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Introduction

◮ Granular chains contain densely packed, elastically interacting

particles with Hertzian contact forces.

◮ Recent works focus on solitary and periodic traveling waves in

granular chains; as they are relevant to physical experiments.



On solitary travelling waves in granular chains

Existence of solitary waves was proved with the variational theory

based on the differential–difference equation.

◮ G. Friesecke and J. Wattis, Commun. Math. Phys. 161 (1994),

391 - proof of existence for a general FPU lattice

◮ R. MacKay, Phys. Lett. A 251 (1999), 191 - adaptation of this

method to granular chains

◮ J. English and R. Pego, Proc. Amer. Math. Soc. 133 (2005),

1763 - proof of the double-exponential tails of the solitary waves

◮ A. Stefanov and P. Kevrekidis, J. Nonlinear Sci. 22 (2012), 327 -

proof of the bell-shaped profile of the solitary waves



The granular chain
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Newton’s equations define the FPU (Fermi-Pasta-Ulam) lattice:

d2xn

dt2
= V ′(xn+1 − xn)−V ′(xn − xn−1), n ∈ Z,

where xn is the displacement of the nth particle.

The interaction potential for spherical beads is

V (x) =
1

1+α
|x |1+αH(−x), α =

3

2
,

where H is the step (Heaviside) function.

H. Hertz, J. Reine Angewandte Mathematik 92 (1882), 156



Travelling waves and the Boussinesq approximation
Using the relative displacements un = xn − xn−1 and applying the

travelling wave reduction un(t) = wn(n− t), we obtain

d2w

dz2
=∆(w |w |α−1), z ∈ R,

with (∆w)(z) = w(z +1)−2w(z)+w(z −1).

Expanding ∆= ∂2
z +

1
12

∂4
z and integrating twice, we obtain

w = w |w |α−1 +
1

12

d2

dz2
w |w |α−1, z ∈ R,

which has compactons

wc(z) =

{

Acos
2

α−1 (Bz), |z| ≤ π
2B
,

0, |z| ≥ π
2B
,

where

A =

(

1+α

2α

)
1

1−α

, B =

√
3(α−1)

α
.



Ill-posedness of the Boussinesq equation

The fully nonlinear Boussinesq equation takes the form

utt = (u |u|α−1)xx +
1

12
(u |u|α−1)xxxx ,

V.F. Nesterenko, J. Appl. Mech. Tech. Phys. 24 (1983), 733

K. Ahnert and A. Pikovsky, Phys. Rev. E 79 (2009), 026209.

Cauchy problem for the Boussinesq equation is ill-posed.

Compare with the recent work on ill-posedness of degenerate

dispersive equations:

D.M. Ambrose, G. Simpson, J.D. Wright, and D.G. Yang,

Nonlinearity 25 (2012), 2655.



Korteweg–de Vries equation in the case of precompression

Consider again the FPU lattice

d2un

dt2
= V ′(un+1)−2V ′(un)+V ′(un−1), n ∈ Z.

If V ∈ C3 with V ′′(0) = κ > 0 and V
′′′
(0) 6= 0, then the asymptotic

multi-scale expansion

un(t) = κ(4V
′′′
(0))−1 ε2 y(ξ,τ)+higher order terms,

where ξ := ε(n− cs t), τ := ε3 cs t/24, and cs :=
√

κ is the “sound

velocity” of linear waves, shows that y satisfies the KdV equation

∂τy +3y ∂ξy +∂3
ξy = 0.

The KdV equation admits the solitary waves y = sech
2((ξ− τ)/2).



Relevant results

◮ The KdV equation can be justified at a time scale of order ε−3.

G. Schneider and C.E. Wayne, International Conference on

Differential Equations Appl. 5 (1998) 69

D. Bambusi, A. Ponno, Comm. Math. Phys. 264 (2006), 539

◮ Nonlinear stability of small amplitude FPU solitons can be proved.

G. Friesecke and R.L. Pego, Nonlinearity 12 (1999), 1601; 15

(2002), 1343; 17 (2004), 207; 17 (2004), 229.

◮ Existence and stability of N-soliton solutions can be proved.

A. Hoffman and C.E. Wayne, Nonlinearity 21 (2008), 2911;

J. Dyn. Diff. Equat. 21 (2009), 343.

T. Mizumachi, Commun. Math. Phys. 288 (2009), 125; SIMA 43

(2011), 2170; Arch. Rat. Mech. Anal. 207 (2013), 393.



