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Background: Nonlinear Schrödinger equation
In many problems (BECs, photonics, optics), wave dynamics is modeled
with the (focusing) nonlinear Schrödinger equation

iut = −uxx + V(x)u− |u|2pu,

where p > 0 is nonlinearity power, V(x) : R 7→ R is the trapping potential.
I Single-well potentials such as V0(x) = −sech2(x).

I Double-well potentials such as

V(x; s) =
1
2

(V0(x− s) + V0(x + s)) , s ≥ 0.

I Periodic potentials

V(x + L) = V(x), L > 0,

such as V(x) = sin2(x).



Nonlinear Schrödinger equation on metric graphs

A metric graph Γ = {E,V} is given
by a set of edges E and vertices V ,
with a metric structure on each edge.

Nonlinear Schrödinger equation on a graph Γ:

iΨt = −∆Ψ− |Ψ|2pΨ, x ∈ Γ,

where ∆ is the graph Laplacian and Ψ(t, x) is defined componentwise on
edges subject to Neumann–Kirchhoff boundary conditions at vertices:{

Ψ(v) is continuous for every v ∈ V,∑
e∼v ∂Ψe(v) = 0, for every v ∈ V,

where e ∼ v denotes all edges e ∈ E adjacent to the vertex v ∈ V .



Example: a star graph
A star graph is the union of N half-lines connected at a single vertex. For
N = 2, the graph is the line R. For N = 3, the graph is a Y-junction.
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Function spaces are defined componentwise:

L2(Γ) = L2(R−)⊕ L2(R+)⊕ · · · ⊕ L2(R+)︸ ︷︷ ︸
(N-1) elements

,

subject to the Neumann–Kirchhoff conditions at a single vertex:

H1
Γ := {Ψ ∈ H1(Γ) : ψ1(0) = ψ2(0) = · · · = ψN(0)}

H2
Γ := {Ψ ∈ H2(Γ) ∩ H1

Γ : ψ′1(0) =

N∑
j=2

ψ′j (0)},



NLS on the metric graph Γ

The Cauchy problem for the NLS flow:{
iΨt = −∆Ψ− |Ψ|2pΨ,
Ψ|t=0 = Ψ0.

Lemma. The Cauchy problem is locally well-posed for either Ψ0 ∈ H1
Γ or

for Ψ0 ∈ H2
Γ. Moreover, the mass

Q(Ψ) = ‖Ψ‖2
L2(Γ)

and the energy

E(Ψ) = ‖∇Ψ‖2
L2(Γ) −

1
p + 1

‖Ψ‖2p+2
L2p+2(Γ)

,

are constants in time for Ψ ∈ C(R,H1
Γ).



Ground state
Ground state is a standing wave of smallest energy E at fixed mass Q,

Eµ = inf{E(u) : u ∈ H1
Γ, Q(u) = µ}.

All standing waves satisfy the Euler–Lagrange equation:

−∆Φ− |Φ|2pΦ = ωΦ,

where the Lagrange multiplier ω defines Ψ(t, x) = Φ(x)e−iωt.

For p ∈ (0, 2), infimum Eµ exists for every µ > 0 thanks to
Gagliardo–Nirenberg inequality:

‖Ψ‖2p+2
L2p+2(Γ)

≤ CΓ,p‖∇Ψ‖p
L2(Γ)
‖Ψ‖p+2

L2(Γ)
,

where CΓ,p > 0 depends on Γ and p only.

Theorem. (Adami–Serra–Tilli, 2015) If Γ is unbounded and contains at least
one half-line, then for p ∈ (0, 2),

min
u∈H1(R+)

E(u;R+) ≤ Eµ ≤ min
u∈H1(R)

E(u;R) for fixed µ,

Infimum may not be attained by any of the standing waves Φ.
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Ground state in the subcritical case p ∈ (0, 2)

Theorem. (Adami–Serra–Tilli, 2016) If Γ consists of only one half-line, then

Eµ < min
u∈H1(R)

E(u;R)

and the infimum is attained for every µ > 0.
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If Γ consists of more than two half-lines and is connective to infinity, then

Eµ = min
u∈H1(R)

E(u;R)

and the infimum is not attained because a minimizing sequence escapes to
infinity along an unbounded edge.



