is defined by

D̂αu(ξ) = |ξ|α û(ξ), ξ ∈ R.

Integrable cases: Benjamin–Ono equation (α = 1) and KdV equation (α = 2).

Here we consider 2π-periodic solutions on T := (−π, π), so that ξ ∈ Z.

1 Positivity of periodic travelling wave solution

2 Convergence of Petviashvili method for fixed-point iterations

3 New variational formulation of periodic wave solutions
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Positivity of ψ

φ is not positive. Recall the relation between ψ and φ

ψ(x) = φ(x) + c , x ∈ [−π, π].

Since c ≈ 1 and φ ≈ 0, then ψ is positive.

In the integrable cases, ψ remains positive for every c > 1, e.g.

α = 1 : ψ(x) =
sinh γ

cosh γ − cos x
, c = coth γ.

Question: Is ψ positive for every c > 1 if α > α0?
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Main result on positivity of ψ

Theorem (Le–P, 2019)

For every c > 1 and α ∈ (α0, 2], there exists an even single-lobe solution

ψ ∈ Hα
per (−π, π) to the BVP

(c + Dα)ψ = ψ2.

such that ψ(x) > 0 on [−π, π].

We say the periodic wave has single-lobe profile if there is only one maximum and
minimum of ψ on the period.

Small-amplitude waves bifurcating from zero at c = 1 are single-lobe solutions.
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Proof of positivity of ψ: Step 1

Green’s function for c + Dα is obtained from the solution of

(c + Dα)ϕ(x) = h, h ∈ L2per (−π, π),

in the convolution form

ϕ(x) =

∫ π

−π

G (x − s)h(s)ds

or in Fourier form,

Gc,α(x) =
1

2π

∑

n∈Z

e inx

c + |n|α ⇒ ‖Gc,α‖L2
per

≤ Mc,α, α > 1/2.

For α ≤ 2, the Greens function is strictly positive:

Gc,α(x) ≥ mc,α,

Nieto (2010) for α ∈ (0, 1); Bai-Lu (2005) for α ∈ (1, 2).
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Proof of positivity of ψ: Step 2

Operator A in the positive cone
From the BVP

(c + Dα)ψ = ψ2,

we define the nonlinear operator

Ac,α(ψ) := (c + Dα)−1ψ2 ⇒ Ac,α(ψ)(x) =

∫ π

−π

Gc,α(x − s)ψ(s)2ds,

and the positive cone in L2per (−π, π)

Pc,α :=

{

ψ ∈ L2per (−π, π) : ψ(x) ≥
mc,α

Mc,α

‖ψ‖L2
per
, x ∈ [−π, π]

}

.

i) Ac,α is bounded and continuous in L
2
per (−π, π) (Young’s inequality),

ii) Ac,α is compact as it is a limit of compact operators A
(N)
c,α,

where A
(N)
c,α are gives by 2N + 1 Fourier coefficients.

iii) Ac,α(ψ) is closed in Pc,α: Ac,α(ψ) ≥ mc,α‖ψ‖2L2per ≥
mc,α

Mc,α
‖Ac,α(ψ)‖L2per .
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Proof of positivity of ψ: Step 3

3) Existence of fixed point in the cone
Let

Br := {ψ ∈ L2per (−π, π) : ‖ψ‖L2
per
< r}

By Kranoselskii’s fixed point theorem if there exists r− and r+ such that

‖Ac,α(ψ)‖L2
per
< ‖ψ‖L2

per
, ψ ∈ Pc,α ∩ ∂Br−

‖Ac,α(ψ)‖L2
per
> ‖ψ‖L2

per
, ψ ∈ Pc,α ∩ ∂Br+

then, Ac,α has fixed point in Pc,α.

r
−

is small enough so that r
−
Mc,α < 1

r+ is large enough so that
√
2πr+mc,α > 1

r
−
< r+ because

√
2πmc,α ≤ Mc,α.

By bootstrapping argument, if ψ ∈ L2per , then ψ ∈ H∞
per .