Korteweg–de Vries equation without precompression
Consider again the FPU lattice

(

d2

dt2
−∆

)

un =∆ fα(un), n ∈ Z,

where

fα(u) := u (|u|α−1 −1) = (α−1)u ln |u|+O((α−1)2),

as α → 1. For the chains of hollow spherical particles of different

width, α is defined in the range 1.1 ≤ α ≤ 1.5.

Let α = 1+ ε2. Using the asymptotic multi-scale expansion

un(t) = v(ξ,τ)+higher order terms,

where ξ := 2
√

3ε(n− t), τ :=
√

3ε3 t , we obtain the KdV equation with

the logarithmic nonlinearity (log-KdV)

∂τv +∂ξ(v logv)+∂3
ξv = 0.



Stationary solutions
Stationary log-KdV equation can be integrated once to get

d2v

dξ2
+ v ln |v |= 0,

which admits the Gaussian solitons

v(ξ) =
√

e e−ξ2/4.

A. Chatterjee, PRE 59 (1999), 5912
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Figure : Solitary waves (blue) in comparison with the compactons (red) and

the Gaussian solitons (green) for α = 1.5 (left) and α = 1.1 (right).



Numerical evidence of convergence of the approximation
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Figure : The L∞ distance between solitary waves of the FPU chain and either

Nesterenko compactons (blue dots) or Gaussian solitons (green dots) vs. α.



Numerical evidence of stability
Lattice of N = 2000 particles is excited with the initial impact

ẋn(0) = 0.1δn,0, ẋn(0) = 0 for all n ≥ 1.

A Gaussian solitary wave is formed asymptotically as t evolves.
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Figure : Formation of a Gaussian wave (blue curve) in the Hertzian FPU

lattice with α = 1.01: t ≈ 30.5 (left) and t ≈ 585.6 (right).



Summary of main results

The log-KdV equation

∂τv +∂ξ(v logv)+∂3
ξv = 0.

1. Gaussian solitary wave is linearly orbitally stable in space H1(R).

2. For any initial data v0 from the energy space X ⊂ H1(R), there

exists a global solution v ∈ L∞(R,X) s.t. the energy is not

increasing in time. Uniqueness is not proved.

3. The spectrum of the linearized operator in L2(R) is purely

discrete and consists of a double zero eigenvalue and a

symmetric sequence of simple purely imaginary eigenvalues

{±iωn}n∈N s.t. 0 < ω1 < ω2 < ... and ωn → ∞ as n → ∞.

The eigenfunctions decay algebraically as |ξ| → ∞.

4. The log–KdV equation is justified as a valid approximation for the

FPU lattices for solutions v bounded away from zero.



Energy functional

The log-KdV equation

∂τv +∂ξ(v logv)+∂3
ξv = 0.

can be written in the Hamiltonian form

∂τv = ∂ξE ′(v),

where the energy functional is

E(v) =
1

2

∫
R

[

(∂ξv)2 − v2

(

logv − 1

2

)]

dξ.

Gaussian wave v0 = e
2−ξ2

4 is a critical point of E(v): E ′(v0) = 0, and

L = E ′′(v0) =−∂2
ξ −1− log(v0) =− ∂2

∂ξ2
− 3

2
+

ξ2

4
.



Linear operators and evolution

Theorem 1 (G.James, D.P., 2014)

v0 is linearly orbitally stable in space H1(R).

Consider the time evolution of the perturbation u to v0:

∂τu = ∂ξLu, u(0) = u0.

The solitary wave is linearly orbitally stable if for every u0 ∈ Dom(∂xL)
such that 〈v0,u0〉L2 = 0 there exists constant C(u0) such that

‖u(τ)‖H1 ≤ C(u0), τ ∈ R.

The operator L is self-adjoint in L2(R) with domain

Dom(L) = {u ∈ H2(R), ξ2 u ∈ L2(R)}.

The spectrum of L consists of simple eigenvalues at n−1, n ∈ N0.



Symplectic decomposition

We know that ∂ξL has a double zero eigenvalue because

Lv ′
0 = 0, ∂ξLv0 =−v ′

0,

and no u ∈ Dom(∂ξL) exists in ∂ξLu = v0 because ‖v0‖2
2 6= 0.

Using the decomposition

u(ξ,τ) = a(τ)v ′
0(ξ)+b(τ)v0(ξ)+ y(ξ,τ)

with 〈v0,y〉L2 = 0 and 〈∂−1
ξ

v0,y〉L2 = 0, we obtain

da

dτ
+b = 0,

db

dτ
= 0,

∂y

∂τ
= ∂ξLy .

If 〈v0,u0〉L2 = 0, then b(τ) = b(0) = 0 and a(τ) = a(0).