Ground state in the subcritical case p ∈ (0, 2)

Theorem. (Adami–Serra–Tilli, 2016) If Γ consists of only one half-line, then

Eµ < min
u∈H1(R)

E(u;R)

and the infimum is attained for every µ > 0.

x
y

-L

L 0

If Γ consists of more than two half-lines and is connective to infinity, then

Eµ = min
u∈H1(R)

E(u;R)

and the infimum is not attained because a minimizing sequence escapes to
infinity along an unbounded edge.



Ground state in the critical case p = 2
Recall the fixed mass

Q(Ψ) = ‖Ψ‖2
L2(Γ) = µ

and the energy
E(Ψ) = ‖∇Ψ‖2

L2(Γ) − ‖Ψ‖
6
L6(Γ)

Gagliardo–Nirenberg inequality is now

‖Ψ‖6
L6(Γ) ≤ CΓ‖∇Ψ‖2

L2(Γ)‖Ψ‖
4
L2(Γ) = CΓµ

2‖∇Ψ‖2
L2(Γ)

Theorem. (Adami–Serra–Tilli, 2017) If Γ consists of only one half-line, then
the ground state is attained if and only if µ ∈ (µR+ , µR], where µR is the
fixed mass of the NLS soliton and µR+ is the fixed mass of the half-soliton.
Moreover,

Eµ =

 0, µ ∈ [0, µR+ ],
< 0, µ ∈ (µR+ , µR],
−∞, µ ∈ (µR,∞).

Uniqueness is proven for almost all µ (Dovetta-Serra-Tilli, 2020).



Main goal
Recall the standing wave solutions Ψ(t, x) = Φ(x)e−iωt with

−∆Φ− 3|Φ|4Φ = ωΦ.

Main question: What is the range of frequencies ω for the ground states?

For the tadpole graph, the answer is suggested by the following figure:
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New variational formulation
We explore the following constrained minimization problem:

B(ω) = inf
u∈H1

Γ

{
Bω(u) : ‖u‖L6(Γ) = 1

}
, ω < 0,

where
Bω(u) := ‖∇u‖2

L2(Γ) + |ω|‖u‖2
L2(Γ).

It generates the same Euler–Lagrange equation

−∆Φ− 3|Φ|4Φ = ωΦ

after the Lagrange multiplier is scaled out by a simple transformation.

Theorem (Noja–Pelinovsky, Calc Var PDE, 2020)
For every ω < 0, there exists a global minimizer Ψ(·, ω) ∈ H1

Γ which yields
a strong solution Φ(·, ω) ∈ H2

Γ to the stationary NLS equation. The standing
wave Φ is real up to the phase rotation, positive up to the sign choice,
symmetric on [−L,L] and monotonically decreasing on [0,L] and [0,∞).

x
y

-L

L 0



I Bω(u) = ‖∇u‖2
L2(Γ) + |ω|‖u‖2

L2(Γ) is equivalent to ‖u‖2
H1(Γ).

I Constraint ‖u‖L6(Γ) = 1 ensures that B(ω) = infu∈H1
Γ
{Bω(u)} > 0

due to Sobolev’s embedding ‖u‖L6 ≤ C‖u‖H1 .

I A minimizing sequence {un}n in H1(Γ) satisfying the constraint
‖un‖L6 = 1 such that Bω(un)→ B(ω) has a weak limit u∗. By Fatou’s
lemma, 0 ≤ ‖u∗‖L6 ≤ limn→∞ ‖un‖L6 = 1. Let γ := ‖u∗‖L6 .

I If γ ∈ (0, 1), the minimizing sequence splits. This can be ruled out.

I If γ = 0, the minimizing sequence vanishes. It would mean that
B(ω) = minu∈H1(R) Bω(u;R). This is ruled out by an example of
u0 ∈ H1

Γ such that ‖u0‖L6 = 1 and Bω(u0) < minu∈H1(R) Bω(u;R).

I Hence, γ = 1 and u∗ is a strong limit of {un}n (minimizer).

