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◮ We consider solitary waves by simplifying the Fermi-Pasta-Ulam

lattice to a Korteweg-de Vries equation.



The granular chain

Newton’s equations define the FPU (Fermi-Pasta-Ulam) lattice:

d2xn

dt2
= V ′(xn+1 − xn)−V ′(xn − xn−1), n ∈ Z,

where xn is the displacement of the nth particle from an equilibrium.
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The interaction potential for spherical particles is

V (x) =
1

1+α
|x |1+αH(−x), α =

3

2
,

where H is the step (Heaviside) function.

H. Hertz, J. Reine Angewandte Mathematik 92 (1882), 156
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The logarithmic Korteweg–de Vries equation
1.2 ≤ α ≤ 1.5 - for spherical particles of different width and density.

Consider the FPU lattice for relative displacements un := xn+1 − xn,

d2un

dt2
− (∆u)n =−(∆ fα(u))n, n ∈ Z,

where (∆u)n = un+1 −2un +un−1 and

fα(u) := u (|u|α−1 −1) = (α−1)u log |u|+O((α−1)2).

Set α = 1+ ε2 and use the asymptotic multi-scale expansion

un(t) =−v(ξ,τ)+higher order terms,

where ξ := 2
√

3ε(n− t) and τ :=
√

3ε3 t . At O(ε4), we obtain formally

the KdV equation with the logarithmic nonlinearity (log-KdV equation)

∂τv +∂3
ξv +∂ξ(v logv) = 0.



Korteweg–de Vries equation for regular FPU lattices

If V ∈ C3 with V ′′(0)> 0 and V
′′′
(0) 6= 0, the same expansion reduces

the FPU lattice to the standard KdV equation

∂τv + v ∂ξv +∂3
ξv = 0.

The KdV equation admits the solitary waves v ∼ sech2(ξ− cτ).

◮ The KdV equation has been justified at a time scale of order ε−3:

G. Schneider–C.E. Wayne (2000); D. Bambusi–A. Ponno (2006).

◮ Nonlinear stability of small amplitude FPU solitons was proved:

G. Friesecke–R.L. Pego (1999-2004).

◮ Existence and stability of N-soliton solutions has been proved:

A. Hoffman–C.E. Wayne (2009); T. Mizumachi (2009, 2013).



Stationary solutions
Stationary log-KdV equation can be integrated once to get

d2v

dξ2
+ v log |v |= 0,

which admits the Gaussian solitons

v(ξ) =
√

e e−ξ2/4.

A. Chatterjee, PRE 59 (1999), 5912

G. James–D.P., Proc. Roy. Soc. A 470 (2014), 20130465
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Figure : Solitary waves of the FPU chain (blue), Nesterenko compactons

(red) and Gaussian solitons (green) for α = 1.5 (left) and α = 1.1 (right).



Numerical evidence of convergence of the approximation
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Figure : The L∞ distance between solitary waves of the FPU chain and either

Nesterenko compactons (blue dots) or Gaussian solitons (green dots) vs. α.



Numerical evidence of stability
Lattice of N = 2000 particles is excited with the initial impact

ẋn(0) = 0.1δn,0, ẋn(0) = 0 for all n ≥ 1.

A Gaussian solitary wave is formed asymptotically as t evolves.
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Figure : Formation of a Gaussian wave (blue curve) in the Hertzian FPU

lattice with α = 1.01: t ≈ 30.5 (left) and t ≈ 585.6 (right).



Precompression
Consider again the FPU lattice in the form

d2un

dt2
=−(∆ |u|1+ε2

H(−u))n, n ∈ Z.

Let un(t) =−v0 (1+wn(t
′)) and t ′ = v

ε2/2

0 t for a fixed v0 > 0. Then,

the FPU lattice is written in the form

d2wn

dt2
= (∆Ṽε(w))n, n ∈ Z

with the regularized potential

Ṽε(w) :=
1

2+ ε2

[

(1+w)2+ε2 −1

]

−w , w >−1
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with the regularized potential

Ṽε(w) :=
1

2+ ε2

[

(1+w)2+ε2 −1
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−w , w >−1

The KdV scaling wn(t)≈ W (ξ,τ) with ξ := ε(n− t) and τ := ε3 t

yields the log–KdV equation

2∂τW +
1

12
∂3

ξW +∂ξ((1+W ) log(1+W )) = 0.