Proof of linear orbital stability

Because v0 and v ′
0 are eigenvectors of L for the negative and zero

eigenvalues, L is strictly positive definite on v0
⊥∩ v ′

0
⊥ ⊂ L2(R).

As a result, ‖y‖L = 〈Ly ,y〉1/2

L2 defines a norm (equivalent to a

weighted H1-norm).

From the energy balance,

d

dτ

1

2
‖y‖2

L = 〈Ly ,∂τy〉L2 = 〈Ly ,∂ξLy〉L2 = 0,

we obtain the Lyapunov stability of the zero equilibrium y = 0 in the

constrained space 〈v0,y〉L2 = 0 and 〈∂−1
ξ

v0,y〉L2 = 0.

The constrained space corresponds to the modulation of the two

parameters of the Gaussian solitary wave.



Global existence of solutions
The log-KdV equation

∂τv +∂ξ(v logv)+∂3
ξv = 0

has the associated energy functional

E(v) =
1

2

∫
R

[

(∂ξv)2 − v2

(

logv − 1

2

)]

dξ,

defined in the function space

X :=
{

v ∈ H1(R) : v2 log |v | ∈ L1(R)
}

.

Theorem 2 (R. Carles, D.P., 2014)

For any v0 ∈ X, there exists a global solution v ∈ L∞(R,X) of the

log–KdV equation such that

‖v(τ)‖L2 ≤ ‖v0‖L2 , E(v(τ))≤ E(v0), for all τ ∈ R.



Proof of global existence

1. Construct an approximation of the logarithmic nonlinearity

(Cazenave, 1980):

fε(v) =

{

v log(v), |v | ≥ ε,
(

log(ε)− 3
4

)

v + 1
ε2 v3 − 1

4ε4 v5, |v | ≤ ε,

hence fε ∈ C2(R) and fε(v)→ v log(v) as ε → 0 for every v ∈ R.



Proof of global existence

1. Construct an approximation of the logarithmic nonlinearity
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fε(v) =

{

v log(v), |v | ≥ ε,
(

log(ε)− 3
4

)

v + 1
ε2 v3 − 1

4ε4 v5, |v | ≤ ε,

hence fε ∈ C2(R) and fε(v)→ v log(v) as ε → 0 for every v ∈ R.

2. Obtain existence of the global approximating solutions

vε ∈ C(R,H1(R)) of the generalized KdV equations

{

vε
τ + vε

ξξξ
+ f ′ε(v

ε)vε
ξ
= 0, τ > 0,

vε|τ=0 = v0.

(Kenig, Ponce, Vega, 1991).
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‖vε(τ)‖H1 +‖(vε(τ))2 log(vε(τ))‖L1 ≤ C(v0).



Proof of global existence

1. Construct an approximation of the logarithmic nonlinearity

(Cazenave, 1980):

fε(v) =

{

v log(v), |v | ≥ ε,
(

log(ε)− 3
4

)

v + 1
ε2 v3 − 1

4ε4 v5, |v | ≤ ε,

hence fε ∈ C2(R) and fε(v)→ v log(v) as ε → 0 for every v ∈ R.

2. Obtain existence of the global approximating solutions

vε ∈ C(R,H1(R)) of the generalized KdV equations

{

vε
τ + vε

ξξξ
+ f ′ε(v

ε)vε
ξ
= 0, τ > 0,

vε|τ=0 = v0.

(Kenig, Ponce, Vega, 1991).

3. Obtain uniform estimates for all ε > 0 and τ ∈ R:

‖vε(τ)‖H1 +‖(vε(τ))2 log(vε(τ))‖L1 ≤ C(v0).

4. Pass to the limit ε → 0 and obtain a global solution v ∈ L∞(R,X)
of the log–KdV equation.



Uniqueness

Lemma: Assume that a solution v ∈ L∞(R,X) of the log–KdV

equation satisfies the additional condition

(log |v |)ξ ∈ L∞([−τ0,τ0]×R).

Then, the solution v is unique for every τ ∈ (−τ0,τ0), depends

continuously on the initial data v0 ∈ X, and satisfies ‖v(τ)‖L2 = ‖v0‖L2

and E(v(τ)) = E(v0) for all τ ∈ (−τ0,τ0).



Uniqueness

Lemma: Assume that a solution v ∈ L∞(R,X) of the log–KdV

equation satisfies the additional condition

(log |v |)ξ ∈ L∞([−τ0,τ0]×R).