Remark: The positive fixed point may not be single-lobe since the constant
solution ψ = c is always a positive fixed point of Ac,α in Pc,α for every c > 0.
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Proof of positivity of ψ: Step 4

4) Distinguishing ψ from constant fixed point

Definition (Leray-Schauder index)

The Leray-Schauder index of the fixed point ψ is defined as (−1)N , where N is
the number of unstable eigenvalues of A′

c,α(ψ) outside the unit disk with the
account of the multiplicities.

For the constant solution ψ = c , the linearized operator

A′
c,α(c) = 2c(c + Dα)−1 : L2per → L2per

in the space of even functions has N = k + 1 unstable eigenvalues outside the unit
disk for c ∈ (kα, (k + 1)α) with k ∈ N. The index of the constant solution
changes sign every time c crosses the resonance at kα, k ∈ N.
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Number of unstable eigenvalues along solution branches
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Figure: Schematic representation of bifurcations from the constant fixed point ψ = c.
Here α = 2.

Dmitry E. Pelinovsky McMaster University



No bifurcations along the single-lobe solutions

Positive single-lobe fixed point ψ bifurcates for c > 1 if α > α0. The linearized
operator at ψ is given by

A′
c,α(ψ) = 2(c + Dα)−1ψ = Id − (c + Dα)−1Hc,α.

where Hc,α := c + Dα − 2ψ is the linearization of the fractional KdV.
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No bifurcations along the single-lobe solutions

Positive single-lobe fixed point ψ bifurcates for c > 1 if α > α0. The linearized
operator at ψ is given by

A′
c,α(ψ) = 2(c + Dα)−1ψ = Id − (c + Dα)−1Hc,α.

where Hc,α := c + Dα − 2ψ is the linearization of the fractional KdV.

Lemma
N = 1 is true for every c > 1 along the branch of single-lobe solutions.

For c & 1, this can be shown by the perturbative argument (if α > α0).

For other c > 1, we rely on the result of V.Hur and M.Johson (2015),
Ker(Hc,α) = span(∂xψ) ⇒ if N = 1 for c & 1, then N = 1 for c > 1.
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Fractional Korteweg de Vries Equation

The fractional KdV is a popular model for dynamics of waves in shallow fluids:

ut + 2uux − (Dαu)x = 0,

where the fractional derivative operator Dα is defined by

D̂αu(ξ) = |ξ|α û(ξ), ξ ∈ R.

Integrable cases: Benjamin–Ono equation (α = 1) and KdV equation (α = 2).

Here we consider 2π-periodic solutions on T := (−π, π), so that ξ ∈ Z.
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Petviashvili method for fixed point iterations

Recall the stationary equation for ψ:

(c + Dα)ψ = ψ2, ⇒ ψ = Ac,α(ψ) := (c + Dα)−1ψ2.

However, the linearized operator

A′
c,α(ψ) = 2(c − Dα)

−1ψ

always has N = 1 unstable eigenvalue outside the unit disk.
⇒ Fixed-point iterations diverge from the single-lobe periodic waves.
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Petviashvili method for fixed point iterations

Recall the stationary equation for ψ:

(c + Dα)ψ = ψ2, ⇒ ψ = Ac,α(ψ) := (c + Dα)−1ψ2.

However, the linearized operator

A′
c,α(ψ) = 2(c − Dα)

−1ψ

always has N = 1 unstable eigenvalue outside the unit disk.
⇒ Fixed-point iterations diverge from the single-lobe periodic waves.

V. Petviashvili (1976) introduced a stabilizing factor in the fixed-point iterations:

wn+1 = Tc,α(wn) := [Mc,α(wn)]
2
(c + Dα)−1(w2

n ), n ∈ N,

where

Mc,α(w) :=
〈(c + Dα)w ,w〉

〈w2,w〉 , w ∈ Hα
per (−π, π).

If w = ψ, then Mc,α(ψ) = 1 and Tc,α(ψ) = ψ.

Dmitry E. Pelinovsky McMaster University



Main results on convergence of fixed-point iterations

Theorem (Le–P, 2019)

For every c > 1 and α ∈ (α0, 2], the single-lobe solution ψ ∈ Hα
per to

(c + Dα)ψ = ψ2,

is an asymptotically stable fixed point of Tc,α.
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Main results on convergence of fixed-point iterations

Theorem (Le–P, 2019)

For every c > 1 and α ∈ (α0, 2], the single-lobe solution ψ ∈ Hα
per to

(c + Dα)ψ = ψ2,

is an asymptotically stable fixed point of Tc,α.

