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◮ We consider solitary waves by simplifying the Fermi-Pasta-Ulam

lattice to a Korteweg-de Vries equation.



The Fermi-Pasta-Ulam granular chain

Newton’s equations define the FPU (Fermi-Pasta-Ulam) lattice:

d2xn

dt2
= V ′(xn+1 − xn)−V ′(xn − xn−1), n ∈ Z,

where xn is the displacement of the nth particle from a reference

position versus time t .

The interaction potential for spherical beads is

V (x) =
1

1+α
|x |1+αH(−x), α =

3

2
,

where H is the step (Heaviside) function.

H. Hertz, J. Reine Angewandte Mathematik 92 (1882), 156

For the chains of hollow spherical particles of different width, we have

other values of α in the range 1.2 ≤ α ≤ 1.5.



The logarithmic Korteweg–de Vries equation
Consider the FPU lattice for relative displacements un := xn+1 − xn,

(

d2

dt2
−∆

)

un =∆ fα(un), n ∈ Z,

where

fα(u) := u (|u|α−1 −1) = (α−1)u ln |u|+O((α−1)2).

Boussinesq approximations with compactly supported solitary waves

are ill-posed and cannot be justified.

V.F. Nesterenko, J. Appl. Mech. Tech. Phys. 24 (1983), 733
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To consider the limit α → 1, we set α = 1+ ε2 and use the asymptotic

multi-scale expansion

un(t) = v(ξ,τ)+higher order terms,

where ξ := 2
√

3ε(n− t) and τ :=
√

3ε3 t . At O(ε4), we obtain the KdV

equation with the logarithmic nonlinearity (log-KdV)

∂τv +∂ξ(v logv)+∂3
ξv = 0.



Korteweg–de Vries equation for regular FPU lattices

If V ∈ C3 with V ′′(0)> 0 and V
′′′
(0) 6= 0, the same expansion reduces

the FPU lattice to the quadratic KdV equation

∂τv + v ∂ξv +∂3
ξv = 0.

The KdV equation admits the solitary waves v ∼ sech2(ξ− cτ).

◮ The KdV equation can be justified at a time scale of order ε−3.

G. Schneider–C.E. Wayne (2000); D. Bambusi–A. Ponno (2006).

◮ Nonlinear stability of small amplitude FPU solitons can be proved.

G. Friesecke–R.L. Pego (1999-2004).

◮ Existence and stability of N-soliton solutions can be proved.

A. Hoffman–C.E. Wayne (2008); T. Mizumachi (2012).



Stationary solutions
Stationary log-KdV equation can be integrated once to get

d2v

dξ2
+ v log |v |= 0,

which admits the Gaussian solitons

v(ξ) =
√

e e−ξ2/4.

A. Chatterjee, PRE 59 (1999), 5912;

G. James–D.P., Proc. Roy. Soc. A 470 (2014), 20130465.
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Figure : Solitary waves of the FPU chain (blue), Nesterenko compactons

(red) and Gaussian solitons (green) for α = 1.5 (left) and α = 1.1 (right).



Numerical evidence of convergence of the approximation
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Figure : The L∞ distance between solitary waves of the FPU chain and either

Nesterenko compactons (blue dots) or Gaussian solitons (green dots) vs. α.



Numerical evidence of stability
Lattice of N = 2000 particles is excited with the initial condition of zero

xn(0) and

ẋ0(0) = 0.1, ẋn(0) = 0 for all n ≥ 1.

A Gaussian solitary wave is formed asymptotically as t evolves.
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Figure : Formation of a localized wave in the Hertzian FPU lattice with

α = 1.01: left at t ≈ 30.5, right at t ≈ 585.6. The Gaussian wave is shown by

blue curve.



Main results

The log-KdV equation

∂tv +∂x(v log |v |)+∂3
xv = 0.

R. Carles–D.P., Nonlinearity, submitted (2014).

1. For any initial data v0 from the energy space X , there exists a

global solution v ∈ L∞(R,X) s.t. the energy is not increasing.

2. The spectrum of the linearized operator in L2(R) is purely

discrete and consists of a double zero eigenvalue and a

symmetric sequence of simple purely imaginary eigenvalues

{±iωn}n∈N s.t. 0 < ω1 < ω2 < ... and ωn → ∞ as n → ∞.

Eigenfunctions for nonzero eigenvalues are smooth in x but

decay algebraically as |x | → ∞.

