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1 INRIA Grenoble Rhône-Alpes and Laboratoire Jean Kuntzmann,
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Introduction

◮ Granular crystal chains are chains of densely packed, elastically

interacting particles.

◮ Recent works focus on solitary and periodic travelling waves in

granular chains; said to be more relevant to physical experiments.

◮ Periodic travelling waves in granular chains were approximated

numerically and analytically

◮ K.R. Jayaprakash, Yu. Starosvetsky and A.F. Vakakis,

Phys. Rev. E 83 (2011), 036606
◮ G. James, J. Nonlinear Sci. 22 (2012), 813
◮ M. Betti and D. Pelinovsky, J. Nonlinear Sci. 23 (2013), 619



On solitary travelling waves in homogeneous granular chains

Proofs of existence of solitary waves were developed from the

variational theory based on the differential–difference equation.

◮ G. Friesecke and J. Wattis, Commun. Math. Phys. 161 (1994),

391 - proof of existence for a general FPU lattice

◮ R. MacKay, Phys. Lett. A 251 (1999), 191 - adaptation of this

method to granular chains

◮ J. English and R. Pego, Proc. Amer. Math. Soc. 133 (2005),

1763 - proof of the double-exponential tails of the solitary waves

◮ A. Stefanov and P. Kevrekidis, J. Nonlinear Sci. 22 (2012), 327 -

proof of the bell-shaped profile of the solitary waves



Experimental setups (CalTECH)

Figure : N. Boechler, G. Theocharis, S. Job, P.G. Kevrekidis, M.A. Porter, and

C. Daraio, PRL 104, 244302 (2010)

Figure : Y. Man, N. Boechler, G. Theocharis, P.G. Kevrekidis, and C. Daraio,

Phys. Rev. E 85, 037601 (2012)



The granular chain

Newton’s equations define the FPU (Fermi-Pasta-Ulam) lattice:

d2xn

dt2
= V ′(xn+1 − xn)−V ′(xn − xn−1), n ∈ Z,

where xn is the displacement of the nth particle from a reference

position versus time t .

The interaction potential for spherical beads is

V (x) =
1

1+α
|x |1+αH(−x), α =

3

2
,

where H is the step (Heaviside) function.

H. Hertz, J. Reine Angewandte Mathematik 92 (1882), 156

For the chains of hollow spherical particles of different width, we have

other values of α in the range 1.2 ≤ α ≤ 1.5.



Travelling waves and the Boussinesq approximation
Using the relative displacements un = xn − xn−1 and applying the

travelling wave reduction un(t) = wn(n− t), we obtain

d2w

dz2
=∆(w |w |α−1), z ∈ R,

with (∆w)(z) = w(z +1)−2w(z)+w(z −1).

Expanding ∆= ∂2
z +

1
12

∂4
z and integrating twice, we obtain

w = w |w |α−1 +
1

12

d2

dz2
w |w |α−1, z ∈ R,

which has compactons

wc(z) =

{

Acos
2

α−1 (Bz), |z| ≤ π
2B
,

0, |z| ≥ π
2B
,

where

A =

(

1+α

2α

)
1

1−α

, B =

√
3(α−1)

α
.



Ill-posedness of the Boussinesq equation

The fully nonlinear Boussinesq equation takes the form

utt = (u |u|α−1)xx +
1

12
(u |u|α−1)xxxx ,

V.F. Nesterenko, J. Appl. Mech. Tech. Phys. 24 (1983), 733

K. Ahnert and A. Pikovsky, Phys. Rev. E 79 (2009), 026209.

We will show that the Cauchy problem for the Boussinesq equation is

ill-posed (according to Hille-Joshida Theorem).

D.M. Ambrose, G. Simpson, J.D. Wright, and D.G. Yang,

Nonlinearity 25 (2012), 2655.



Linearized Boussinesq equation

Linearizing the Boussinesq equation at the compact solution

u(x , t) = w(x − t)+U(x − t)eλt ,

we arrive at the spectral problem

(λ−∂z)
2U =

(

∂2
z +

1

12
∂4

z

)

(kα U) ,

where

kα(z) := αwα−1(z) = αAα−1 cos2(B z)1[− π
2B

, π
2B

](z).

