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The focusing NLS equation

The focusing nonlinear Schrédinger (NLS) equation
i0p) + O + [$[Pp =0
has been derived as the main model for modulating quasi-harmonic waves
ep(e(x — ct), Et)ehox=wol) 1 eih(e(x — ct), 2t)e~koX=«ol) | higher-order terms
from water wave equations, Maxwell equations, and the like.

Y = e is the constant-amplitude wave, ) = sech(x)e'/? is a solitary wave.
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The rogue wave of the cubic NLS equation

The focusing nonlinear Schrédinger (NLS) equation

iOpp + 02 + [Py =0
admits the exact solution
B 4(1 + 2it) it
vix 1) = [1 1 +4x2+4t2} e
It was discovered by H. Peregrine (1983) and was labeled as the rogue wave.
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1. Periodic waves and rogue waves

Modulational instability of the constant-amplitude wave

The rogue wave solution is related to the modulational instability of the
constant-amplitude wave:

Y(x.t) =€ [1 + (K + 2iN) MR 4 (K2 + 2//‘\)ef_\t—ikx} 7

where k € R is the wave number and A is given by

1
N =kK2(1-_K?).
(1-5)

The wave is unstable for k € (0, 2).

4

2

o
Re(A)
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1. Periodic waves and rogue waves

Other rogue waves - Akhmediev breathers (AB)

Spatially periodic homoclinic solution was constructed by N.N. Akhmediev,
V.M. Eleonsky, and N.E. Kulagin (1985):

2(1 — A2) cosh(kAt) + ikAsinh(kAt)

—etl1_
w(xv t) =e |1 cosh(k)\t) — )\COS(kX) ’

where k =2v/1 — X2 € (0,2) and X € (0, 1) is the only free parameter. There
is a unique solution for each spatial period L = 27’“ = L= >T.

V1-)2
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1. Periodic waves and rogue waves

Other rogue waves - Kuznetsov-Ma breathers

Temporally periodic soliton was constructed by E. A. Kuznetsov (1977) and
Y.-C. Ma (1979):

B 2(N2 — 1) cos(BAL) + iBAsin(BAL)]
vt = {1 B A cosh(Bx) — cos(BAL) e
where 3 = 2v/)2 — 1 and A € (1, 0) is the only free parameter. There is a
unique solution for each temporal period T = g—’; = A\/zzﬁ > 0 with k = ig.

4
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1. Periodic waves and rogue waves

Traveling periodic waves (elliptic background)
The focusing nonlinear Schrédinger (NLS) equation
i + 050 + WPy =0

also admits the periodic solutions, e.g. the dnoidal and cnoidal waves:

Yan(X, 1) = dn(x; k)& =K/20 o (x, 1) = ken(x; k)e/K =1/t

where k € (0, 1) is elliptic modulus.
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1. Periodic waves and rogue waves

Rogue wave on background of periodic waves

J. Chen, D. P, Proceedings A (2018)
J. Chen, D. P, R. White, Physica D (2020)

Amplitude

Space(x) 10 Time (t)
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1. Periodic waves and rogue waves

Experimental observations of rogue waves

The same rogue waves were observed in optics and hydrodynamics:
G. Xu, A. Chabchoub, D.P,, B. Kibler, Physical Review Research (2020)
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1. Periodic waves and rogue waves

Double-periodic waves (elliptic background)

Double-periodic solutions (Akhmediev, Eleonskii, Kulagin, 1987):
en(t; K)en(v1 + kx; k) + iv1 + ksn(t; K)dn(vV/1 + kx; k)
V1 + kdn(v/1 + kx; k) — dn(t; K)en(v/1 + kx; k)
Blx 1) = dn(t; k)en(vV2x; k) + i/k(1 + k)sn(t; k) e,
V1+k— \/?cn(t; k)cn(\/ﬁx; K)

where k € (0, 1) is elliptic modulus and « € (0, 1) is determined by k.

