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Formulation of the problem
Hyperbolic two-dimensional NLS equation

iψt + ψxx − ψyy + 2|ψ|2ψ = 0,

where ψ : R2 × R+ 7→ C is the envelope amplitude and
η = Re(ψeik0x−iω0t) is the elevation of the water wave surface.

A line soliton solution

ψ = eitsech(x), η = cos(k0x− (ω0 − 1)t)sech(x),

where four parameters (phase translation, coordinate translation,
frequency, velocity) can be constructed by using the Lie point
symmetries of the NLS equation.
Question: Is the line soliton stable with respect to transverse
(y-dependent) perturbations?
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Linearized stability and instability
Consider a linear perturbation to the line soliton

ψ = (sech(x) + εu(x, y, t) + iεv(x, y, t)) eit

and find the linear PDEs:

−ut = vxx − vyy + (2sech2x− 1)v, vt = uxx − uyy + (6sech2x− 1)u

Use the Fourier transform in y and Laplace transform in t, e.g.

u = U(x)eiρyeΩt, v = V (x)eiρyeΩt, ρ ∈ R, Ω ∈ C

where (U,W ) ∈ L2(R) is an eigenvector of Schrödinger operators

ΩU = (L− − ρ2)V, −ΩV = (L+ − ρ2)U.

The line soliton is transversely unstable if Re(Ω) > 0 for ρ 6= 0.
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History of analytical studies
• Zakharov–Rubenchik (1974), Yajima (1974): splitting of zero

eigenvalues for small ρ into a pair of real eigenvalues ±Ω1 and
a pair of purely imaginary eigenvalues ±Ω2:

Ω2
1 =

4

3
ρ2 + O(ρ4), Ω2

2 = −4ρ2 + O(ρ4).

• Ablowitz–Segur (1979): no real eigenvalues exist for large ρ as
Ω2 = −ρ4 + O(ρ2).

• Anderson et al. (1979): existence of complex eigenvalues for
values of ρ ∼ 1 in the Rayleigh–Ritz variational method.

• Kivshar–Pelinovsky (2000): nonlinear theory of break-up of
line soliton into dispersive clusters.
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History of numerical studies

Top left: Cohen et al. (1976). Top right: Saffman–Yuen (1978).
Bottom: Anderson et al. (1979).
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Summary of our new results
• Numerical analysis of all isolated eigenvalues and their

bifurcations

• Prediction of instabilities for any ρ > 0.

• Analytical proof of existence of unstable eigenvalues for
0 < ρ < 1

• Rigorous analysis of bifurcations of unstable eigenvalues from
ρ = 1 to ρ > 1.

B. Deconinck, D.P, J. Carter, Proc. Roy. Soc. A 462, 2039 (2006)
D.P., Math. Comp. Simul. 55, 585 (2001)
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Numerical Hill’s method
Consider the spectral problem

φx = (A(x) + λ)φ, φ ∈ Cn

where A(x+L) = A(x) and λ ∈ C. We are looking for eigenvalues
λ when eigenvector φ is in L∞([0, L]) space.

Floquet’s Theorem: There exists a constant n× n matrix R and
L-periodic n× n matrix P , such that the fundamental matrix
solution φ(x) is φ(x) = P (x)eRx.
The bounded eigenvector can be decomposed as

φ(x) = eiµx
∑

k∈Z
φke

2πix/L,

where µ ∈
[
− π
L
, π
L

]
. For each value of µ, the spectrum of λ can be

found by truncation of Fourier series.
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Numerical analysis of all eigenvalues

Conclusion: Line soliton is unstable for any ρ > 0

Bifurcations: ρ = 0, ρ ≈ 0.31, ρ = 1, ρ ≈ 1.08.
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Numerical analysis of all bifurcations

Bifurcations:
(a) ρ = 0 - two pairs arise from multiple eigenvalue Ω = 0

one pair arises from the end point of the continuous spectrum
(b) ρ ≈ 0.31 - Hamiltonian-Hopf bifurcation
(c) ρ = 1 - collision of end points of the continuous spectrum
(d) ρ ≈ 1.08 - double real eigenvalue bifurcation
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Proof of existence of unstable eigenvalues
Consider the spectral problem

(L+ − ρ2)U = −ΩV, (L− − ρ2)V = ΩU

L+ = −∂2
x + 1− 6sech2x, L− = −∂2

x + 1− 2sech2x.

