Internal modes of discrete solitons near the anti-continuum limit of the dNLS equation

Dmitry Pelinovsky, Anton Sakovich (McMaster University)

Physica D 240 (2011) 265-281

SIAM Conference on Dynamical Systems, Snowbird, May 24, 2011

dNLS and Discrete Optical Solitons

The dNLS equation

$$i\frac{dE_n}{dz} + \beta E_n + C\left(E_{n-1} + E_{n+1}\right) + \gamma |E_n|^2 E_n = 0,$$

is used to model propagation of light in a coupled array of optical waveguides.

Eisenberg et al. *PRL* 81, 3383 (1998) Christodoulides et al. *Nature* 424, 817 (2003)

Anti-continuum limit for the dNLS equation

Consider the discrete nonlinear Schrödinger (dNLS) equation

$$i\dot{u}_{n} + \epsilon (u_{n-1} - 2u_{n} + u_{n+1}) + |u_{n}|^{2p} u_{n} = 0,$$

where $\mathbf{u}(\cdot) : \mathbb{R} \to \mathbb{C}^{\mathbb{Z}}$, $p \ge 1$ is an integer, and $\epsilon \in \mathbb{R}$ is a coupling constant.

Thanks to a numerical approximation to the second-order derivative

$$f_n'' = rac{f_{n-1} - 2f_n + f_{n+1}}{h^2} + \mathcal{O}(h^2),$$

one can think that $\epsilon \sim h^{-2}$, where h is the lattice spacing.

The anti-continuum limit is the limit of $\epsilon \to 0 \ (h \to \infty)$.

Discrete solitons

We define *discrete solitons* of the dNLS as real stationary envelope ϕ in the time-periodic solutions

$$u_n(t) = \phi_n e^{it},$$

so that

$$\phi_n\left(1-\phi_n^{2p}\right)=\epsilon(\phi_{n+1}-2\phi_n+\phi_{n-1}).$$

In the anti-continuum limit, $\epsilon \rightarrow$ 0, we simply get

$$\phi_n^{(0)}\left(1-\left[\phi_n^{(0)}\right]^{2p}\right)=0$$
 $\phi_n^{(0)}\in\{-1,0,1\},$

so it is natural to expand discrete solitons in powers of the coupling parameter,

$$\phi_n = \phi_n^{(0)} + \epsilon \phi_n^{(1)} + \epsilon^2 \phi_n^{(2)} + \dots$$

• • • • • • • • • • •

Properties of discrete solitons

Suppose in the anti-continuum limit discrete solitons are supported on a set

$$\boldsymbol{U} = \left\{ \boldsymbol{n} \in \mathbb{Z} : \phi_{\boldsymbol{n}}^{(0)} \neq \boldsymbol{0} \right\},\,$$

where N = |U| is the number of active nodes in the anti-continuum limit.

Theorem (MacKay, Aubry 94)

Suppose $|U| < \infty$, then for each $\phi^{(0)}$ and sufficiently small ϵ , there are positive constants C and κ and a unique solution $\phi \in l^2(\mathbb{Z})$ such that

$$\left\| \phi - \phi^{(0)}
ight\|_{l^2} \leq C \left| \epsilon
ight| \quad ext{and} \quad \left| \phi_n
ight| \leq C e^{-\kappa \left| n
ight|}.$$

Spectral stability of discrete solitons

We consider a small perturbation of a discrete soliton

$$u_n(t) = e^{it} \left[\phi_n + (v_n + iw_n) e^{\lambda t} + (\bar{v}_n + i\bar{w}_n) e^{\bar{\lambda} t} \right],$$

with $\mathbf{v}, \mathbf{w} \in \mathbb{C}^{\mathbb{Z}}$ and $\lambda \in \mathbb{C}$ spectral parameter. Linearized equations give the eigenvalue problem,

$$L_+ \mathbf{v} = -\lambda \mathbf{w}, \qquad L_- \mathbf{w} = \lambda \mathbf{v},$$

where

$$(L_{+}\mathbf{v})_{n} = (-\epsilon\Delta + 1 - (2p+1)\phi_{n}^{2p}) v_{n}, (L_{-}\mathbf{w})_{n} = (-\epsilon\Delta + 1 - \phi_{n}^{2p}) w_{n}.$$

Spectrum near the anti-continuum limit

Let n_0 be the number of sign differences in the compact configuration $\phi^{(0)}$. For small $\epsilon > 0$ there are

- two bands of continuous spectrum $i[-1-4\epsilon,-1]$ and $i[1,1+4\epsilon]$
- $N 1 n_0$ pairs of real eigenvalues and n_0 pairs of pure imaginary eigenvalues^a
- there could also be internal modes bifurcating from continuous bands

^aPelinovsky et al., Physica D 212, 1-19 (2005)

Example N = 1

Bifurcation of internal modes from the continuous spectrum for the single-site discrete soliton N = 1 for the cubic dNLS equation (p = 1). Since $n_0 = 0$ and $N - 1 - n_0 = 0$ there are no eigenvalues bifurcating from zero

The figure is taken from P.G. Kevrekidis, *The Discrete Nonlinear Schrödinger Equation*, Springer Tracts in Modern Physics, vol. 232, Springer, NY, 2009.

Example N = 2

Bifurcation from the zero eigenvalue for a two-site discrete soliton with $\phi_n^{(0)} = \delta_{n,0} + \delta_{n,1}$. Since $n_0 = 0$ and $N - 1 - n_0 = 1$, one pair of unstable eigenvalues bifurcates along the real axis.