3. Gaussian solitary wave is linearly orbitally stable in space H1(R).



Global existence of solutions
The log-KdV equation can be written in the Hamiltonian form

∂tv = ∂xE ′(v),

where the energy functional is

E(v) =
1

2

∫
R

[

(∂xv)2 − v2

(

log |v |− 1

2

)]

dx ,

defined in the function space

X :=
{

v ∈ H1(R) : v2 log |v | ∈ L1(R)
}

.
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Theorem 1 (R. Carles–D.P., 2014)

For any v0 ∈ X, there exists a global solution v ∈ L∞(R,X) of the

log–KdV equation such that

‖v(τ)‖L2 ≤ ‖v0‖L2 , E(v(τ))≤ E(v0), for all τ ∈ R.



Step 1: approximating solutions

◮ Construct an approximation of the logarithmic nonlinearity

(Cazenave, 1980):

fε(v) =

{

v log(|v |), |v | ≥ ε,
(

log(ε)− 3
4

)

v + 1
ε2 v3 − 1

4ε4 v5, |v | ≤ ε,

hence fε ∈ C2(R) and fε(v)→ v log(v) as ε → 0 for every v ∈ R.
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generalized KdV equations

{
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t + vε

xxx + f ′ε(v
ε)vε

x = 0, t > 0,
vε|t=0 = v0.

(Kenig, Ponce, Vega, 1991).
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◮ Remark: Tε → 0 as ε → 0 because f (v) = v log(v) /∈ C2(R).



Step 2: uniform energy estimates

◮ Use energy conservation

‖vε(t)‖L2 = ‖v0‖L2 , Eε(v
ε(t))=Eε(v0), for every t ∈ [−Tε,Tε],

where

Eε(v) :=
1

2

∫
R

(vx)
2dx −

∫
R

Wε(v)dx , Wε(v) :=
∫ v

0
fε(v)dv .
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◮ There is C > 0 such that [Wε(v)]+ ≤ C|v |3 and the

approximating solutions are extended to the global solutions

vε ∈ C(R,H1(R)) such that

‖vε(t)‖H1 +‖(vε(t))2 log |vε(t)|‖L1 ≤ C(v0).



Step 3: passage to the limit
Assume that v0 ∈ X ⊂ H1(R). Then Eε(v0)< ∞ and E(v0)< ∞.

◮ Since |Wε(v)| ≤ |W (v)|+Cv2 for every v ∈ R, by Lebesque’s

dominated convergence theorem, we have

Eε(v0)→ E(v0) as ε → 0, for every v ∈ X .
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◮ The sequence vε is bounded in space L∞(R,X), whereas the

sequence vε
t is bounded in space L∞(R,H−2(R)).

◮ From Arzela–Ascoli Theorem, there exist v ∈ L∞(R,H1(R)) and

a subsequence vε such that

vε → v strongly in L∞
loc(R,H

s
loc(R)) as ε → 0, for all s < 1

and for almost every x ∈ R and every t ∈ R,

vε(x , t)→ v(x , t) as ε → 0.



Step 3: passage to the limit

◮ By Fatou’s lemma, v ∈ L∞(R,X) with

‖v(τ)‖L2 ≤ lim
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‖vε(t)‖L2 = ‖v0‖L2

and

E(v(τ))≤ E(v0), for all τ ∈ R.



Step 3: passage to the limit

◮ By Fatou’s lemma, v ∈ L∞(R,X) with

‖v(τ)‖L2 ≤ lim
ε→0

‖vε(t)‖L2 = ‖v0‖L2

and

E(v(τ))≤ E(v0), for all τ ∈ R.

◮ The limiting function v ∈ L∞(R,X) is a weak global solution of the

log–KdV equation

∂tv +∂x(v log |v |)+∂3
xv = 0

in the sense

∫
R

[

〈v ,ψ〉L2φ′(t)+ 〈v ,ψ′′′〉L2φ(t)
]

dt+
∫
R

∫
R

f (v)ψ′(x)φ(t)dxdt = 0,

where ψ and φ are any test functions. �



Uniqueness and global well-posedness

Lemma: Assume that a solution v ∈ L∞(R,X) of the log–KdV

equation satisfies the additional condition

∂x log |v | ∈ L∞([−t0, t0]×R).

