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dNLS and Discrete Optical Solitons

The dNLS equation

i
dEn

dz
+βEn +C (En−1 + En+1)+ γ|En|

2En = 0,

is used to model propagation of light in a
coupled array of optical waveguides.

Eisenberg et al. PRL 81, 3383 (1998)
Christodoulides et al. Nature 424, 817 (2003)
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Anti-continuum limit for the dNLS equation

Consider the discrete nonlinear Schrödinger (dNLS) equation

i u̇n + ǫ (un−1 − 2un + un+1) + |un|
2p

un = 0,

where u(·) : R → C
Z, p ≥ 1 is an integer, and ǫ ∈ R is a coupling constant.

Thanks to a numerical approximation to the second-order derivative

f ′′
n =

fn−1 − 2fn + fn+1

h2
+ O(h2),

one can think that ǫ ∼ h−2 , where h is the lattice spacing.

The anti-continuum limit is the limit of ǫ → 0 (h → ∞).
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Discrete solitons

We define discrete solitons of the dNLS as real stationary envelope φ in the
time-periodic solutions

un(t) = φne
it ,

so that
φn

(

1 − φ2p
n

)

= ǫ(φn+1 − 2φn + φn−1).

In the anti-continuum limit, ǫ → 0, we simply get

φ(0)
n

(

1 −
[

φ(0)
n

]2p
)

= 0 φ(0)
n ∈ {−1, 0, 1} ,

so it is natural to expand discrete solitons in powers of the coupling parameter,

φn = φ(0)
n + ǫφ(1)

n + ǫ2φ(2)
n + . . . .
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Properties of discrete solitons

Suppose in the anti-continuum limit discrete solitons are supported on a set

U =
{

n ∈ Z : φ(0)
n 6= 0

}

,

where N = |U| is the number of active nodes in the anti-continuum limit.

Theorem (MacKay, Aubry 94)

Suppose |U| < ∞, then for each φ(0) and sufficiently small ǫ, there are positive
constants C and κ and a unique solution φ ∈ l2(Z) such that

∥

∥

∥
φ − φ(0)

∥

∥

∥

l2
≤ C |ǫ| and |φn| ≤ Ce−κ|n|.
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Spectral stability of discrete solitons

We consider a small perturbation of a discrete soliton

un(t) = e it
[

φn + (vn + iwn) eλt + (v̄n + i w̄n) eλ̄t
]

,

with v,w ∈ C
Z and λ ∈ C spectral parameter. Linearized equations give the

eigenvalue problem,

L+v = −λw, L−w = λv,

where

(L+v)n =
(

−ǫ∆ + 1 − (2p + 1)φ2p
n

)

vn,

(L−w)n =
(

−ǫ∆ + 1 − φ2p
n

)

wn.
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Spectrum near the anti-continuum limit

1

-1

0

1 + 4ǫ

−1− 4ǫ

Imλ

Reλ

Let n0 be the number of sign differences in the
compact configuration φ

(0).
For small ǫ > 0 there are

two bands of continuous spectrum
i [−1 − 4ǫ,−1] and i [1, 1 + 4ǫ]

N − 1− n0 pairs of real eigenvalues and n0

pairs of pure imaginary eigenvaluesa

there could also be internal modes
bifurcating from continuous bands

aPelinovsky et al., Physica D 212, 1–19 (2005)
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Example N = 1

‘

φ(0)

n
Bifurcation of internal modes from the
continuous spectrum for the single-site discrete
soliton N = 1 for the cubic dNLS equation
(p = 1). Since n0 = 0 and N − 1 − n0 = 0
there are no eigenvalues bifurcating from zero

The figure is taken from P.G. Kevrekidis, The
Discrete Nonlinear Schrödinger Equation,
Springer Tracts in Modern Physics, vol. 232,
Springer, NY, 2009.
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Example N = 2

Bifurcation from the zero eigenvalue for a two-site discrete soliton with

φ
(0)
n = δn,0 + δn,1. Since n0 = 0 and N − 1 − n0 = 1,

one pair of unstable eigenvalues bifurcates along the real axis.
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The figure is taken from Pelinovsky et al., Physica D 212, 1–19 (2005).
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Example N = 2

Bifurcation from the zero eigenvalue for a two-site discrete soliton with

φ
(0)
n = δn,0 − δn,1. Since n0 = 1 and N − 1 − n0 = 0,

one pair of stable eigenvalues bifurcates along the imaginary axis.
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The figure is taken from Pelinovsky et al., Physica D 212, 1–19 (2005).
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Goal

We would like to prove that near the anti-continuum limit the spectrum of the
linearized operator has no internal modes (isolated purely imaginary eigenvalues)
near the continuous spectral bands.

We analyze the resolvent of the linearized operator using the fact that the discrete
soliton φ is compactly supported as ǫ → 0.
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The resolvent operator

Consider the eigenvalue problem

L+v + λw = 0,

L−w − λv = 0.