Stationary solutions

Traveling waves W (ξ−λτ/2) satisfy the stationary log-KdV equation

λW (x) =
1

12
W ′′(x)+(1+W ) log(1+W ), x ∈ R,

where (1+W ) log(1+W ) = W +W 2/2+O(W 3).
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◮ W (x)→ 0 as |x | → ∞ exponentially fast,
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◮ W ′ vanishes only at one point on R.
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Traveling waves W (ξ−λτ/2) satisfy the stationary log-KdV equation

λW (x) =
1

12
W ′′(x)+(1+W ) log(1+W ), x ∈ R,

where (1+W ) log(1+W ) = W +W 2/2+O(W 3).

For any λ > 1, there exists a unique even solution W ∈ H1(R) of the

stationary log–KdV equation. Moreover,

◮ W (x)> 0 for all x ∈ R,

◮ W (x)→ 0 as |x | → ∞ exponentially fast,

◮ W ∈ H∞(R),

◮ W ′ vanishes only at one point on R.

The travelling solitary wave is orbitally stable in the log–KdV equation

J. Höwing, J. Diff. Eqs. 251 (2011), 2515.



Main results

Theorem 1 (E.Dumas–D.P., 2014)

For every λ > 1, there exist positive constants ε0 and C0 s.t. for every

ε ∈ (0,ε0), there exists a unique even travelling solution wstat,ε of the

FPU lattice in L2(R)∩L∞(R) s.t.

sup
z∈R

|wstat,ε(z)−Wstat(εz)| ≤ C0ε1/6,

where Wstat is the unique even solution to the log–KdV equation.
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where Wstat is the unique even solution to the log–KdV equation.

Remarks:

◮ Moreover, wstat,ε ∈ H∞(R) and for every k ∈ N,

sup
z∈R

|∂k
z wstat,ε(z)− εk ∂k

x Wstat(εz)| ≤ Ck εk+1/6.

◮ Moreover, wstat,ε decays to zero exponentially fast at infinity.

◮ We have no proof that wstat,ε is positive.



Main results

Theorem 2 (E.Dumas–D.P., 2014)

For every τ0 > 0, there exist positive constants ε0, δ0 and C0 s.t. for all

ε ∈ (0,ε0), when initial data wini,ε ∈ l2(R) satisfy

δ := ‖wini,ε −wtrav,ε(0)‖l2 ≤ δ0, then the unique solution wε to the

FPU lattice belongs to C1([−τ0ε−3,τ0ε−3], l2(Z)) and satisfies

‖wε(t)−wtrav,ε(t)‖l2 ≤ C0δ, t ∈
[

−τ0ε−3,τ0ε−3
]

.
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ε ∈ (0,ε0), when initial data wini,ε ∈ l2(R) satisfy

δ := ‖wini,ε −wtrav,ε(0)‖l2 ≤ δ0, then the unique solution wε to the
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.

Remarks:

◮ The travelling waves of the FPU lattice are stable w.r.t.

modulations of any spatial scales, up to the time scale of O(ε−3).

◮ The constant C0 may grow exponentially fast in τ0.

◮ The travelling waves of the log-KdV equation are orbitally stable

w.r.t. modulations at the spatial scale O(ε−1) and time O(ε−3).



Proof of (Approximation) Theorem 1
Travelling wave wn(t) = wstat,ε(z), z = n− ct with c2 = 1+ ε2λ

satisfies the differential advance-delay equation

(1+ ε2λ)
d2w

dz2
=∆Ṽ ′

ε(w)(z), z ∈ R.

Adopting the Fourier transform on L2(R) functions

ŵ(k) = F (w)(k) :=
∫ ∞

−∞
w(z)e−ikzdz,

we can rewrite the problem as the fixed-point equation

w(z) =
1

1+ ε2λ

∫ 1

−1
Λ(y)Ṽ ′

ε(w(z − y))dy , z ∈ R,

where Λ(z) = (1−|z|)+ is the hat function.
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1

1+ ε2λ

∫ 1

−1
Λ(y)Ṽ ′

ε(w(z − y))dy , z ∈ R,

where Λ(z) = (1−|z|)+ is the hat function.

◮ The existence theory (Friesecke–Wattis, 1993) implies that

1+ ε2λ = c2 > Ṽ ′′
ε (0) = 1+ ε2 (that is, λ > 1).

◮ If λ is much larger than 1, the travelling wave has large amplitude.