(x,t) =k

D.Pelinovsky (McMaster University) Breather and rogue waves



1. Periodic waves and rogue waves

Rogue wave on background of double-periodic waves

J. Chen, D. P, R. White, Phys. Rev. E (2019)
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2. Exact periodic and double-periodic solutions

NLS hierarchy
The focusing nonlinear Schrédinger (NLS) equation
i0pp + 0%y + [Py = 0

is a member of the NLS hierarchy

I OH(), VHe(u) = AV Hy (),
die | U |
where
T —1] [ +200'u —200, '@
“’—’[1 0 F’—’[ U0 U —By — 200, 1T

Thus, we obtain
Hoy = / lul?dx, Hy = i/ (ully — uyl) dx,
R 2 R

HQ:/(|UX|2—\U|4) dx, Hy—~
R

2 / l:uXDXX - UX)(DX - 3‘U|2(UEIX - UXD):I dX.
R
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2. Exact periodic and double-periodic solutions

Stationary Lax-Novikov equations

The stationary (Lax—Novikov) equations are given by

VH;i(u) +2cVHy(u) =0,
VHa(u) +2¢VH;(u) + 4bVHy(u) =0,
VHsz(u) +2cVHz(u) + 4bV Hi(u) + 8aVHy(u) =0,

or explicitly,

u'(x) + 2icu = 0,
U’ (x) + 2|uPu + 2icu’ + 4bu = 0,
u"(x) + B|ulPu’ + 2ic(u” + 2|u?u) + 4bu’ + 8iau = 0,

where ¢, b, a are constants.
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2. Exact periodic and double-periodic solutions

Solutions of stationary Lax-Novikov equations

In terms of the NLS equation
i0p) + O + [¥[Pp =0
the stationary Lax—Novikov equations
u + 2icu =0,
u" + 2|ulPu + 2icu’ + 4bu =0,
u" +8lulPu + 2ic(u” + 2|ulu) + 4bu’ + 8iau = 0,
generate the following solutions:
@ Constant-amplitude wave v(x, t) = Ag—2iclx+en+iA’t,
@ Traveling standing wave (x, t) = u(x + ct)e—2bt

@ Double-periodic wave ¥ (x, t) = [q(x, t) + iB(t)]eH®,
where q(x+ L, t) = q(x,t+ T) = q(x,t), B(t+T) = B(1), a(t+ T) = aft).
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2. Exact periodic and double-periodic solutions

Characterization of u” + 2|u|?u + 2icu’ + 4bu = 0

Consider the Lax system of linear equations

ox = U\, ), U\ u) = ( _Az, _UA )

and

) o N+ HuP Juc+au
pr= V(A u)g, V(’\’u)_'< 3O — A0 =M% — J|uP

Fix A = \y € C with ¢ = (py,q1) € C? and set u = p? + @2. The spectral
problem ¢ = U(\, u)e becomes the Hamiltonian system generated by

- _ _ 1 —on =
H=XMpigi + \ip1gq + E(P12 +G)(PF + 97)-

with additional constant F = i(p1g1 — P1GQ1).
(Cao—Geng, 1990) (Cao—Wu—-Geng, 1999) (R.Zhou, 2009) (Chen-P, 2018)
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2. Exact periodic and double-periodic solutions

Second-order Lax—Novikov equation

By differentiating of the constraints between u and (p1, g1), we obtain
u=p;+qt.
U+ 2iFu = 2()\1p12 — X (_]12),
U’ + 2|ulPu + 2iFu’ — 4Hu = 4(\2p? + X2G3),

which yields the second-order Lax—Novikov equation:
U’ + 2|ufPu + 2icu’ + 4bu = 0,

where ¢ := F +i(\ — X)) and b:= —H — iF(\ — A1) — [ M2

The second-order equation admits two conserved quantities:

iUt — ull) — 2c|uf? = 4a,
|U'|? + |u|* + 4b|ul® = 8d.
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2. Exact periodic and double-periodic solutions

Algebraic polynomial for v” + 2|u|?u + 2icu’ + 4bu = 0

Further analysis show that admissible values of A\ for the reduction
u = p? + @2 appears to be roots of the characteristic polynomial P(\) given by

P()\) = \* + 2icA® + (2b — ¢®)\? + 2i(a+ be)\ + b? — 2ac + 2d,

where constants (a, b, ¢, d) are the same as in the second-order Lax-Novikov
equation and its two conserved quantities:

U’ + 2|ulPu + 2icu’ + 4bu = 0,
i(U'D— ull) — 2c|ul?® = 4a,
|U'[> + |u]* + 4bjul? = 8d.