I Symmetry of u∗ follows from the Polya–Szegö inequality on graphs.
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The standing wave solutions Ψ(t, x) = Φ(x)e−iωt with

−∆Φ− 3|Φ|4Φ = ωΦ.
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Dynamical formulation
Consider the stationary NLS equation

−∆Φ− 3|Φ|4Φ = ωΦ

and split Φ = (u, v) on the tadpole graph.
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Use the scaling transformation ω = −ε4 and{
u(x) = εU(ε2x), x ∈ [−L,L],
v(x) = εV(ε2x), x ∈ [0,∞).

Then, we obtain the boundary-value problem:
−U′′ + U − 3U5 = 0, z ∈ (−Lε2,Lε2),
−V ′′ + V − 3V5 = 0, z ∈ (0,∞),
U(Lε2) = U(−Lε2) = V(0),
U′(Lε2)− U′(−Lε2) = V ′(0).



Orbits of −U′′ + U − 3U5 = 0 are level curves of the energy function

E(U,U′) = (U′)2 − U2 + U6.

The solution in the tail V ∈ H2(0,∞) is a part of the homoclinic orbit.
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Figure: Representation of the solutions on the phase plane (U,U′).



For the boundary-value problem,
−U′′ + U − 3U5 = 0, z ∈ (−Lε2,Lε2),
−V ′′ + V − 3V5 = 0, z ∈ (0,∞),
U(Lε2) = U(−Lε2) = V(0),
U′(Lε2)− U′(−Lε2) = V ′(0),

the solution in the tail is determined uniquely

V(z) = ϕ(z + a), where ϕ(z) := sech1/2(2z) is the soliton,

up to the parameter U0 = V(0) = ϕ(a) ∈ (0, 1), equivalently, by a > 0.

I V ′(0) is determined uniquely from U0.
I This determines uniquely U(Lε2) = U0 and U′(Lε2) = 1

2 V ′(0), hence
the energy level E0.

I The existence problem then reduces to the study of the period function

Lε2 = T(U0) :=

∫ U+

U0

du√
E0 + u2 − u6

,

where U+ is the right turning point from E0 + U2
+ − U6

+ = 0.
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Main result

Lemma (Noja–Pelinovsky, Calc Var PDE, 2020)
For every U0 ∈ (0, 1) there exists a unique value of ε > 0 for which there
exists a unique solution U ∈ C2(0,Lε2) to the boundary-value problem such
that U is monotonically decreasing on [0,Lε2]. Moreover, the map
(0, 1) 3 U0 7→ ε(U0) ∈ (0,∞) is C1, onto, and monotonically decreasing.

From the period function

Lε2 = T(U0) :=

∫ U+

U0

du√
E0 + u2 − u6

,

we only need to prove that T ′(U0) < 0, where U+ and E0 depend on U0.



Main tool : potential function on the plane
If W(u, v) is a C1 function in an open region of R2, then the differential of W
is defined by

dW(u, v) =
∂W
∂u

du +
∂W
∂v

dv

and the line integral of dW(u, v) along any C1 contour γ connecting two
points (u0, v0) and (u1, v1) does not depend on γ and is evaluated as∫

γ

dW(u, v) = W(u1, v1)−W(u0, v0).



The period function can be expressed as

T(U0) :=

∫ U+

U0

du
v
, v :=

√
E0 + u2 − u6.

so that with A(u) = u2 − u6,

[E0 + A(u∗)]T(U0) =

∫ U+

U0

vdu−
∫ U+

U0

A(u)− A(u∗)
v

du,

where u∗ = maxu∈[0,1] A(u) and E0 + A(u∗) > 0.

Using

d
(

2v[A(u)− A(u∗)]
A′(u)

)
= 2

[
1− A′′(u)[A(u)− A(U∗)]

[A′(u)]2

]
vdu

+
2[A(u)− A(u∗)]

A′(u)
dv

we eliminate the singular term in T(U0):

2[A(u)− A(u∗)]
A′(u)

dv =
A(u)− A(u∗)

v
du.



Characterization of the ground state
The ground state Ψ(·, ω) ∈ H1

Γ of the stationary NLS equation

−∆Φ− 3|Φ|4Φ = ωΦ

is represented dynamically as a family of orbits with parameter U0 ∈ (0, 1)
such that (0, 1) 3 U0 7→ ω = −ε4 ∈ (−∞, 0) is one-to-one and onto.

Consider the linearized operator

L = −∆− 15Φ4 − ω.