Question: Does the Petviashvili’s method converge for sign-indefinite wave such
as φ satisfying (c − Dα)φ+ φ2 = 0?
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Main results on convergence of fixed-point iterations

Theorem (Le–P, 2019)

For every c > 1 and α ∈ (α0, 2], the single-lobe solution ψ ∈ Hα
per to

(c + Dα)ψ = ψ2,

is an asymptotically stable fixed point of Tc,α.

Question: Does the Petviashvili’s method converge for sign-indefinite wave such
as φ satisfying (c − Dα)φ+ φ2 = 0?

Answer:

i) φ is an unstable fixed point of Tc,α for α ∈ (α0, α1), where α1 ≈ 1.322

ii) φ is an asymptotically stable fixed point for α ∈ (α1, 2] if c & 1 and is
unstable if c > 1 is large enough.
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Proof of convergence

Consider again the linearized fixed-point iterations:

A′
c,α(φ) := 2(−c + Dα)−1φ = Id − (−c + Dα)−1Hc,α,

Hc,α := −c + Dα − 2φ.

Spectrum of A′
c,α(φ) is related to the spectrum of (−c + Dα)−1Hc,α:

Hc,αv = λ(−c + Dα)v , v ∈ Hα
per (−π, π),

where both Hc,α and (−c + Dα) are sign-indefinite.

Eigenvalues of (−c + Dα)−1Hc,α are divided for c & 1 into two sets {σ1, σ2}:
1) σ1 contains sequence of eigenvalues near 1 and converging to 1, related to the

subspace L2per (−π, π)\{e ix , e−ix},
2) σ2 contains finite number of eigenvalues related to the subspace {e ix , e−ix}.
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Small-amplitude periodic wave: c & 1

Related to the subspace {e ix , e−ix}, we find σ2 = {−1, 0, λ1, λ2}, where

λ1 →
2α+1 − 5

2α+1 − 3
, λ2 < 2, λ2 → 2 as c → 1.

The eigenvalues {−1, 0} are due to exact solutions:

(−c + Dα)−1Hc,αφ = −φ,
(−c + Dα)−1Hc,αφ

′ = 0,
⇒ {−1, 0} ⊂ σ2.

for which

A′
c,α(φ) = Id − (−c + Dα)−1Hc,α ⇒ {2, 1} ⊂ σ(A′

c,α(φ)).

For α0 ≈ 0.585 and α1 ≈ 1.322

λ1 < 0 if α ∈ (α0, α1), λ1 ∈ (0, 1) if α ∈ (α1, 2]
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Figure: Eigenvalues of the operator (−c + D
α)−1Hc,α for α = 2

(KdV equation)
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Figure: Eigenvalues of the operator (−c + D
α)−1Hc,α for α = 1

(Benjamin-Ono equation): Here λ = −1 is a double eigenvalue!
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Convergence case for (−c + D
α)φ = φ2, α = 2, c = 2
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Figure: Iterations for c = 2 and α = 2. Left) The last iteration versus x . (Right)
Computational errors versus n.
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Divergence case for (−c + D
α)φ = φ2, α = 1, c = 1.1

-3 -2 -1 0 1 2 3

x

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

u(
x)

u
n
(x)

u
n-1

(x)

u
n-2

(x)

u
n-3

(x)

0 20 40 60 80 100

Number of iterations

10-6

10-5

10-4

10-3

10-2

10-1

100

|1-M|

||cu
n
+Du

n
 +u

n
2||

Figure: Iterations for c = 1.1 and α = 1. (Left) The last four iterations versus x . (Right)
Computational errors versus n.
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Summary on convergence of Petviashvili’s method

Petviashvili’s method does not converge well for left-propagating
sign-indefinite periodic waves satisfying

(c − Dα)φ+ φ2 = 0, φ ∈ Hα
per (−π, π).

