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Fractional Korteweg de Vries Equation

The fractional KdV is a popular model for dynamics of waves in shallow fluids:
ur + 2uuy, — (D%u)x = 0,
where the fractional derivative operator D, is defined by
Dou(E) = [¢[* a().  EE€R.

Integrable cases: Benjamin—Ono equation (a = 1) and KdV equation (o = 2).
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Fractional Korteweg de Vries Equation

The fractional KdV is a popular model for dynamics of waves in shallow fluids:
ur + 2uuy, — (D%u)x = 0,
where the fractional derivative operator D, is defined by

Deu(€) = ¢ a(§), E€R.
Integrable cases: Benjamin—-Ono equation (o = 1) and KdV equation (a = 2).
Here we consider 27-periodic solutions on T := (—m, 7), so that £ € Z.
@ Positivity of periodic travelling wave solution

@ Convergence of Petviashvili method for fixed-point iterations

© New variational formulation of periodic wave solutions
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@ Well-posedness in Sobolev spaces:

o F. Linares, D. Pilod, J.C. Saut (2014)
¢ L. Molinet, D. Pilod, S. Vento (2018)

@ Existence and modulation stability of periodic waves by using

@ pertubative methods in M. Johnson (2013),
@ variational methods in H. Chen, J. Bona (2013), V.Hur, M. Johnson (2015)
o fixed-point methods in H. Chen (2004)

@ Existence and stability of solitary waves in J. Angulo (2018):
@ stable for % <a<?2
9 unstable for % <a< %

@ Convergence of Petviashvili's method near periodic waves in

o J. Alvarez, A. Duran (2017)
o D. Clamond, D. Dutykh (2018)
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Stationary equations for periodic waves

The right propagating, periodic travelling wave solution takes the form
u(x,t) =¢(x —ct), c¢>0.
Integrating the equation with zero constant yields the boundary value problem
(c+ D) =42 o€ Hy(—m ).

Advantage: ¢ + D“ is positive (useful for fixed-point iterations).

Dmitry E. Pelinovsky McMaster University



Stationary equations for periodic waves

The right propagating, periodic travelling wave solution takes the form
u(x,t) =¢(x —ct), c¢>0.
Integrating the equation with zero constant yields the boundary value problem
(c+ D) =42 o€ Hy(—m ).
Advantage: ¢ + D“ is positive (useful for fixed-point iterations).
The left propagating wave u(x, t) = ¢(x + ct) with same ¢ > 0 is related to ¢ by
o(x) = ¥(x) —c,
and satisfies the boundary value problem
(c=D"p+ ¢ =0, ¢ € Hy (—m,m).

Advantage: ¢ — D® may vanish (useful for local bifurcation theory).
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Stokes expansions of small-amplitude waves

Consider the BVP as a bifurcation problem:
(c—=Dp+¢*>=0, o¢¢c Hper (=, 7),

with o(c — D*) ={¢c,c —1,c —2%,¢c—3% ... }.
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Stokes expansions of small-amplitude waves

Consider the BVP as a bifurcation problem:
(c=D"o+¢*=0, ¢€Hyp(—m,7),

with o(c — D*) ={¢c,c —1,c —2%,¢c—3% ... }.

Theorem. For every o > % there exists a locally unique even solution ¢
bifurcating from zero solution. The wave profile ¢ and the wave speed c are real
analytic in wave amplitude a and satisfy the following Stokes expansions

¢ = acos(x) + 32¢2(x) + a3q53(x) + (9(34),
c=1+ca®+0(a").

with

bo(x) = —=

1
5 + 22— 1) cos(2x) and ¢, =1—

202 — 1)
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Stokes expansions of small-amplitude waves

Consider the BVP as a bifurcation problem:
(c=D"o+¢*=0, ¢€Hyp(—m,7),

with o(c — D*) ={¢c,c —1,c —2%,¢c—3% ... }.

Theorem. For every o > % there exists a locally unique even solution ¢
bifurcating from zero solution. The wave profile ¢ and the wave speed c are real
analytic in wave amplitude a and satisfy the following Stokes expansions

¢ = acos(x) + 32¢2(x) + a3q53(x) + (9(34),
c=1+ca®+0(a").

with

bo(x) = —=

1
5 + 22— 1) cos(2x) and ¢, =1—

202 — 1)

Note the threshold behavior: ¢ > 0 for a > g and ¢ < 0 for a < ay,
where g ~ 0.585.
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Fractional Korteweg de Vries Equation

The fractional KdV is a popular model for dynamics of waves in shallow fluids:
us + 2uuy, — (D%u)y = 0,
where the fractional derivative operator D, is defined by

Dou(€) = €17 a(e), € eR.