Then, the solution v is unique for every t ∈ (−t0, t0), depends

continuously on the initial data v0 ∈ X, and satisfies ‖v(t)‖L2 = ‖v0‖L2

and E(v(t)) = E(v0) for all t ∈ (−t0, t0).
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Then, the solution v is unique for every t ∈ (−t0, t0), depends

continuously on the initial data v0 ∈ X, and satisfies ‖v(t)‖L2 = ‖v0‖L2

and E(v(t)) = E(v0) for all t ∈ (−t0, t0).

◮ ∂x log |v | is unbounded as |x | → ∞ for the Gaussian solitary wave.

◮ Nonlinear orbital stability of Gaussian solitary wave is conditional

that the global solution v ∈ L∞(R,X) is unique and depends

continuously on the initial data v0 ∈ X .



Proof of uniqueness
Suppose that v and u are two local solutions of the log–KdV equation

starting with the same initial data v0. Set w := v −u such that

w |t=0 = 0. Then w satisfies

wt +wxxx +(v log |v |−u log |u|)x = 0,

from which we obtain

d

dt

1

2
‖w‖2

L2 =−
∫
R

(vx log |v |−ux log |u|)wdx ,
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starting with the same initial data v0. Set w := v −u such that

w |t=0 = 0. Then w satisfies

wt +wxxx +(v log |v |−u log |u|)x = 0,

from which we obtain

d

dt

1

2
‖w‖2

L2 =−
∫
R

(vx log |v |−ux log |u|)wdx ,

By using the bound for the logarithimic nonlinearity,

| log |v |− log |u|| ≤ |v −u|
min(|v |, |u|) ,

we obtain
∣

∣

∣

∣

d

dt
‖w‖2

L2

∣

∣

∣

∣

≤ 3

(∥

∥

∥

vx

v

∥

∥

∥

L∞
+
∥

∥

∥

ux

u

∥

∥

∥

L∞

)

‖w‖2
L2 .

Gronwall’s inequality yields ‖w(t)‖2
L2 = 0, t ∈ (−t0, t0). �



Spectral stability
Let v0 = e

2−x2

4 be the Gaussian wave. If v = v0(x)+V (x)eλt , we

arrive to the linear eigenvalue problem

∂xLV = λV , L =−∂2
x −

3

2
+

x2

4
.

Since σ(L) = {n−1, n ∈ N0}, spectral stability of the Gaussian

wave v0 follows from an adaptation of recent works:

◮ T. Kapitula, A. Stefanov, Stud. Appl. Math., in press (2014).

◮ D.P., in Spectral analysis, stability, and bifurcation in modern

nonlinear physical systems (Wiley–ISTE, 2014).

Theorem 2 (R. Carles–D.P., 2014)

The spectrum of ∂xL in L2(R) is purely discrete and consists of a

double zero eigenvalue and a symmetric sequence of simple purely

imaginary eigenvalues {±iωn}n∈N such that 0 < ω1 < ω2 < ... and

ωn → ∞ as n → ∞. The eigenfunctions for nonzero eigenvalues are

smooth in x but decay algebraically as |x | → ∞.



Further remarks

◮ Because the spectrum of ∂xL is purely discrete, no asymptotic

stability result can hold for Gaussian solitary waves.

◮ This agrees with the result of Cazenave for the log–NLS

equation: the Lp norms at the solution v for any p ≥ 2 including

p = ∞ may not vanish as t → ∞ (or in a finite time).
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◮ Because the spectrum of ∂xL is purely discrete, no asymptotic

stability result can hold for Gaussian solitary waves.

◮ This agrees with the result of Cazenave for the log–NLS

equation: the Lp norms at the solution v for any p ≥ 2 including

p = ∞ may not vanish as t → ∞ (or in a finite time).

◮ Nonlinear analysis of perturbations to the Gaussian solitary wave

is problematic. If v(x , t) := v0(x)+w(x , t) is set, then

wt = ∂xLw −∂xN(w),

where

N(w) := w log

(

1+
w

v0

)

+ v0

[

log

(

1+
w

v0

)

− w

v0

]

.

However, w/v0 may grow like an inverse Gaussian function of x .



Proof of spectral stability

The linear eigenvalue problem

AV = λV , A := ∂xL =−∂3
x +

1

4
(x2 −6)∂x +

1

2
x ,

can be written in the equivalent form with the Fourier transform

ÂV̂ = λV̂ , Â =
i

4
k
(

−∂2
k +4k2 −6

)

.

with the natural choice λ = i
4
E .