The spectral problem can be closed on the compact interval
[

− π
2B
, π

2B

]

subject to the boundary conditions

U

(

± π

2B

)

= 0, U ′
(

± π

2B

)

= 0.



Numerical results
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Figure : Eigenvalues of the spectral problem (blue dots) for α = 1.05 (left)

and α = 1.2 (right). The red dotted curves show the continuous spectrum

obtained in the limit case α → 1+.



Korteweg–de Vries equation in the case of precompression

Consider again the FPU lattice

d2un

dt2
= V ′(un+1)−2V ′(un)+V ′(un−1), n ∈ Z.

If V ∈ C3 with V ′′(0) = κ > 0 and V
′′′
(0) 6= 0, then the asymptotic

multi-scale expansion

un(t) = κ(4V
′′′
(0))−1 ε2 y(ξ,τ)+higher order terms,

where ξ := ε(n− cs t), τ := ε3 cs t/24, and cs :=
√

κ is the “sound

velocity” of linear waves, shows that y satisfies the KdV equation

∂τy +3y ∂ξy +∂3
ξy = 0.

The KdV equation admits the solitary waves y = sech
2((ξ− τ)/2).



Relevant results

◮ The KdV equation can be justified at a time scale of order ε−3.

G. Schneider and C.E. Wayne, International Conference on

Differential Equations Appl. 5 (1998) 69

D. Bambusi, A. Ponno, Comm. Math. Phys. 264 (2006), 539

◮ Nonlinear stability of small amplitude FPU solitons can be proved.

G. Friesecke and R.L. Pego, Nonlinearity 12 (1999), 1601; 15

(2002), 1343; 17 (2004), 207; 17 (2004), 229.

◮ Existence and stability of N-soliton solutions can be proved.

A. Hoffman and C.E. Wayne, Nonlinearity 21 (2008), 2911;

J. Dyn. Diff. Equat. 21 (2009), 343.

T. Mizumachi, Commun. Math. Phys. 288 (2009), 125; SIMA 43

(2011), 2170; Arch. Rat. Mech. Anal. 207 (2013), 393.



Korteweg–de Vries equation without precompression

Consider again the FPU lattice

(

d2

dt2
−∆

)

un =∆ fα(un), n ∈ Z,

where

fα(u) := u (|u|α−1 −1) = (α−1)u ln |u|+O((α−1)2).

Let α = 1+ ε2. Using the asymptotic multi-scale expansion

un(t) = v(ξ,τ)+higher order terms,

where ξ := 2
√

3ε(n− t), τ :=
√

3ε3 t , we obtain the KdV equation with

the logarithmic nonlinearity (log-KdV)

∂τv +∂ξ(v logv)+∂3
ξv = 0.



Stationary solutions
Stationary log-KdV equation can be integrated once to get

d2v

dξ2
+ v ln |v |= 0,

which admits the Gaussian solitons

v(ξ) =
√

e e−ξ2/4.
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Figure : Solitary waves (blue dotted line) of the differential advance-delay

equation in comparison with the compactons (red solid line) and the

Gaussian solitons (green dashed line) for α = 1.5 (left) and α = 1.1 (right).



Convergence of the approximation
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Figure : The L∞ distance between solitary waves of the differential

advance-delay equation and either the compactons (blue dots) or the

Gaussian solitons (green dots) versus parameter α.



Travelling solitary waves

A more general Gaussian solution with the speed vs = 1+ c(α−1):

un(t)≈±e2c+ 1
2
−3(α−1)(n−vs t−ξ0 )

2

,

On the other hand, a more general solitary wave of the differential

advance-delay equation may travel with any speed vs because of the

scaling transformation:

un(t) = |vs|
2

α−1 w(n− vs t −ξ0).

Convergence may only occur if the velocity vs convergence to unity as

α → 1.



Numerical evidence of stability
Lattice of N = 2000 particles is excited with the initial condition of zero

xn(0) and

ẋ0(0) = 0.1, ẋn(0) = 0 for all n ≥ 1.