Partition in the Fourier space
In the equivalent Fourier form, we have

ŵ(k) =
1

1+ ε2λ
Λ̂(k)F (Ṽ ′

ε(w))(k), k ∈ R,

where

Λ̂(k) :=
4

k2
sin2

(

k

2

)

= 1− 1

12
k2 +O(k4)

and

Ṽ ′
ε(w) = w + ε2(1+w) log(1+w)+O(ε4).
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Λ̂(k)F (Ṽ ′

ε(w))(k), k ∈ R,

where

Λ̂(k) :=
4

k2
sin2

(

k

2

)

= 1− 1

12
k2 +O(k4)

and

Ṽ ′
ε(w) = w + ε2(1+w) log(1+w)+O(ε4).

Let us divide R into two sets: Ip := [−εp,εp] and Jp := R\I, where

p > 0 is to be defined. The solution is to be decomposed as

ŵ = û+ v̂ , where

û(k) := χIp
(k)ŵ(k), v̂(k) := χJp

(k)ŵ(k).

For λ > 1, R > 0 and r ∈ (−1,0) (all ε-independent), we define the set

BR,r := {u ∈ L2(R)∩L∞(R) : r ≤ inf
R

u, sup
R

u ≤ R},



Steps in the proof of Theorem 1

1. For any u ∈ BR,r and for any small ε, there exists a unique

component v such that

‖v‖L2∩L∞ ≤ CR,r ε
2−2p‖u‖L2 , p < 1,

where the positive constant CR,r is independent of ε and ‖u‖L2 .
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2−2p− 1

2
> 0 and 4p−2− 1

2
> 0 ⇒ p ∈

(

5

8
,
6

8

)

.

4. The optimal value p = 2/3 yields ‖wstat −Wstat(ε·)‖L∞ ≤ C0ε1/6.



Proof of (Stability) Theorem 2

The scalar FPU lattice equation can be written in the vector form

{

ẇn = pn+1 −pn,

ṗn = Ṽ ′
ε(wn)− Ṽ ′

ε(wn−1),
n ∈ Z.

The energy functional is conserved at any (w ,p) ∈ C1(R, l2(Z)):

H :=
1

2
∑
n∈Z

p2
n + ∑

n∈Z
Ṽε(wn).

Let (wtrav,ptrav) ∈ C1(R, l2(Z)) denote the travelling wave to the FPU

lattice with the speed c. Then, wtrav(t) = wstat(n− ct) satisfy

{

−cw ′
stat(z) = pstat(z +1)−pstat(z),

−cp′
stat(z) = Ṽ ′

ε(wstat(n− ct))− Ṽ ′
ε(wstat(n−1− ct)),

z ∈ R.



Decomposition and the energy method
For any fixed c, we decompose

w(t) = wtrav(t)+W (t), p(t) = ptrav(t)+P (t),

such that H = H0 +H1 +H2 +HR with

H0 =
1

2
∑
n∈Z

p2
stat(n− ct)+ ∑

n∈Z
Ṽε(wstat(n− ct)),

H1 = ∑
n∈Z

pstat(n− ct)Pn + ∑
n∈Z

Ṽ ′
ε(wstat(n− ct))Wn,

H2 =
1

2
∑
n∈Z

P 2
n +

1

2
∑
n∈Z

Ṽ ′′
ε (wstat(n− ct))W 2

n ,

and

|HR| ≤ Cρ sup
z∈R

|Ṽ ′′′
ε (wstat(z))| ‖W ‖3

l2
≤ Cρε2‖W ‖3

l2
,

as long as ‖W ‖l2 ≤ ρ. Here we recall that

Ṽ ′′
ε (w) = (1+ ε2)(1+w)ε2

, Ṽ ′′′
ε (w) = ε2(1+ ε2)(1+w)ε2−1.



Energy estimates

◮ H0 is independent of t (direct differentiation).
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dH1

dt
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c

2
∑
n∈Z

w ′
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(

W 2
n +O(W 3

n )
)
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Energy estimates

◮ H0 is independent of t (direct differentiation).

◮ H2 is a convex quadratic form with the lower bound

H2 ≥
1

2
‖P‖2

l2 +
1

2
‖W ‖2

l2 .

◮ H1 is controlled in terms of H2:

dH1

dt
=

c

2
∑
n∈Z

w ′
stat(n− ct)Ṽ ′′′

ε (wstat(n− ct))
(

W 2
n +O(W 3

n )
)

.