Then, the solution v is unique for every τ ∈ (−τ0,τ0), depends

continuously on the initial data v0 ∈ X, and satisfies ‖v(τ)‖L2 = ‖v0‖L2

and E(v(τ)) = E(v0) for all τ ∈ (−τ0,τ0).

◮ ∂ξ log |v | is unbounded as |ξ| → ∞ for the Gaussian solitary wave.

◮ Nonlinear orbital stability of Gaussian solitary wave is conditional

that the global solution v ∈ L∞(R,X) is unique and depends

continuously on the initial data v0 ∈ X .



Spectral stability

If v = V (ξ)eλτ, we arrive to the linear eigenvalue problem

∂ξLV = λV .

where we recall that σ(L) = {n−1, n ∈ N0} and the eigenfunctions

of L have Gaussian decay in ξ.

Theorem 3 (R. Carles, D.P., 2014)

The spectrum of ∂xL in L2(R) is purely discrete and consists of a

double zero eigenvalue and a symmetric sequence of simple purely

imaginary eigenvalues {±iωn}n∈N such that 0 < ω1 < ω2 < ... and

ωn → ∞ as n → ∞. The eigenfunctions for nonzero eigenvalues are

smooth in ξ but decay algebraically as |ξ| → ∞.



Further remarks

◮ Because the spectrum of ∂xL is purely discrete, no asymptotic

stability result can hold for Gaussian solitary waves.

◮ This agrees with the result of Cazenave for the log–NLS

equation: the Lp norms at the solution v for any p ≥ 2 including

p = ∞ may not vanish as t → ∞ (or in a finite time).



Further remarks

◮ Because the spectrum of ∂xL is purely discrete, no asymptotic

stability result can hold for Gaussian solitary waves.

◮ This agrees with the result of Cazenave for the log–NLS

equation: the Lp norms at the solution v for any p ≥ 2 including

p = ∞ may not vanish as t → ∞ (or in a finite time).

◮ Nonlinear analysis of perturbations to the Gaussian solitary wave

becomes now problematic. If v(ξ,τ) := v0(ξ)+w(ξ,τ) is set,

then w satisfies

wτ = ∂ξLw −∂ξN(w),

where

N(w) := w log

(

1+
w

v0

)

+ v0

[

log

(

1+
w

v0

)

− w

v0

]

.

However, w/v0 may grow like an inverse Gaussian function of ξ.



Proof of spectral stability

The linear eigenvalue problem

AV = λV , A := ∂ξL =−∂3
ξ +

1

4
(ξ2 −6)∂ξ +

1

2
ξ,

can be written in the equivalent form with the Fourier transform

ÂV̂ = λV̂ , Â =
i

4
k
(

−∂2
k +4k2 −6

)

.

with the natural choice λ = i
4
E .

Eigenfunctions of A are defined in the domain XA := D(A)∩ Ḣ−1(R),

D(A) =
{

u ∈ H3(R) : ξ2∂ξu ∈ L2(R), ξu ∈ L2(R)
}

.

In the Fourier form, the domain XA becomes

X̂A =
{

û ∈ H1(R) : k∂2
k û ∈ L2(R), k3û ∈ L2(R), k−1û ∈ L2(R)

}

.



Proof of spectral stability

The linear eigenvalue problem is

d2û

dk2
+

(

E

k
+6−4k2

)

û(k) = 0, k ∈ R.

◮ As k → 0, two linearly independent solutions exist

û1(k) = k +O(k2), û2(k) = 1+O(k log(k)).

The second solution does not belong to X̂A.

◮ As |k | → ∞, the decaying solution satisfies

û(k) = ke−k2 (

1+O(|k |−1)
)

.

The shooting problem is over-determined.



Proof of spectral stability

◮ The way around is the weak piecewise definition of the

eigenfunction:

û(k) =

{

û+(k), k > 0,
0, k < 0,

or û(k) =

{

0, k > 0,
û−(k), k < 0,

where û±(0) = 0, so that û ∈ X̂A.
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dk2
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)

k1/2v̂+(k) = Ev̂+(k), k ∈ (0,∞),

which is now in the symmetric form. Hence E ∈ R.
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{
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û−(k), k < 0,

where û±(0) = 0, so that û ∈ X̂A.

◮ For û+, we set û+(k) = k1/2v̂+(k) and obtain

k1/2

(

− d2

dk2
+4k2 −6

)

k1/2v̂+(k) = Ev̂+(k), k ∈ (0,∞),

which is now in the symmetric form. Hence E ∈ R.

◮ For E = 0, we have v̂+ = k1/2e−k2

> 0 for k > 0. By Sturm’s

Theorem, the set of eigenvalues {En}n∈N0
satisfies

0 = E0 < E1 < E2 < ... and En → ∞ as n → ∞.