Four roots exist due to properties of P()):

P = (A= AN+ X)X = X)X+ X2).
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2. Exact periodic and double-periodic solutions

Lax spectrum for the standing periodic waves

Two possible solutions for the standing periodic waves (a = ¢ = 0):
u(x) = dn(x; k), u(x) = ken(x; k).

Solutions are periodic with some period and the Lax spectrum of
ox = U(X, u)p coincides with the Floquet spectrum.
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Red dots show roots of P()), e.g., eigenvalues of the nonlinearization method.
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2. Exact periodic and double-periodic solutions

Algebraic polynomial for the third-order equation

Solutions of the third-order Lax—Novikov equation
U+ 6|ulPu + 2ic(u” + 2|ulu) + 4bu' + 8iau = 0
can be characterized similar (Chen-P-White, 2019) with the polynomial:

P()\) = A\® + 2ic)A® + (2b — ®)\* + 2i(a+ be)\® + (b — 2ac + 2d)\?
+2i(e+ ab + cd)\ + f +2bd — 2ce — &.

where constants (a, b, ¢, d, e, f) are incorporated from the third-order
Lax-Novikov equation and its three conserved quantities.

Double-periodic solutons are obtained from solutions of the third-order
equation. Akhmediev and Kuznetsov—Ma breathers are degenerate cases
of such double-periodic solutions.
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2. Exact periodic and double-periodic solutions

Lax spectrum for the double-periodic solutions
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Red dots show roots of P()), eigenvalues of the nonlinearization method.
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3. Stability of standing periodic waves

Linearized NLS equation

Let 4/ be a standing periodic wave solution of the NLS equation
i) + 0%y + ¢y = 0.

Using ¢ + x in NLS with perturbation y and neglecting x?, x° yields the
linearized NLS equation

iOpx + 95x + 2[Y[Px + Y =0,

For the standing periodic waves, the variables can be separated:
WX, 1) = u(x + ct)e 2 y(x, 1) = v(x + ct)e 2L

The spectral parameter A is found from the condition that v(x) is bounded.
Since u(x + L) = u(x) is periodic, then by Floquet theory, v(x) = w(x)e’®*,
where 6 € [-7/L,w/L] and w(x + L) = w(x).

If there exists A with Re(A) > 0 for some 6 € [—n/L, 7/L], then the standing

periodic wave is unstable in the time evolution of the NLS equation. It is
modulationally unstable if the band with Re(A) > 0 intersects A =0as 6 = 0.
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3. Stability of standing periodic waves

Relation to squared eigenfunctions

Recall the linear Lax system:

ox = U\ ), Un ) = < _AQ; —w)\ )

and

B _ i RBAERE 3kt e
pr= V(N ¥)p, V(sz/’)—’( 10 oA _32—;|w|2)’

where 1 is a solution of the NLS equation.

If  and ¢ are two linearly independent solutions of the Lax system, then

Pair | Pair Il Pair Il
X=¢5— P52 | X=p101— Pad2 | X =5 — 95
X = ipf + 1035 | x = ip191 + igage | x = idT +i¢5

are solutions of the linearized NLS equation.
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3. Stability of standing periodic waves

Relation to squared eigenfunctions

Theorem
Let X\ belongs to the Lax spectrum so that

(p(X, t) _ €(X + Ct)e—ZibagH—Qt

with £ € L*=(R). Then, Q = £i\/P(\), where P(})) is the polynomial for the
second-order Lax—Novikov equation:

P()\) = X* + 2icA3 + (2b — ¢®)\2 + 2i(a+ be) + b? — 2ac + 2d

Consequently, N = 2Q = £2i/P(\).