Integrable cases: Benjamin—Ono equation (« = 1) and KdV equation (o = 2).

Here we consider 27-periodic solutions on T := (—m, 7), so that £ € Z.

Q@ Positivity of periodic travelling wave solution
@ Convergence of Petviashvili method for fixed-point iterations

© New variational formulation of periodic wave solutions
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Positivity of 1

¢ is not positive. Recall the relation between v and ¢
P(x)=o(x)+¢c, xé€[-mm]

Since ¢ & 1 and ¢ = 0, then 9 is positive.

In the integrable cases, 1) remains positive for every ¢ > 1, e.g.

sinhy
=1: = = coth~.
“ () cosh~y — cosx’ ¢ = cothy

Question: Is v positive for every ¢ > 1 if a > ag?
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Main result on positivity of ¥

Theorem (Le-P, 2019)

For every ¢ > 1 and « € (ap, 2], there exists an even single-lobe solution
W € H.,(—m,7) to the BVP

(C + Da)w = ¢2-

such that 1(x) > 0 on [—m,n].

We say the periodic wave has single-lobe profile if there is only one maximum and
minimum of v on the period.

Small-amplitude waves bifurcating from zero at ¢ = 1 are single-lobe solutions.
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Proof of positivity of ¢: Step 1

Green's function for ¢ + D? is obtained from the solution of

(c+D%)p(x)=h, hell, (—mm),

in the convolution form

s

p(x)= [ G(x—s)h(s)ds
or in Fourier form,
Geal)= 5 o = Gealiy, < Mea 172
X)= — - .
g et callg, <Mear o

For oo < 2, the Greens function is strictly positive:
Gc,a(X) > Mme o,
Nieto (2010) for « € (0, 1); Bai-Lu (2005) for @ € (1,2).
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Proof of positivity of ¢): Step 2

Operator A in the positive cone
From the BVP

(¢ + DY)y = y?,
we define the nonlinear operator

Aealt) = (€4 D) 102 = Aca()) = [ Gualo = s)olsPs,

and the positive cone in L3 (—,)
m
Peo = {¢ € Lo (—m,m) 1 1h(x) > Mc’a 1Yz, x € [—7r,7r]}.

i) Ac,o is bounded and continuous in L3, (—m,7) (Young's inequality),
ii) Ac,a is compact as it is a limit of compact operators A(CI,\Q,

where A(CNo)é are gives by 2N + 1 Fourier coefficients.
i) Ac.a(v) is closed in Pea: Aca(¥) 2 meallllf, > 7ol Aca(¥)lli, -

per
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Proof of positivity of ¢): Step 3

3) Existence of fixed point in the cone

Let
B i {0 € Lo(-mm): [0, < )

By Kranoselskii's fixed point theorem if there exists r_ and r, such that

HAC,CE(w)HLZ < ”%bHL2 ) P e Pc,a NoB._

per per
lAca(®)lig, > ¥lle,, € PeaNB.,

then, Ac o has fixed point in Pc 4.

o r_ is small enough so that - M., <1
o ry is large enough so that v2mryme o > 1
e r_ < ry because V2mrmec o < Mco.

By bootstrapping argument, if ¢ € L2, then ¢ € Hper-

per’

Remark: The positive fixed point may not be single-lobe since the constant
solution ¢ = c is always a positive fixed point of A¢ o in P, for every ¢ > 0.
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Proof of positivity of ¢: Step 4

4) Distinguishing v from constant fixed point

Definition (Leray-Schauder index)

The Leray-Schauder index of the fixed point 7 is defined as (—1)", where N is
the number of unstable eigenvalues of A (1) outside the unit disk with the
account of the multiplicities.

For the constant solution i) = ¢, the linearized operator

A (c)=2c(c+ D) : L2, — L]

per per

in the space of even functions has N = k + 1 unstable eigenvalues outside the unit
disk for ¢ € (k*, (k + 1)) with k € N. The index of the constant solution
changes sign every time ¢ crosses the resonance at k%, k € N.
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Number of unstable eigenvalues along solution branches
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Figure: Schematic representation of bifurcations from the constant fixed point ¢ = c.
Here oo = 2.
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No bifurcations along the single-lobe solutions

Positive single-lobe fixed point 1) bifurcates for ¢ > 1 if & > «ag. The linearized
operator at ¢ is given by

A/c,a(d}) =2(c+ Da)fldj =Id —(c+ Da)flfHC’a.

where H. o 1= ¢ + D — 29 is the linearization of the fractional KdV.
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No bifurcations along the single-lobe solutions

Positive single-lobe fixed point 1) bifurcates for ¢ > 1 if & > «ag. The linearized
operator at ¢ is given by

A/c,a(d)) =2(c+ Da)fldj =1Id—(c+ Da)flfHC’a.

where H. o 1= ¢ + D — 29 is the linearization of the fractional KdV.

