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Introduction

Introduction

Density waves in Bose–Einstein condensates are modeled by the
Gross-Pitaevskii equation

iUT = −1
2

UXX + γ2X2U + νV (X)U + σ|U|2U,

where V (X) is a bounded potential on R, γ and ν are real-valued strength
constants for the parabolic and bounded potentials, and σ = ±1.

Examples of V (X):

V (X + L) = V (X) for optical lattice with period L

|V (x)| ≤ Ce−κ|x| for red-detuned laser beam or all-optical trappings

If γ = ν = 0 and σ = +1, the Gross–Pitaevskii equation becomes the
defocusing NLS equation with a dark soliton U(X ,T ) = e−iT tanh(X).
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Introduction

The problem

Numerical pictures (D.P., P.K., D. Franzeskakis, Phys. Rev. E 72 016615
2005):

Main question is to find the frequency of oscillations and the change in the
amplitude of oscillations if the oscillations are not periodic.
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Introduction

Numerical results

Numerical pictures (N. Parker, N. Proukakis, et al., 2004):

Top picture : periodic oscillations for γ 6= 0 and ν = 0
Bottom picture : oscillations of increasing amplitude for γ, ν 6= 0
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Main results

Background

Let us consider the normalized Gross–Pitaevskii equation in the form

iut = −1
2

uxx +
1
2

x2u + δW (x)u + σ|u|2u,

where δ is small and W (x) is an external potential.

Theorem (Carles, 2002): If W ∈ L2(R), there exists a global solution
u ∈ C1(R,H1(R)) of the GP equation in space

H1(R) = {u ∈ H1(R) : xu ∈ L2(R)}

Stationary solutions have the form

u(x , t) = e− i
2 t−iµtφ(x),

where φ : R 7→ R solves

Lφ(x) + δW (x)φ(x) + σφ3(x) = µφ(x),

and L = (−∂2
x + x2 − 1)/2.

D.Pelinovsky (McMaster University) Periodic oscillations in parabolic potentials May 19, 2008 5 / 19



Main results

Stationary solutions

We consider localized solutions φ(x) with a single zero on R.

Since the Schrödinger operator L has an eigenvalue µ = 1 with the
eigenfunction φ = εxe−x2/2, the local bifurcation analysis gives the existence
result.

Theorem: There exists ε0 > 0 and δ0 > 0, such that the ODE for φ(x) admits
a unique family of solutions for any ε ∈ [0, ε0) and δ ∈ [0, δ0) with the property

‖φ− εxe−x2/2‖H1 ≤ C1ε
(

δ + ε2) , |µ− 1| ≤ C2
(

δ + ε2) ,

for some (ε,δ)-independent constants C1,C2 > 0.
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Main results

Approximation of stationary solutions for δ = 0

If σ = 1 (defocusing case), then µ > 1.
If σ = −1 (focusing case), then µ < 1.
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Main results

Linearization of stationary solutions

If

u(x , t) = e− i
2 t−iµt

(

φ(x) + (v(x) − w(x)) eiΩt + (v̄(x) + w̄(x)) e−iΩ̄t
)

,

then u(x) and w(x) satisfy the linearized problem
(

L + δW (x) + 3σφ2(x) − µ
)

v(x) = Ωw(x),
(

L + δW (x) + σφ2(x) − µ
)

w(x) = Ωv(x).

When ε = 0 and δ = 0, the spectrum of the linearized problem consists of the
double eigenvalue Ω = 0, the pair of double eigenvalues Ω = ±1, and the
pairs of simple eigenvalues Ω = ±m, m ≥ 2.