Hence, we have
∣

∣

∣

∣

dH1

dt

∣

∣

∣

∣

≤ Cρε3(1+ρ)‖W ‖2
l2 ≤ 2Cρε3(1+ρ)H2,

and

H1(t)−H1(0)≥−2Cρε3(1+ρ)
∫ |t|

0
H2(t

′)dt ′.



End of the proof of Theorem 2

By using the energy expansion, we have

H −H0 −H1(0)≥−2Cρε3(1+ρ)
∫ |t|

0
H2(t

′)dt ′+H2(t)(1−Cρε2ρ).

By Gronwall’s inequality, we obtain

H2(t)≤
H −H0 −H1(0)

1−Cρε2ρ
eC̃ρε3|t| ≤ H2(0)+HR(0)

1−Cρε2ρ
eC̃ρε3|t| ≤ ˜̃

C2
ρδ2eC̃ρτ0 .

Theorem 2 is proved in the ball in l2(Z) with radius ρ := C0δ.
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By using the energy expansion, we have

H −H0 −H1(0)≥−2Cρε3(1+ρ)
∫ |t|

0
H2(t

′)dt ′+H2(t)(1−Cρε2ρ).

By Gronwall’s inequality, we obtain

H2(t)≤
H −H0 −H1(0)

1−Cρε2ρ
eC̃ρε3|t| ≤ H2(0)+HR(0)

1−Cρε2ρ
eC̃ρε3|t| ≤ ˜̃

C2
ρδ2eC̃ρτ0 .

Theorem 2 is proved in the ball in l2(Z) with radius ρ := C0δ.

Remark: The proof of nonlinear stability uses the KdV limit scaling of

small ε, but does not rely on the stability of KdV travelling waves.



Justification result

Theorem 3 (Schneider-Wayne, 2000; E.Dumas–D.P., 2014)

Let W ∈ C([−τ0,τ0],H
s(R)) be a solution to the log–KdV equation for

some integer s ≥ 6 and some τ0 > 0. Assume that there exists

rW >−1 such that W ≥ rW . Then there exist positive constants ε0 and

C0 s.t. for all ε ∈ (0,ε0), when initial data wini,ε ∈ l2(R) are given s.t.

‖wini,ε −W (ε·,0)‖l2 ≤ ε3/2,

the unique solution wε to the FPU lattice belongs to

C1([−τ0ε−3,τ0ε−3], l2(Z)) and satisfies

‖wε(t)−W (ε(·− t),ε3t)‖l2 ≤ C0ε3/2, t ∈
[

−τ0ε−3,τ0ε−3
]

.



Justification result

Theorem 3 (Schneider-Wayne, 2000; E.Dumas–D.P., 2014)

Let W ∈ C([−τ0,τ0],H
s(R)) be a solution to the log–KdV equation for

some integer s ≥ 6 and some τ0 > 0. Assume that there exists

rW >−1 such that W ≥ rW . Then there exist positive constants ε0 and

C0 s.t. for all ε ∈ (0,ε0), when initial data wini,ε ∈ l2(R) are given s.t.

‖wini,ε −W (ε·,0)‖l2 ≤ ε3/2,

the unique solution wε to the FPU lattice belongs to

C1([−τ0ε−3,τ0ε−3], l2(Z)) and satisfies

‖wε(t)−W (ε(·− t),ε3t)‖l2 ≤ C0ε3/2, t ∈
[

−τ0ε−3,τ0ε−3
]

.

Remarks:

◮ The proof relies on the energy method as in Theorem 2.

◮ The result suggests correlation between stability of KdV and FPU

travelling waves but C0 may grow exponentially fast in τ0.
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Ṽε(w) =
1

2
w2 +

ε2

p+1
wp+1, for an integer p ≥ 2.

◮ KdV solitary waves are orbitally stable for p = 2,3,4 and

unstable for p ≥ 5.

◮ Result of Theorem 2 suggests stability of small FPU travelling

waves up to the time scale of O(ε−3) for any p ≥ 2.



Discussion

Consider the FPU lattice

d2wn

dt2
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waves up to the time scale of O(ε−3) for any p ≥ 2.

◮ Result of Theorem 3 suggests correlation of stability of FPU

travelling waves and KdV solitons for p ≥ 2.

◮ The question of stability of FPU solitons is still opened for p ≥ 3...
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