N =1 js true for every c > 1 along the branch of single-lobe solutions. l

@ For ¢ 2 1, this can be shown by the perturbative argument (if @ > ap).

@ For other ¢ > 1, we rely on the result of V.Hur and M.Johson (2015),
Ker(Hc,o) = span(dxy) = if N =1 for ¢ 2 1, then N =1 for ¢ > 1.
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Fractional Korteweg de Vries Equation

The fractional KdV is a popular model for dynamics of waves in shallow fluids:
us + 2uuy, — (D%u)y = 0,
where the fractional derivative operator D, is defined by

Dou(€) = €17 a(e), € eR.

Integrable cases: Benjamin—Ono equation (« = 1) and KdV equation (o = 2).

Here we consider 27-periodic solutions on T := (—m, 7), so that £ € Z.

@ Positivity of periodic travelling wave solution
@ Convergence of Petviashvili method for fixed-point iterations

© New variational formulation of periodic wave solutions
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Petviashvili method for fixed point iterations

Recall the stationary equation for 1:
(c+D*Yp =42 = ¢=Ac(¥):=(c+ D) .

However, the linearized operator

Aco(¥) = 2(c = Do) ™Mo

always has N =1 unstable eigenvalue outside the unit disk.
= Fixed-point iterations diverge from the single-lobe periodic waves.
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Petviashvili method for fixed point iterations

Recall the stationary equation for 1:
(c+ D =4% = ¢=Aca(v):=(c+D*) %
However, the linearized operator
Aco(¥) = 2(c = Do) ™Mo

always has N =1 unstable eigenvalue outside the unit disk.
= Fixed-point iterations diverge from the single-lobe periodic waves.

V. Petviashvili (1976) introduced a stabilizing factor in the fixed-point iterations:
W1 = Tea(wn) = [Mea(wa)* (c + D*) "} (W2), neN,

where
¢+ D*)w, w)

Mc.o(w) == { , w € Hp, (—m,m).

(w?, w)

If w=1, then M. o(¢)) =1 and T, o(¢)) = 2.
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Main results on convergence of fixed-point iterations

Theorem (Le-P, 2019)

For every ¢ > 1 and a € (o, 2], the single-lobe solution ) € Hg;, to
(¢ + D)y = 42,

is an asymptotically stable fixed point of T 4.
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Main results on convergence of fixed-point iterations

Theorem (Le-P, 2019)

For every ¢ > 1 and a € (o, 2], the single-lobe solution ) € Hg;, to
(¢ + D)y = 42,

is an asymptotically stable fixed point of T 4.

Question: Does the Petviashvili's method converge for sign-indefinite wave such
as ¢ satisfying (c — D%)¢ + ¢? = 07
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Main results on convergence of fixed-point iterations

Theorem (Le-P, 2019)

For every ¢ > 1 and a € (o, 2], the single-lobe solution ) € Hg;, to
(¢ + D)y = 42,

is an asymptotically stable fixed point of T 4.

Question: Does the Petviashvili's method converge for sign-indefinite wave such
as ¢ satisfying (c — D%)¢ + ¢? = 07
Answer:

i) ¢ is an unstable fixed point of T, for a € (ap, 1), where a; ~ 1.322

ii) ¢ is an asymptotically stable fixed point for « € (a1,2] if ¢ > 1 and is
unstable if ¢ > 1 is large enough.
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Proof of convergence

Consider again the linearized fixed-point iterations:

A/C,Oz((r/)) = 2(7(; + Da)71¢ =Id - (76 + Da)ich,aa
Heo :=—c+ DY —2¢.

Spectrum of A_ ,(¢) is related to the spectrum of (—c + D) ' H, o:

Heav=A—c+DYv, veH(—n,r),

per

where both H. , and (—c + D®) are sign-indefinite.

Eigenvalues of (—c + D“)"'H_ , are divided for ¢ > 1 into two sets {o1,02}:
1) o contains sequence of eigenvalues near 1 and converging to 1, related to the

subspace L2 (—m,m)\{e*, e~ ™},

2) o, contains finite number of eigenvalues related to the subspace {e™, e~*}.
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Small-amplitude periodic wave: ¢ 2 1

Related to the subspace {e*,e™*}, we find oo = {—1,0, A1, A2}, where

2041 — 5

M=oy

A <2, Ay >2asc— 1.