A Gaussian solitary wave is formed asymptotically as t evolves.
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Figure : Formation of a localized wave in the Hertzian FPU lattice with

α = 1.01: left at t ≈ 30.5, right at t ≈ 585.6. The Gaussian approximation is

shown by blue curve.



Energy functional

The log-KdV equation

∂τv +∂ξ(v logv)+∂3
ξv = 0.

can be written in the Hamiltonian form

∂τv = ∂ξE ′(v),

where the energy functional is

E(v) =
1

2

∫
R

[

(∂ξv)2 − v2(logv − 1

2
)

]

dξ.

Gaussian solitary wave v0 =
√

e e−ξ2/4 is a critical point of E(v),
hence E ′(v0) = 0.



Linear stability

The Hessian operator at the critical point v0 =
√

e e−ξ2/4 is

L = E ′′(v0) =−∂2
ξ −1− log |v0|=− ∂2

∂ξ2
− 3

2
+

ξ2

4
.

The operator L is self-adjoint in L2(R) with dense domain

D(L) = {u ∈ H2(R), ξ2 u ∈ L2(R)}.

The spectrum of L consists of simple eigenvalues at integers n−1,

where n ∈ N0 (the set of natural numbers including zero).

The linear stability is determined by the time evolution of the

perturbation of the solitary wave v0:

∂τv = ∂ξLv .



Spectral stability

If v = V (ξ)eλτ, we arrive to the linear eigenvalue problem

∂ξLV = λV .

Spectral stability of this KdV type was recently studied in

◮ T. Kapitula, A. Stefanov, arXiv: 1210.6005 (2012)

◮ D.P., in Spectral analysis, stability, and bifurcation in modern

nonlinear physical systems (Wiley IST, 2014)

The difference is that L has purely discrete spectrum and the potential

of L is confining.



Proof of linear stability

We know that ∂ξL has a double zero eigenvalue because

Lv ′
0 = 0, ∂ξLv0 =−v ′

0,

and no u ∈ D(∂ξL) exists in ∂ξLu = v0 because ‖φ0‖2
2 6= 0.

Using the decomposition

v(ξ,τ) = a(τ)v ′
0(ξ)+b(τ)v0(ξ)+ y(ξ,τ)

with 〈v0,y〉= 0 and 〈∫ ξ
0 v0dx ,y〉= 0, we obtain

da

dτ
= b,

db

dτ
= 0,

∂y

∂τ
= ∂ξLy .



Proof of linear stability

Alternatively, we can represent y = c(τ)v ′
0 +w with 〈v0,w〉= 0 and

〈v ′
0,w〉= 0.

Now L is strictly positive definite on v0
⊥∩ v ′

0
⊥

, hence

‖y‖L = (Ly ,y)1/2 = (Lw ,w)1/2 defines a norm (equivalent to a

weighted H1-norm). From the energy balance,

d

dτ

1

2
‖y‖2

L = (Ly ,∂τy) = (Ly ,∂ξLy) = 0,

we obtain the Lyapunov stability of the zero equilibrium y = 0 in the

constrained space 〈v0,y〉= 0 and 〈∫ ξ
0 v0dx ,y〉= 0. The constrained

space corresponds to the modulation of the two parameters of the

Gaussian solitary wave.



Further development - justification of convergence
We can rewrite the differential advance-delay equation

d2w

dz2
=∆w1+ε2

, z ∈ R,

in the equivalent integral Fourier form

ŵ(k) =
4

k2
sin2

(

k

2

)

ŵ1+ε2(k), k ∈ R,

where α = 1+ ε2.



Further development - justification of convergence
We can rewrite the differential advance-delay equation

d2w

dz2
=∆w1+ε2

, z ∈ R,

in the equivalent integral Fourier form

ŵ(k) =
4

k2
sin2

(

k

2

)

ŵ1+ε2(k), k ∈ R,

where α = 1+ ε2.

Divide R into two sets: the interval I := [−εp,εp], where p > 0 is to be

defined, and R\I. Hence, we decompose

ŵ(k) = V̂ (k)χI (k)+ Ŵ (k)χR\I (k),

where χS is the characteristic function of the set S ⊂ R.