Petviashvili’s method converge unconditionally for right-propagating positive
periodic waves satisfying

(c + Dα)ψ = ψ2, ψ ∈ Hα
per (−π, π).

where ψ(x) = c + φ(x). This is related to the fact that

A′
c,α = 2(c + Dα)−1ψ

has only N = 1 unstable eigenvalue lying outside the unit disk.
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Convergence case for (c + D
α)ψ = ψ2, α = 1, c = 1.6
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Figure: Iterations for c = 1.6 and α = 1. (a) The last iteration versus x . (b)
Computational errors versus n.

Dmitry E. Pelinovsky McMaster University



Fractional Korteweg de Vries Equation

The fractional KdV is a popular model for dynamics of waves in shallow fluids:

ut + 2uux − (Dαu)x = 0,

where the fractional derivative operator Dα is defined by

D̂αu(ξ) = |ξ|α û(ξ), ξ ∈ R.

Integrable cases: Benjamin–Ono equation (α = 1) and KdV equation (α = 2).

Here we consider 2π-periodic solutions on T := (−π, π), so that ξ ∈ Z.

1 Positivity of periodic travelling wave solution

2 Convergence of Petviashvili method for fixed-point iterations

3 New variational formulation of periodic wave
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Stationary equations for periodic waves

Periodic travelling wave u(x , t) = ψ(x − ct) satisfies the stationary equation:

(c + Dα)ψ − ψ2 + b = 0,

where b is an integration constant.
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Stationary equations for periodic waves

Periodic travelling wave u(x , t) = ψ(x − ct) satisfies the stationary equation:

(c + Dα)ψ − ψ2 + b = 0,

where b is an integration constant.

Thanks to the Galilean transformation

ψ(x) =
1

2

(

c −
√

c2 + 4b
)

+ ϕ(x),

the periodic wave ϕ is a solution to the stationary equation

(ω + Dα)ϕ− ϕ2 = 0,

with only one parameter ω :=
√
c2 + 4b.
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Different formulations

Stationary equation

(c + Dα)ψ − ψ2 + b = 0 ⇒ (ω + Dα)ϕ− ϕ2 = 0.

admit two families of periodic wave solutions:

ψ is obtained for c > 1 and b = 0
φ is obtained for c < −1 and b = 0.

Obstacle on existence: When α < α0 ≈ 0.585, Stokes waves ψ bifurcate to
c < 1 instead of c > 1 because c = 1 + c2a

2 +O(a4) with c2 < 0.

−3 −2 −1 0 1 2 3
−0.5

0

0.5

c

b

Figure: Boundary ω = 1 on the (c, b) plane.Dmitry E. Pelinovsky McMaster University



New formulation

Stationary equation

(c + Dα)ψ − ψ2 + b = 0 ⇒ (ω + Dα)ϕ− ϕ2 = 0.

Let ψ has zero mean on T so that ψ = ϕ− 1
2π

∫ π

−π
ϕdx . Then, b is defined by

b(c) :=
1

2π

∫ π

−π

ψ2dx .

No fold point appears for α < α0:

c = −1 +
1

2(2α − 1)
a2 +O(a4), b(c) =

1

2
a2 +O(a4).
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Existence of periodic waves
Standard variational method: find minimizers of energy

E (u) =
1

2

∫ π

−π

(D
α

2 u)2 − 1

3

∫ π

−π

u3dx ,

subject to fixed momentum and mass

F (u) =
1

2

∫ π

−π

u2dx , M(u) =

∫ π

−π

u dx .
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Existence of periodic waves
Standard variational method: find minimizers of energy

E (u) =
1

2

∫ π

−π

(D
α

2 u)2 − 1

3

∫ π

−π

u3dx ,

subject to fixed momentum and mass

F (u) =
1

2

∫ π

−π

u2dx , M(u) =

∫ π

−π

u dx .

New variational method: find minimizer of the quadratic energy

Bc(u) :=
1

2

∫ π

−π

[

(D
α

2 u)2 + cu2
]

dx

subject to fixed cubic energy and zero-mean constraint:

Y :=

{

u ∈ H
α

2
per(T) :

∫ π

−π

u3dx = 1,

∫ π

−π

udx = 0

}

.