Eigenfunctions of A are defined in the domain XA := D(A)∩ Ḣ−1(R),

D(A) =
{

u ∈ H3(R) : x2∂xu ∈ L2(R), xu ∈ L2(R)
}

.

In the Fourier form, the domain XA becomes

X̂A =
{

û ∈ H1(R) : k∂2
k û ∈ L2(R), k3û ∈ L2(R), k−1û ∈ L2(R)

}

.



Proof of spectral stability

The linear eigenvalue problem is

d2û

dk2
+

(

E

k
+6−4k2

)

û(k) = 0, k ∈ R.

◮ As k → 0, two linearly independent solutions exist

û1(k) = k +O(k2), û2(k) = 1+O(k log(k)).

The second solution does not belong to X̂A.

◮ As |k | → ∞, the decaying solution satisfies

û(k) = ke−k2 (

1+O(|k |−1)
)

.

The shooting problem is over-determined.



Proof of spectral stability

◮ The way around is the weak piecewise definition of the

eigenfunction:

û(k) =

{

û+(k), k > 0,
0, k < 0,

or û(k) =

{

0, k > 0,
û−(k), k < 0,

where û±(0) = 0, so that û ∈ X̂A.
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which is now in the symmetric form. Hence E ∈ R.



Proof of spectral stability

◮ The way around is the weak piecewise definition of the

eigenfunction:
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{

0, k > 0,
û−(k), k < 0,

where û±(0) = 0, so that û ∈ X̂A.

◮ For û+, we set û+(k) = k1/2v̂+(k) and obtain

k1/2

(

− d2

dk2
+4k2 −6

)

k1/2v̂+(k) = Ev̂+(k), k ∈ (0,∞),

which is now in the symmetric form. Hence E ∈ R.

◮ For E = 0, we have v̂+ = k1/2e−k2

> 0 for k > 0. By Sturm’s

Theorem, the set of eigenvalues {En}n∈N0
satisfies

0 = E0 < E1 < E2 < ... and En → ∞ as n → ∞. �



Numerical illustration
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Figure : Eigenfunctions û of the spectral problem versus k for the first three

eigenvalues E0 = 0, E1 ≈ 5.411, and E2 ≈ 12.308.



Linear orbital stability

Gaussian wave v0 = e
2−x2

4 is a critical point of the energy E(v):

E ′(v0) = 0. The Hessian operator at the critical point v0 = e
2−ξ2

4 is

L = E ′′(v0) =−∂2
x − 3

2
+ x2

4
. The spectrum of L consists of simple

eigenvalues at integers n−1, where n ∈ N0 (the set of natural

numbers including zero).

Consider the time evolution of the perturbation u to v0:

ut = ∂xLu, u(0) = u0.

Theorem 3 (G.James–D.P., 2014)

The solitary wave v0 is linearly orbitally stable in space H1(R) in the

following sense. For every u0 ∈ D(∂xL) such that 〈v0,u0〉L2 = 0, there

exists constant C(u0) such that

‖u(t)‖H1 ≤ C(u0), t ∈ R.



Symplectic decomposition

We know that ∂xL has a double zero eigenvalue because

Lv ′
0 = 0, ∂xLv0 =−v ′

0,

and no u ∈ D(∂xL) exists in ∂xLu = v0 because ‖v0‖2
2 6= 0.

Using the decomposition

u(x , t) = a(t)v ′
0(x)+b(t)v0(x)+ y(x , t)

with 〈v0,y〉L2 = 0 and 〈∂−1
x v0,y〉L2 = 0, we obtain

da

dt
+b = 0,

db

dt
= 0,

∂y

∂t
= ∂xLy .

If 〈v0,u0〉L2 = 0, then b(t) = b(0) = 0 and a(t) = a(0).



Proof of linear orbital stability

Because v0 and v ′
0 are eigenvectors of L for the negative and zero

eigenvalues, L is strictly positive definite on v0
⊥∩ v ′

0
⊥ ⊂ L2(R).

As a result, ‖y‖L = 〈Ly ,y〉1/2

L2 defines a norm (equivalent to a

weighted H1-norm).

From the energy balance,

d

dt

1

2
‖y‖2

L = 〈Ly ,∂ty〉L2 = 〈Ly ,∂xLy〉L2 = 0,

we obtain the Lyapunov stability of the zero equilibrium y = 0 in the

constrained space 〈v0,y〉L2 = 0 and 〈∂−1
x v0,y〉L2 = 0. �
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