The proof follows from separation of variables for

& = U(\, L)e, v = “)

¢ + ot — 2ibosé = VOLUle, VL) =1 (
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3. Stability of standing periodic waves

Instability of the dnoidal periodic waves

u(x) = dn(x; k), L =2K(k).
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Figure: Left: Lax spectrum. Right: stability spectrum related by A = +2i,/P(}\).
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3. Stability of standing periodic waves

Instability of the cnoidal periodic waves

u(x) = Ken(x; k), L=4K(k).
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Figure: Left: Lax spectrum. Right: stability spectrum related by A = +2i,/P(}\).
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4. Stability of double-periodic waves

Spectral stability of double-periodic waves

For the double-periodic waves, the variables can not be separated:
w(x, 1) = [a(x, 1) + iB(t)]e" 0,

where g(x + L, t) = q(x,t+ T) = q(x, 1), B(t + T) = B(t), a(t + T) = ().
Perturbation x(x, t) to ¢(x, t) satisfies the linearized NLS equation

iOpx + 5x + 2[Y[Px + ¥PY =0,

Due to periodicity both in x and t, Floquet theory yields solutions in the form
X(x, 1) = v(x, 1)eltPA,

where v(x + L, t) = v(x,t+ T) = v(x,t), 0 € [-n/L,n/L], and where A
defines stability (unique if Im(A) € [-x/ T,/ T]).
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4. Stability of double-periodic waves

Spectral stability of double-periodic waves

Recall the linear Lax system

ox = U\ ¥)e, Un ) = ( _AQ; _wx )

and

B _ i AP Skt N
pr=V(\¥)p, V(Aﬂl’)—’( 1 XD _32—;|w|2)’

where v is a solution of the NLS equation.
By the Floquet theory both with respect to x and t, we write
(p(X, t) — f(X, t)ei0X+tQ,

Ex+LH=¢&xt+T)=¢£(x,t),0 € [—n/L,n/L], Im(Q) € [-n/T,n/T].

@ )\ is found from the Lax spectrum for ¢, = U(X, ).
@ Qis found from ¢ = V(A 9)e.

Open question: a relation between Q and P()).
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4. Stability of double-periodic waves

Instabilities of the first solution

k = 0.85 (Pelinovsky, 2021):
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Left: Lax spectrum. Right: stability spectrum.
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4. Stability of double-periodic waves

Instabilities of the second solution

k = 0.6 (Pelinovsky, 2021):
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4. Stability of double-periodic waves

Akhmediev breathers under periodic perturbation

A family of Akhmediev breathers with parameter A € (0, 1):

2(1 — A2) cosh(kAt) + ikAsinh(kAt)
cosh(kAt) — A cos(kx) ’

If the perturbation is periodic, the Lax and stability spectra are purely discrete.
There was an open question if the Akhmediev breather is linearly unstable.

P. Grinevich & P. Santini, Nonlinearity 34 (2021) 8331-8358

M. Haragus & D. Pelinovsky, J. Nonlinear Science 32 (2022) 66
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Figure: Lax spectrum (left) and stability spectrum (right) of Akhmediev breather.
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5. Summary

Other examples of integrable Hamiltonian systems

@ Modified Korteweg—de Vries equation
O+ BUPdu+d2u=0

Dnoidal periodic waves are modulationally stable.
Cnoidal periodic waves are modulationally unstable.
J. Chen & D. Pelinovsky, Nonlinearity 31 (2018) 1955—-1980

@ Sine—Gordon equation
02u— d2u +sin(u) =0

Same conclusion.
D. Pelinovsky & R. White, Proceedings A 476 (2020) 20200490

@ Derivative NLS equation
10k + 0% + i0 (|0 [2) = 0.

There exist modulationally stable periodic waves.
J. Chen, D. Pelinovsky, & J. Upsal, J. Nonlinear Science 31 (2021) 58
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5. Summary
Summary

@ Standing periodic waves are solutions of the second-order Lax—Novikov
equation. Double-periodic waves are solutions of the third-order
Lax—Novikov equation. Akhmediev and Kuznetsov—Ma breathers are
particular cases of double-periodic solutions.

@ Standing periodic waves are spectrally (modulationally) unstable, their
instability is computed from separation of variables and Floquet theory.

@ Double-periodic waves are also linearly unstable, their instability is
computed from double Floquet theory (both in x and ).

@ Akhmediev and Kuznetsov—Ma breathers are also linearly unstable.

Many thanks for your attention!
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