Numerical illustration
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Figure : Eigenfunctions û of the spectral problem versus k for the first three

eigenvalues E0 = 0, E1 ≈ 5.411, and E2 ≈ 12.308.



Precompression
Consider again the FPU lattice in the form

d2un

dt2
=−(∆ |u|1+ε2

H(−u))n, n ∈ Z.

Let un(t) =−1−wn(t), then wn(t) satisfies

d2wn

dt2
= (∆Vε(w))n, n ∈ Z

with the regularized potential

Vε(w) :=
1

2+ ε2

[

(1+w)2+ε2 −1

]

−w , w >−1
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with the regularized potential
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1
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The KdV scaling wn(t)≈ W (ξ,τ) with ξ := ε(n− t) and τ := ε3 t

yields the log–KdV equation

2∂τW +
1

12
∂3

ξW +∂ξ((1+W ) log(1+W )) = 0.



Traveling waves of the log–KdV equation

Traveling waves W (ξ−λτ/2) satisfy the stationary log-KdV equation

λW (x) =
1

12
W ′′(x)+(1+W ) log(1+W ), x ∈ R,

where (1+W ) log(1+W ) = W +W 2/2+O(W 3).
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For any λ > 1, there exists a unique even solution W ∈ H1(R) of the

stationary log–KdV equation. Moreover,

◮ W (x)> 0 for all x ∈ R,

◮ W (x)→ 0 as |x | → ∞ exponentially fast,

◮ W ∈ H∞(R),

◮ W ′ vanishes only at one point on R.



Traveling waves of the log–KdV equation

Traveling waves W (ξ−λτ/2) satisfy the stationary log-KdV equation

λW (x) =
1

12
W ′′(x)+(1+W ) log(1+W ), x ∈ R,

where (1+W ) log(1+W ) = W +W 2/2+O(W 3).

For any λ > 1, there exists a unique even solution W ∈ H1(R) of the

stationary log–KdV equation. Moreover,

◮ W (x)> 0 for all x ∈ R,

◮ W (x)→ 0 as |x | → ∞ exponentially fast,

◮ W ∈ H∞(R),

◮ W ′ vanishes only at one point on R.

The travelling solitary wave is orbitally stable in the log–KdV equation

J. Höwing, J. Diff. Eqs. 251 (2011), 2515.



Main results

Theorem 4 (E.Dumas–D.P., 2014)

For every λ > 1, there exist positive constants ε0 and C0 s.t. for every

ε ∈ (0,ε0), there exists a unique even travelling solution wstat,ε of the

FPU lattice in L2(R)∩L∞(R) s.t.

sup
z∈R

|wstat,ε(z)−Wstat(εz)| ≤ C0ε1/6,

where Wstat is the unique even solution to the log–KdV equation.



Main results

Theorem 4 (E.Dumas–D.P., 2014)

For every λ > 1, there exist positive constants ε0 and C0 s.t. for every

ε ∈ (0,ε0), there exists a unique even travelling solution wstat,ε of the

FPU lattice in L2(R)∩L∞(R) s.t.

sup
z∈R

|wstat,ε(z)−Wstat(εz)| ≤ C0ε1/6,

where Wstat is the unique even solution to the log–KdV equation.

Remarks:

◮ Moreover, wstat,ε ∈ H∞(R).

◮ Moreover, wstat,ε decays to zero exponentially fast at infinity.

◮ We have no proof that wstat,ε is positive.



Main results

Theorem 5 (E.Dumas–D.P., 2014)

For every τ0 > 0, there exist positive constants ε0, δ0 and C0 s.t. for all

ε ∈ (0,ε0), when initial data wini,ε ∈ l2(R) satisfy

δ := ‖wini,ε −wtrav,ε(0)‖l2 ≤ δ0,

then the unique solution wε to the FPU lattice belongs to

C1([−τ0ε−3,τ0ε−3], l2(Z)) and satisfies

‖wε(t)−wtrav,ε(t)‖l2 ≤ C0δ, t ∈
[

−τ0ε−3,τ0ε−3
]

.
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Remarks:

◮ The travelling waves of the FPU lattice are stable w.r.t.

modulations of any spatial scales, up to the time scale of O(ε−3).

◮ The constant C0 may grow exponentially fast in τ0.



Open questions:

◮ Convergence of the solitary wave in the FPU chain to the

Gaussian wave in the log–KdV equation.

◮ Orbital stability of the Gaussian wave in the log–KdV equation.

◮ Development of numerical methods for the log–KdV equation.
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