Then,
〈LΨ,Ψ〉L2(Γ) = −12‖Ψ‖6

L6(Γ) < 0,

hence L has exactly one simple negative eigenvalue.
(Morse index n(L) = 1.)
Moreover, Ker(L) = {0} follows from the same dynamical representation.

It remains to consider the mass µ(ω) = ‖Ψ(·, ω)‖2
L2(Γ) relatively to µR+ , µR.



Theorem (Noja–Pelinovsky, Calc Var PDE, 2020)
The mapping ω 7→ µ(ω) = Q(Φ(·, ω)) is C1 for every ω < 0 and satisfies

µ′(ω) > 0 for ω ∈ (−∞, ω1) and µ′(ω) < 0 for ω ∈ (ω1, 0)

and

µ(ω) /∈ (µR+ , µR] for ω ∈ (−∞, ω0) and µ(ω) ∈ (µR+ , µR] for ω ∈ [ω0, 0).
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Extension: flower graph with N loops

Theorem (Kairzhan–Marangell–Pelinovsky–Xiao, JDE, 2021)
For every ω < 0, there exists only one positive symmetric state Φ ∈ H2

Γ

which satisfies the stationary NLS equation (cubic case). Moreover,

I The map (−∞, 0) 3 ω 7→ Φ(·, ω) ∈ H2
Γ is C1 and the map

(−∞, 0) 3 ω 7→ µ(ω) ∈ (0,∞) is one-to-one, onto, and decreasing.
I There exists ω∗ ∈ (−∞, 0) such that dimKer(L) = N − 1 for ω = ω∗.

Morse index n(L) = N for ω ∈ (−∞, ω∗); n(L) = 1 for ω ∈ [ω∗, 0).
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Extension: flower graph with N loops

Theorem (Kairzhan–Marangell–Pelinovsky–Xiao, JDE, 2021)
For every ω < 0, there exists only one positive symmetric state Φ ∈ H2

Γ

which satisfies the stationary NLS equation (cubic case). Moreover,
I The map (−∞, 0) 3 ω 7→ Φ(·, ω) ∈ H2

Γ is C1 and the map
(−∞, 0) 3 ω 7→ µ(ω) ∈ (0,∞) is one-to-one, onto, and decreasing.

I There exists ω∗ ∈ (−∞, 0) such that dimKer(L) = N − 1 for ω = ω∗.
Morse index n(L) = N for ω ∈ (−∞, ω∗); n(L) = 1 for ω ∈ [ω∗, 0).
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Figure: The bifurcation diagram of positive states on the parameter plane (ω, µ) for
N = 2 (left) and N = 3 (right).

I Blue line is the positive symmetric state Φ.
I Red line is the positive state with one component having larger

amplitude than the other components.
I Green line (for N = 3) is the positive state with two components having

larger amplitudes than the third one.



Dynamical characterization: symmetric state
Recall the period function

Lε = T(U0) :=

∫ U+

U0

du√
E0 + u2 − u4

,
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Figure: Geometric construction of the positive symmetric state on the phase plane.



Dynamical characterization: bifurcating states
If U0 > U∗, where (U∗, 0) is the center point, the symmetric state splits into
bifurcating states. Here N = 3 and the left figure corresponds to the state
with one large component and the right figure corresponds to the state with
two large components.
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Dynamical characterization: bifurcating states
If U0 < U∗, where (U∗, 0) is the center point, then the smaller components
flip. This can be characterized with two period functions

T+(U0,V0) :=

∫ U+

U0

du√
E0 + u2 − u4

, T−(U0,V0) :=

∫ U0

U−

du√
E0 + u2 − u4

,

where the turning points U± solves E0 + U2
± − U4

± = 0 and (U0,V0)
determines the energy level E0 = V2

0 − U2
0 + U4

0 .
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Summary
Dynamical construction of positive stationary states is based on:
I Periodic and homoclinic orbits on the phase plane connected together

according to the Neumann-Kirchhoff boundary conditions;
I Parameterization is provided from the period function;
I Characterization of the Morse index and local stability properties

follow from analysis of the period function.

Further problems:
I Extensions to general graphs in the limit of large mass;
I Understanding the global variational properties of the ground state.

Thank you! Questions ???
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