D.P., G. Schneider, Appl. Anal. 86 (2007), 1017

D. Dohnal, H. Uecker, Physical D 238 (2009), 860



For the Gaussian solitary wave, we have

v(z) =
√

e e−3ε2z2 ⇒ v̂(k) =

√

πe

3ε2
e
− k2

12ε2 .

Hence, we shall work in the space of even continuous functions with

|w(z)| ≤ αe−γε2z2

, |ŵ1+ε2
(k)| ≤ βε−1e−δε−2k2

,

where α, β, γ, and δ are positive ε-independent constants.



For the Gaussian solitary wave, we have

v(z) =
√

e e−3ε2z2 ⇒ v̂(k) =

√

πe

3ε2
e
− k2

12ε2 .

Hence, we shall work in the space of even continuous functions with

|w(z)| ≤ αe−γε2z2

, |ŵ1+ε2
(k)| ≤ βε−1e−δε−2k2

,

where α, β, γ, and δ are positive ε-independent constants.

Then, the integral equation on R\I yields

|Ŵ (k)| ≤ 4β

k2ε
e−δε−2k2

, |k | ≥ εp,

and

W (z) =
1

2π

∫
|k |≥εp

W (k)e−ikzdk ⇒ |W (z)| ≤ 4β

πε1+p
e−δε2p−2

,

which is small if p < 1.



The integral equation on I yields

V̂ (k)=

(

1− k2

12
+O(ε4p)

)

(

V̂ (k)+ ε2 ̂(V +W ) log(V +W )(k)+ ...
)

.

The truncated version of this equation

0 =− k2

12
V̂ (k)+ ε2 ̂V log(V )(k), |k | ≤ εp

admits the Gaussian solution.

The linearized operator

L̂v(k) :=

(

3ε2

2
− k2

12

)

v̂(k)+3ε2 d2v̂

dk2

has a sequence of simple eigenvalues near ε2(1−n), where n ∈ N0.

Truncation introduces exponentially small perturbations.



The zero eigenvalue of L corresponds to the translational invariance of

the system with the eigenfunction v ′(z).

In the space of even functions, the zero eigenvalue of L is removed

and the correction term to the Gaussian solution satisfies

sup
z∈R

|ν(z)| ≤ Cε4p−2,

which is small if p > 1
2
.

Hence, the approximation is justified for p ∈
(

1
2
,1
)

.



Further development - the KdV equation with compactons

Beyond order of (α−1)2 = ε4, we can rewrite the nonlinearity of the

differential advance-delay equation

(

d2

dt2
−∆

)

un =∆ fα(un), n ∈ Z,

in the equivalent form:

fα(u) := u (|u|α−1 −1)

= (α−1)u ln |u|+O((α−1)2)

= α
(

u−u |u| 1
α−1

)

+O((α−1)2).

Consequently, we can derive the generalized KdV equation

∂τv +∂3
ξv +

α

α−1
∂ξ(v − v |v | 1

α−1) = 0

at the same order as the log-KdV equation.



The generalized KdV equation with compactons

The generalized stationary KdV equation

∂2
ξv +

α

α−1
(v − v |v | 1

α−1) = 0,

admit compacton solutions

vα(ξ) =

{

Ãcos
2α

α−1 (B̃ξ), |ξ| ≤ π
2B̃
,

0, |ξ| ≥ π
2B̃
,

where

Ã =

(

1+α

2α

)
α

1−α

, B̃ =

√
α−1

2
√

α
.

These compactons converge to the Gaussian solitons as α → 1.



Open questions

◮ Stability and convergence of compactons in the generalized KdV

equation.

◮ Local and global well-posedness of the log-KdV and the

generalized KdV equations.

◮ Justification of the time-dependent solutions of the FPU lattice

described asymptotically by the log–KdV and generalized KdV

equations.

◮ Proofs of nonlinear (orbital or asymptotic) stability of solitary

waves in the FPU lattice with Hertzian nonlinearity.

◮ Development of numerical methods for the log–KdV and

generalized KdV equations.
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