Spectra σ(L±) in L2(R):
• σ(L+) - two isolated eigenvalues at σ = −3 and σ = 0 and

continuous spectrum for σ ≥ 1

• σ(L−) - one isolated eigenvalue at σ = 0 and continuous
spectrum for σ ≥ 1

For 0 < ρ < 1, the spectral problem is equivalent to the generalized
eigenvalue problem

(
L+ − ρ2

)
U = γ

(
L− − ρ2

)−1
U, γ = −Ω2
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Sylvester–Pontryagin–Grillakis Theorem
Theorem: Let L and M be a self-adjoint operators in L2(R) with
finitely many negative eigenvalues n(L) and n(M) and empty
kernels. Then, there are exactly n(L) and n(M) eigenvalues γ of
Lu = γMu in L2(R) such that (u, Lu) ≤ 0 and (u,Mu) ≤ 0.

Application:
(
L+ − ρ2

)
U = γ

(
L− − ρ2

)−1
U, γ = −Ω2

For 0 < ρ < 1, there exist two eigenvalues γ such that
(U, (L+ − ρ2)U) ≤ 0 and one eigenvalue γ such that
(U, (L− − ρ2)−1U) ≤ 0.
Conclusion: One eigenvalue Ω ∈ R+ is always unstable for
0 < ρ < 1, and two eigenvalues are either purely imaginary for
0 < ρ < 0.31 or complex for 0.31 < ρ < 1.
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Bifurcations of unstable eigenvalues
Let ρ2 = 1− κ2

++κ2
−

2
, Ω =

κ2
+−κ2

−
2i

and rewrite the eigenvalue problem

(
−∂2

x − 6sech2x
)
U = −1

2
(κ2

+ + κ2
−)U +

i

2
(κ2

+ − κ2
−)V,

(
−∂2

x − 2sech2x
)
V = − i

2
(κ2

+ − κ2
−)U − 1

2
(κ2

+ + κ2
−)V,

• Bifurcation point ρ = 1, Ω = 0 corresponds to
(κ+, κ−) = (0, 0)

• Two solutions u±(x) decay like eκ±x as x→ −∞ and two
solutions v±(x) decays like e−κ±x as x→ +∞ in the domain
Re(κ±) > 0

• The coordinates (κ+, κ−) ∈ C2 unfold the branch point
singularity in coordinates Ω ∈ C and ρ2 − 1 ∈ R.
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Evans function
Let u±(x) and v±(x) be fundamental solutions in the domain
Re(κ±) > 0 and define the Wronskian determinant:

E(κ+, κ−) = det (u+(x),u−(x),v+(x),v−(x)) |x=0.

Zeros of E(κ+, κ−) coincide with eigenvalues of the original
problem in the domain Re(κ±) > 0.

• Fundamental solutions u±(x), v±(x), and their determinant
E(κ+, κ−) are analytic functions near (κ+, κ−) = (0, 0).

• The Taylor series expansion holds near (0, 0):

E(κ+, κ−) = −4(κ+ + κ−)2 + 10(κ+ + κ−)3 − 13(κ4
+ + κ4

−)

−51(κ2
+ + κ2

−)κ+κ− − 72κ2
+κ

2
− − α0(κ2

+ − κ2
−)2 + O(5),

where α0 is a numerical coefficient.
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Asymptotic result
Let α = κ+ + κ− and β = κ+ − κ−, such that

E(α, β) = −4α2 + 10α3 − 25

2
α4 +

1

4
β4 −

(
α0 +

3

4

)
α2β2 + O(5).

By the Newton polygon technique, there exists only one family of
zeros of E(α, β) = 0 in a neighborhood of (α, β) = (0, 0) such that

α2 =
1

16
β4 + O(β6).

Restoring the original variables

κ± =
√

1− ρ2 ± iΩ,

and performing a careful analysis of branches of the square root
function, we obtain the final asymptotic result.
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Bifurcation of eigenvalue Ω5

Asymptotic result

Ω5 = 2
√

2 (ρ− 1)3/2 + O((ρ− 1)5/2)

Numerical result
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Conclusions
• Earlier analytical results on ρ� 1, ρ� 1, and ρ ∼ 1 are

confirmed numerically by using the Hill’s method

• Instabilities are rigorously proved for 0 < ρ < 1 with the count
of eigenvalues in Pontryagin spaces

• Bifurcations of collision of end points of the continuous
spectrum is rigorously analyzed with the use of the Evans
function and a new unfolding technique.
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