The eigenvalues {—1,0} are due to exact solutions:

(—c+ D) "He ot = —0,

(—C + Da)_ch,a¢/ =0, = {*1,0} C 0.

for which
AL o(0) = 1d = (—c + DY) " He o = {2,1} C o(AL 4 (0)).

For ag =~ 0.585 and oy ~ 1.322
M <0if a€ (ag, o), A1 €(0,1) if ae(a,2]
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1 15 2 25 3 35

Speed ¢

Figure: Eigenvalues of the operator (—c + D) 'H, o for a = 2
(KdV equation)
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Speed ¢

Figure: Eigenvalues of the operator (—c + D) Hc o for a = 1
(Benjamin-Ono equation): Here A = —1 is a double eigenvalue!
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Convergence case for (—c + DY)¢ = ¢?, a =2, c =2

2
lleu,+D,u, +u?l | 1

14 L L L L L L L L L
1 2 3 10 20 30 40 50 60 70 80 90 100

number of iterations

Figure: Iterations for ¢ = 2 and o = 2. Left) The last iteration versus x. (Right)
Computational errors versus n.
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Divergence case for (—c + D%)¢ = ¢?, «

-3 -2 -1 0 1 2 3 0 20 40 60 80 100
X Number of iterations

Figure: Iterations for ¢ = 1.1 and « = 1. (Left) The last four iterations versus x. (Right)
Computational errors versus n.
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Summary on convergence of Petviashvili's method

@ Petviashvili's method does not converge well for left-propagating
sign-indefinite periodic waves satisfying

(C - Da)d) + (/52 = Oa d) € ngr(iﬂaﬂ-)'

@ Petviashvili's method converge unconditionally for right-propagating positive
periodic waves satisfying

(c+ D)= w2, (ZRS ngr(_ﬂ-’ﬂ-)'
where 1(x) = ¢ + ¢(x). This is related to the fact that
Ao =2(c+ D)1y

has only N = 1 unstable eigenvalue lying outside the unit disk.
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Convergence case for (c + D)y =% a=1,¢c=1.6

-3 -2 -1 (; i 2‘ 3 10 1‘0 2‘0 3‘0 4‘0 5‘0 6‘0 70
X number of iterations
Figure: Iterations for c = 1.6 and aw = 1. (a) The last iteration versus x. (b)

Computational errors versus n.
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Fractional Korteweg de Vries Equation

The fractional KdV is a popular model for dynamics of waves in shallow fluids:
us + 2uuy, — (D%u)y = 0,
where the fractional derivative operator D, is defined by

Dou(€) = €17 a(e), € eR.

Integrable cases: Benjamin—Ono equation (« = 1) and KdV equation (o = 2).

Here we consider 27-periodic solutions on T := (—m, 7), so that £ € Z.

@ Positivity of periodic travelling wave solution
@ Convergence of Petviashvili method for fixed-point iterations

© New variational formulation of periodic wave
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Stationary equations for periodic waves

Periodic travelling wave u(x, t) = 1(x — ct) satisfies the stationary equation:
(c+ D)y —w?+b=0,

where b is an integration constant.
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Stationary equations for periodic waves

Periodic travelling wave u(x, t) = 1(x — ct) satisfies the stationary equation:
(c+D*)—4*+b=0,
where b is an integration constant.

Thanks to the Galilean transformation

900 = 7 (e = Ve +4b) + (),

2

the periodic wave ¢ is a solution to the stationary equation
(w+ D) —¢* =0,

with only one parameter w := v/c? + 4b.
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Different formulations

Stationary equation
(c+ D) —?+b=0 = (w+Dp—¢*=0.

admit two families of periodic wave solutions:

9 1 is obtained for c > 1 and b=10
@ ¢ is obtained for c < —1 and b= 0.

Obstacle on existence: When o < ag &~ 0.585, Stokes waves 1) bifurcate to
¢ < 1instead of ¢ > 1 because ¢ = 1+ c;a* + O(a*) with ¢ < 0.

Dmitry E. Pelinovsky McMaster University



New formulation

Stationary equation
(c+ D) —?+b=0 = (w+Dp—¢*=0.
Let v has zero mean on T so that ¥ = ¢ — i ffw wdx. Then, b is defined by

1 s
b(C) = g ¢2dx.

—T

No fold point appears for a < ap:

c=-1+ ﬁaz +0(a*), b(c) = =a*+0(a").

T o T
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Existence of periodic waves

Standard variational method: find minimizers of energy

E(u) = %/ (D%u)z—%/ udx,

—T —T
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Existence of periodic waves

Standard variational method: find minimizers of energy

E(u) = 5/ (Dfu)2—%/ udx,

subject to fixed momentum and mass

F(u):%/7T u?dx, M(u):/w u dx.