We shall prove for σ = 1 that the double eigenvalue Ω = 0 is preserved, the
pair Ω = ±1 split into the eigenvalue Ω0 = 1 and Ω1 < 1 and the pairs
Ω = ±m shift to Ωm < m. As a result, the Lyapunov theorem on persistence of
periodic orbits implies the following result.
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Main results

Main result

Theorem: If δ = 0 or if δ = δ∗(ε) near (ε, δ) = (0, 0), then there exists a family
of time-periodic space-localized solutions in the form

u(x , t) = e− i
2 t−iµt−iθ0v(x , t)

with the properties:
(1) v ∈ H1(R) for any t ∈ R,
(2) v

(

x , t + 2π
Ω

)

= v(x , t) for all (x , t) ∈ R
2,

(3) |Ω − 1| ≤ C0ε
2s2, and

(4) ‖v(·, t) − φ(x) − sφ′(x) cos(Ωt + ϕ0) − isxφ(x) sin(Ωt + ϕ0)‖H1
≤ Cεs2,

where s ∈ [0, s0) for some s0 > 0, θ0 and ϕ0 are arbitrary parameters, and
C0,C are (ε, s)-independent positive constants.

Remark: Parameters θ0 and ϕ0 can be set to zero because of the symmetries
of the GP equation. Parameter s measures a small amplitude of periodic
oscillations.
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Discussions

Exact periodic solution

The result for δ = 0 is trivial because of the existence of exact periodic
solutions for any ε ∈ R and any s ∈ R. Moreover, C0 = 0 in the bound
|Ω − 1| ≤ C0ε

2s2 such that Ω = 1 in the exact periodic solution.

The exact solution is constructed with an explicit transformation for the GP
equation for δ = 0:

u(x , t) = eip(t)x− i
2 p(t)s(t)− i

2 t−iµtφ(x − s(t)),

where ṡ = p, ṗ = −s, such that s̈ + s = 0 and

s(t) = s0 cos(t + ϕ0), p(t) = −s0 sin(t + ϕ0),

for any s0 ∈ R and ϕ0 ∈ R.

The exact periodic solution does not exist for δ 6= 0. Our result shows that the
same family of periodic solutions bifurcates at δ = δ∗(ε) 6= 0.
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Discussions

Background history

Oscillations of the GP equation

iψt = −1
2
ψxx + ǫ2x2ψ + |ψ|2ψ,

have been studied in physics literature in the past ten years for small ǫ.

Ω = 1 is obtained with the Ehrenfest Theorem (Reinhardt and Clark,
1997; Morgan et al., 1997)

Ω = 1√
2

is obtained with boundary-layer integrals (Busch and Anglin,
2000); small-wave expansions (Huang, 2002); perturbation theory for
dark solitons (Brazhnyi and Konotop, 2003)

Both frequencies are present in the spectrum of the limiting problem with
ǫ→ 0 (µ→ ∞).
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Discussions

Numerical approximation of eigenvalues for δ = 0

σ = 1 : Ω0 = 1, lim
µ→∞

Ω1 =
1√
2
, lim

µ→∞
Ωm =

√

m(m + 1)√
2

, ∀m ≥ 2

Non-resonance condition nΩ1 6= Ωm is not satisfied in the limit n = m → ∞.
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Proofs

Hamiltonian lattice

Schrödinger operator L = 1
2

(

−∂2
x + x2 − 1

)

has a complete set of
eigenfunctions called Hermite functions

φn(x) =
1

√

2nn!
√
π

Hn(x)e−x2/2, ∀n = 0, 1, 2, 3, ...,

where Hn(x) are the Hermite polynomials.

Let u(x , t) = e− i
2 t ∑∞

n=0 an(t)φn(x) and convert the PDE problem to the
discrete Hamiltonian system

i ȧn = nan + δ

∞
∑

m=0

Wn,mam + σ

∞
∑

n1,n2,n3=0

Kn,n1,n2,n3 an1 ān2 an3 ,

where Wn,m = (φn,Wφm) and Kn,n1,n2,n3 = (φn, φn1φn2φn3 ).
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Proofs

Phase space of the dynamical system

Lemma: Let u(x) =
∞
∑

m=0
anφn(x). Then u ∈ H1(R) if and only if a ∈ l21/2(N).