The resolvent R(λ) = (L − λI )
−1

is a solution operator to the corresponding

inhomogeneous problem

−ǫ (∆v)n + vn − (2p + 1)φ2p
n vn + λwn = Fn,

−ǫ (∆w)n + wn − φ2p
n wn − λvn = Gn,

where F,G ∈ l2 and

φ2p
n =

∑

m∈U

δn,m(1 + ǫχm) + ǫ2Wn,

where {χm}m∈U are some numerical coefficients and W ∈ l2(Z) is bounded
potential as ǫ → 0.
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Resolvent for the discrete Laplacian

The resolvent for the discrete Laplacian R0(λ) = (∆ − λI )−1 can be written
explicitly as

(R0(λ)f)n =
1

2i sin z(λ)

∑

m

fme−iz(λ)|n−m| ,

where z(λ), λ ∈ C is a unique solution of the transcendental equation

2(1 − cos z(λ)) = λ, Rez(λ) ∈ [−π, π), Imz(λ) ≤ 0.

If λ /∈ σ(−∆) = [0, 4], then Imz(λ) < 0, and

R0(λ) : l2 7→ l2, λ /∈ σ(−∆) = [0, 4].
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Resolvent for the discrete Laplacian

For the continuous spectrum of ∆ we define resolvent as a limit

R±
0

(ω) = lim
ǫ↓0

R0(ω ± iǫ).

Since

(R±
0

(ω)f)n =
1

2i sin θ(ω)

∑

m

fme∓iθ(ω)|n−m|, 2(1 − cos θ(ω)) = ω ∈ [0, 4].

we have

∥

∥R±
0

(ω)f
∥

∥

l∞
≤

1

2 sin θ(ω)
‖f‖l1 .

Therefore,
R±

0
(ω) : l1(Z) 7→ l∞(Z), ω ∈ (0, 4)

and resonance occurs as ω → 0 and ω → 4.
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Boundedness of the full resolvent

The following theorem formulated for λ = iΩ rules out existence of discrete
spectrum in a small neighborhood of the continuous bands.

Theorem

Suppose the set of active nodes U has no holes and p ≥ 2. There are ǫ0 > 0 and
δ > 0 such that for any fixed ǫ ∈ (0, ǫ0) the resolvent operator

R(Ω) : l2 × l2 7→ l2 × l2

is bounded for any Ω /∈ [−1 − 4ǫ,−1] ∪ Bδ(0) ∪ [1, 1 + 4ǫ]. Moreover, R(Ω) has
exactly 2N poles (with the account of their multiplicities) inside Bδ(0) and admits
the uniformly continuous limits

R±(Ω) = lim
µ↓0

R(Ω ± iµ) : l1
1
× l1

1
7→ l∞ × l∞,

for any Ω ∈ [1, 1 + 4ǫ] ∪ [ − 1 − 4ǫ,−1].
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Exceptions from the theorem

The same theorem hods for p = 1 if N = 1 (fundamental soliton).

If p = 1 and N ≥ 2, degeneracy of the resolvent operator near the end points of
the continuous spectrum at Ω = ±1 and Ω = ±(1 + 4ǫ) (resonances) requires
computations of perturbation theory beyond the first order.

If the set of active nodes U has some holes, the limiting resolvent operator is
singular in the interior points of the continuous spectrum (resonant poles).
Boundness of the resolvent operator can only be clarified with higher-order
perturbation theory.
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Two-site soliton without holes N = 2

ReΩ

Im
Ω

m = 1, p = 2, σ = 1, ε = 0.05, K = 100
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Figure: Level sets for
‚

‚(L − ΩI )−1
‚

‚

2
in Ω-plane for a discrete soliton φ supported on

U = {0, 1}. Here L is a (4K + 2) × (4K + 2) matrix approximation of operator L.
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Two-site soliton with a hole N = 2
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Figure: Level sets for
‚

‚(L − ΩI )−1
‚

‚

2
in Ω-plane for a discrete soliton φ supported on

U = {0, 2} (Left) and on U = {0, 3} (Right).
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Discussion: asymptotic stability of discrete solitons
We would like to consider asymptotic stability of discrete solitons

i u̇n + ǫ (un−1 − 2un + un+1) − Vnun + |un|
2p

un = 0,

where V : Z → R is a trapping potential.

Assume that the discrete solitons un(t) = φne
iωt exist for some ω ∈ R and are

orbitally stable in l2(R), that is, for any ǫ > 0 there is a δ(ǫ) > 0, such that if
‖u(0) − φ‖l2 ≤ δ(ǫ) then

inf
θ∈R

‖u(t) − e iθφ‖l2 ≤ ǫ,

for all t > 0.

Kevrekidis, Pelinovsky, Stefanov (2009) and Cuccagna, Tarulli (2009) proved
asymptotic stability of discrete solitons for p ≥ 3 using Stritcharz analysis.

Pelinovsky, Mizumachi (2011) improved the results with pointwise decay
estimates for p > 2.75.

No results are available for p = 1 and p = 2.
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