—T —T

New variational method: find minimizer of the quadratic energy

Be(u) := 1/7r (D% u)® + cu?] dx

—T

subject to fixed cubic energy and zero-mean constraint:

Y = {u e Hp%er(T) : / ddx =1, / udx = O} .

There exists a constrained minimizer u, € Y for every o > 1/3 and every ¢ > —1.



Continuation of periodic waves: standard approach

Hessian operator for both variational problems is the same operator:

L= Da+c_2¢ per(T)CLper( )_>L2 ( )

per

This operator enjoys Sturm’s oscillation theory [Hur—Johnson, 2015] which yields

Lemma (Hur—Johnson, 2015)

Assume o € (3,2] and that ¢ € H35,(T) be an even single-lobe periodic wave. If
{1,4,9?} € Range(L), then Ker(L) = span(dy1)).
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Continuation of periodic waves: standard approach

Hessian operator for both variational problems is the same operator:
L= D" +c— 2¢ per(T) C Lper( ) - L%er( )

This operator enjoys Sturm’s oscillation theory [Hur—Johnson, 2015] which yields

Lemma (Hur—Johnson, 2015)

Assume o € (3,2] and that ¢ € H35,(T) be an even single-lobe periodic wave. If
{1,9,?} € Range(L), then Ker(L) = span(dxv)).

At the fold point for a < ag ~ 0.585, {1,,1?} € Range(L) is false.

As a result, dimKer(£) = 2 at the fold point.

Since ¢ and b are Lagrange multipliers in G(u) = E(u) + cF(u) + bM(u), the
periodic wave ¥ may not be differentiable in ¢ and b. As a result,

L0 =, Lo =~

may not follow from (¢ + D)y — 2 + b = 0.
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Continuation of periodic waves: new approach

For the zero-mean periodic wave 1 with b(c) = 5= F (1), we verify:

‘Cd} = _1/}2 - b(C)7
L1=-2¢+c.

Theorem (Natali,Le,P, 2019)

If Ker(L|;1) = span(dxy)) at ¢ = co, then the mapping c — v is C* at ¢ = co.
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Continuation of periodic waves: new approach

For the zero-mean periodic wave 1 with b(c) = 5= F (1), we verify:

‘Cd} = _’(/}2 - b(C)7
L1=-2¢+c.

Theorem (Natali,Le,P, 2019)

If Ker(L|;1) = span(dxy)) at ¢ = co, then the mapping c — v is C* at ¢ = co.

Hence, we add the third equation:

LOah = —p—b(c), = L(1—20:4)=c+2b(c).

If c +2b/(c) # 0, then Ker(L) = span(dyt)). If c +2b'(c) =0, then
Ker(L) = span(9xy, 1 — 20.1).
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Stability of periodic waves: new approach

Since v is a minimizer of the new variational problem, we have:
‘C‘{l,d)z}i Z 07
which yields the exact formula for the number of negative eigenvalues of L:

(1, c+2b(c) >0,
n(£) _{ 2, c+26(c)<0.
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Stability of periodic waves: new approach

Since v is a minimizer of the new variational problem, we have:

iy 0

2
which yields the exact formula for the number of negative eigenvalues of L:

(1, c+2b(c) >0,
n(£) _{ 2, c+26(c)<0.

and the number of negative eigenvalues in the old variational problem:

E’ _ 07 b,(C) Z Oa
a1 Ko <o

Theorem (Natali,Le,P, 2019)

Assume Ker(L|;1) = span(dyxy) for ¢ € (—1,00). The zero-mean periodic wave
1 is spectrally stable if b'(c) > 0 and is spectrally unstable if b'(c) < 0.
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For the periodic waves in the fractional KdV equation satisfying
(c+ D)y —v?*+b=0,
we have showed the following:

Q@ Y >0forc>1 b=0, and a > g = 0.585
Q@ Petviashvili method diverges for ¢ for c < —1, b =10, and a > «g

© Periodic waves ¢ with zero mean are obtained with a new variational problem
with b # 0 for both o > g and a < «p.
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For the periodic waves in the fractional KdV equation satisfying
(c+ D)y —v?*+b=0,
we have showed the following:

Q@ Y >0forc>1 b=0, and a > g = 0.585
Q@ Petviashvili method diverges for ¢ for c < —1, b =10, and a > «g

© Periodic waves ¢ with zero mean are obtained with a new variational problem
with b # 0 for both o > g and a < «p.

Thank you! Questions???

Dmitry E. Pelinovsky McMaster University