Lemma: The vector field F(a) of the discrete system maps l21/2(N) to l2−1/2(N).

Theorem: The discrete system iȧ = F(a) is globally well-posed in l11/2(N).

Decomposition: Let a(t) = e−iµt [A + B(t) + iC(t)] and rewrite the system in
the form

Ḃ = L−C + σN−(B,C), −Ċ = L+B + σN+(B,C),

where N±(B,C) contains quadratic and cubic terms with respect to B and C.

If ‖B(t)‖l21/2
+ ‖C(t)‖l21/2

≤ Cεs, then

‖N±(B(t),C(t))‖l2
−1/2

≤ C±ε
3s2

for some C,C± > 0.
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Proofs

Using the series of eigenvectors (if all but zero eigenvalues are simple),
{

B(t) =
∑∞

m=0 bm(t)Bm +
∑∞

m=0 b̄m(t)Bm + α(t)∂µA,
C(t) = i

∑∞
m=0 bm(t)Cm − i

∑∞
m=0 b̄m(t)Cm + β(t)A,

we block-diagonalize the system in the form

ḃm − iΩmbm = σNm(b0,b, α, β), m ≥ 0

α̇ = σS0(b0,b, α, β), β̇ + α = σS1(b0,b, α, β).

We are looking for T -periodic C1 functions b0(t), b(t), α(t) and β(t).

If constant QA = Q − ‖A‖2
l2 is found from

QA =
1
T

∫ T

0

(

‖B‖2
l2 + ‖C‖2

l2 − 2σ〈∂µA,N+(B,C)〉
)

dt,

then there exists a unique T -periodic solution for α(t) and β(t) such that

|α(t)| ≤ ε2s2Cα, |β(t)| ≤ ε2s2Cβ , |QA| ≤ CQε
2s2,

for some Cα,Cβ,CQ > 0.
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Proofs

Oscillatory components of the solution

Since Ωm − m = O(ε2) uniformly in m ∈ N, the Implicit Function Theorem in
space C1

per(R, l
2
1/2(N)) × C1

per(R) implies that there exists a unique T -periodic

solution b(t) ∈ l21/2(N) for any T -periodic function b0(t) such that if
|b0(t)| ≤ εsC0, then

‖b(t)‖l21/2
≤ εs2Cb

for some C0,Cb > 0.

We are left with a reduced evolution equation

ḃ0 = ib0 + R(b0),

where

R(b0) = ε
[

iK1(ε)b2
0 + iK2(ε)b̄2

0 + iK3(ε)|b0|2
]

+ O
(

|b0|3, ε|b0|‖b‖
)

.

Persistence of the T -periodic solution b0(t) ∼ εseit+iϕ0 is proved with the
normal form analysis, which gives

|Ω − 1| ≤ CΩε
2s2

for some CΩ > 0.
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Numerical simulations

Numerical simulations for δ = 0, σ = 1

u(x , 0) = φ(x) + sφ′(x),
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Numerical simulations

Numerical simulations for δ 6= 0, σ = 1

u(x , 0) = φ(x) + sw(x) for δ = 0.05 and δ = 0.15:
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Numerical simulations

Conclusion

Summary: Two-period quasi-periodic oscillations exist typically along a
Cantor set of parameter values. We have proven persistence of the
two-periodic solutions along a continuous set of parameter values. These
solutions are spectrally stable with respect to the linearization but are
structurally stable with respect to perturbations of the external potential
potential.

Other projects:

Well-posedness of time evolution and Birkhoff normal forms for n-tori in
fractional spaces Hs and l2s/2 (W. Craig, Z. Yan)

Rigorous analysis of eigenvalues in the Thomas–Fermi asymptotic limit
µ→ ∞ (C. Gallo, D. P.)

Persistence of oscillations with Ω = 1√
2

or quasi-periodic oscillations with

Ω0 = 1 and Ω1 = 1√
2
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