There exists a constrained minimizer u∗ ∈ Y for every α > 1/3 and every c > −1.
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Continuation of periodic waves: standard approach

Hessian operator for both variational problems is the same operator:

L = Dα + c − 2ψ : Hα
per

(T) ⊂ L2
per

(T) → L2
per

(T),

This operator enjoys Sturm’s oscillation theory [Hur–Johnson, 2015] which yields

Lemma (Hur–Johnson, 2015)

Assume α ∈ ( 13 , 2] and that ψ ∈ H∞
per

(T) be an even single-lobe periodic wave. If

{1, ψ, ψ2} ∈ Range(L), then Ker(L) = span(∂xψ).
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Continuation of periodic waves: standard approach

Hessian operator for both variational problems is the same operator:

L = Dα + c − 2ψ : Hα
per

(T) ⊂ L2
per

(T) → L2
per

(T),

This operator enjoys Sturm’s oscillation theory [Hur–Johnson, 2015] which yields

Lemma (Hur–Johnson, 2015)

Assume α ∈ ( 13 , 2] and that ψ ∈ H∞
per

(T) be an even single-lobe periodic wave. If

{1, ψ, ψ2} ∈ Range(L), then Ker(L) = span(∂xψ).

At the fold point for α < α0 ≈ 0.585, {1, ψ, ψ2} ∈ Range(L) is false.
As a result, dimKer(L) = 2 at the fold point.
Since c and b are Lagrange multipliers in G (u) = E (u) + cF (u) + bM(u), the
periodic wave ψ may not be differentiable in c and b. As a result,

L∂cψ = −ψ, L∂bψ = −1

may not follow from (c + Dα)ψ − ψ2 + b = 0.
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Continuation of periodic waves: new approach

For the zero-mean periodic wave ψ with b(c) = 1
2πF (ψ), we verify:

Lψ = −ψ2 − b(c),

L1 = −2ψ + c .

Theorem (Natali,Le,P, 2019)

If Ker(L|1⊥) = span(∂xψ) at c = c0, then the mapping c 7→ ψ is C 1 at c = c0.
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For the zero-mean periodic wave ψ with b(c) = 1
2πF (ψ), we verify:

Lψ = −ψ2 − b(c),

L1 = −2ψ + c .

Theorem (Natali,Le,P, 2019)

If Ker(L|1⊥) = span(∂xψ) at c = c0, then the mapping c 7→ ψ is C 1 at c = c0.

Hence, we add the third equation:

L∂cψ = −ψ − b′(c), ⇒ L (1− 2∂cψ) = c + 2b′(c).

Corollary

If c + 2b′(c) 6= 0, then Ker(L) = span(∂xψ). If c + 2b′(c) = 0, then
Ker(L) = span(∂xψ, 1− 2∂cψ).

Dmitry E. Pelinovsky McMaster University



Stability of periodic waves: new approach

Since ψ is a minimizer of the new variational problem, we have:

L
∣

∣

{1,ψ2}⊥
≥ 0,

which yields the exact formula for the number of negative eigenvalues of L:

n(L) =
{

1, c + 2b′(c) ≥ 0,
2, c + 2b′(c) < 0.
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Stability of periodic waves: new approach

Since ψ is a minimizer of the new variational problem, we have:

L
∣

∣

{1,ψ2}⊥
≥ 0,

which yields the exact formula for the number of negative eigenvalues of L:

n(L) =
{

1, c + 2b′(c) ≥ 0,
2, c + 2b′(c) < 0.

and the number of negative eigenvalues in the old variational problem:

n(L
∣

∣

{1,ψ}⊥
) =

{

0, b′(c) ≥ 0,
1, b′(c) < 0.

Theorem (Natali,Le,P, 2019)

Assume Ker(L|1⊥) = span(∂xψ) for c ∈ (−1,∞). The zero-mean periodic wave

ψ is spectrally stable if b′(c) > 0 and is spectrally unstable if b′(c) < 0.
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Summary

For the periodic waves in the fractional KdV equation satisfying

(c + Dα)ψ − ψ2 + b = 0,

we have showed the following:

1 ψ > 0 for c > 1, b = 0, and α > α0 ≈ 0.585

2 Petviashvili method diverges for ψ for c < −1, b = 0, and α > α0

3 Periodic waves ψ with zero mean are obtained with a new variational problem
with b 6= 0 for both α > α0 and α < α0.

Thank you! Questions???
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