The figure is taken from Pelinovsky et al., Physica D 212, 1-19 (2005).

Example N = 2

Bifurcation from the zero eigenvalue for a two-site discrete soliton with $\phi_n^{(0)} = \delta_{n,0} - \delta_{n,1}$. Since $n_0 = 1$ and $N - 1 - n_0 = 0$, one pair of stable eigenvalues bifurcates along the imaginary axis.

The figure is taken from Pelinovsky et al., Physica D 212, 1-19 (2005).

We would like to prove that near the anti-continuum limit the spectrum of the linearized operator has no internal modes (isolated purely imaginary eigenvalues) near the continuous spectral bands.

We analyze the *resolvent* of the linearized operator using the fact that the discrete soliton ϕ is compactly supported as $\epsilon \rightarrow 0$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The resolvent operator

Consider the eigenvalue problem

$$L_{+}\mathbf{v} + \lambda \mathbf{w} = 0,$$

$$L_{-}\mathbf{w} - \lambda \mathbf{v} = 0.$$

The resolvent $R(\lambda) = (\mathcal{L} - \lambda I)^{-1}$ is a solution operator to the corresponding inhomogeneous problem

$$-\epsilon \left(\Delta \mathbf{v}\right)_{n} + v_{n} - (2p+1)\phi_{n}^{2p}v_{n} + \lambda w_{n} = F_{n}, -\epsilon \left(\Delta \mathbf{w}\right)_{n} + w_{n} - \phi_{n}^{2p}w_{n} - \lambda v_{n} = G_{n},$$

where $\boldsymbol{\mathsf{F}},\boldsymbol{\mathsf{G}}\in \mathit{I}^2$ and

$$\phi_n^{2p} = \sum_{m \in U} \delta_{n,m} (1 + \epsilon \chi_m) + \epsilon^2 W_n,$$

where $\{\chi_m\}_{m\in U}$ are some numerical coefficients and $\mathbf{W} \in l^2(\mathbb{Z})$ is bounded potential as $\epsilon \to 0$.

Resolvent for the discrete Laplacian

The resolvent for the discrete Laplacian $R_0(\lambda) = (\Delta - \lambda I)^{-1}$ can be written explicitly as

$$(R_0(\lambda)\mathbf{f})_n = \frac{1}{2i\sin z(\lambda)} \sum_m f_m e^{-iz(\lambda)|n-m|}$$

where $z(\lambda)$, $\lambda \in \mathbb{C}$ is a unique solution of the transcendental equation

$$2(1 - \cos z(\lambda)) = \lambda$$
, $\operatorname{Re} z(\lambda) \in [-\pi, \pi)$, $\operatorname{Im} z(\lambda) \leq 0$.

If $\lambda \notin \sigma(-\Delta) = [0, 4]$, then $\operatorname{Im} z(\lambda) < 0$, and $R_0(\lambda) : l^2 \mapsto l^2, \qquad \lambda \notin \sigma(-\Delta) = [0, 4].$

Resolvent for the discrete Laplacian

For the continuous spectrum of Δ we define resolvent as a limit

$$R_0^{\pm}(\omega) = \lim_{\epsilon \downarrow 0} R_0(\omega \pm i\epsilon).$$

Since

$$(R_0^{\pm}(\omega)\mathbf{f})_n = \frac{1}{2i\sin\theta(\omega)}\sum_m f_m e^{\mp i\theta(\omega)|n-m|}, \qquad 2(1-\cos\theta(\omega)) = \omega \in [0,4].$$

we have

$$ig\| R_0^\pm(\omega) \mathbf{f} ig\|_{I^\infty} \hspace{0.2cm} \leq \hspace{0.2cm} rac{1}{2 \sin heta(\omega)} \, \| \mathbf{f} \|_{I^1} \, .$$

Therefore,

$${\mathcal R}^\pm_0(\omega): l^1({\mathbb Z})\mapsto l^\infty({\mathbb Z}), \qquad \omega\in {ig(0,4)}$$

and resonance occurs as $\omega \rightarrow 0$ and $\omega \rightarrow 4$.

Boundedness of the full resolvent

The following theorem formulated for $\lambda = i\Omega$ rules out existence of discrete spectrum in a small neighborhood of the continuous bands.

Theorem

Suppose the set of active nodes U has no holes and $p \ge 2$. There are $\epsilon_0 > 0$ and $\delta > 0$ such that for any fixed $\epsilon \in (0, \epsilon_0)$ the resolvent operator

 $R(\Omega): l^2 \times l^2 \mapsto l^2 \times l^2$

is bounded for any $\Omega \notin [-1 - 4\epsilon, -1] \cup B_{\delta}(0) \cup [1, 1 + 4\epsilon]$. Moreover, $R(\Omega)$ has exactly 2N poles (with the account of their multiplicities) inside $B_{\delta}(0)$ and admits the uniformly continuous limits

$$R^{\pm}(\Omega) = \lim_{\mu \downarrow 0} R(\Omega \pm i\mu) : l_1^1 \times l_1^1 \mapsto l^{\infty} \times l^{\infty},$$

for any $\Omega \in [1, 1+4\epsilon] \cup [-1-4\epsilon, -1]$.

(日) (周) (日) (日)

Exceptions from the theorem

The same theorem hods for p = 1 if N = 1 (fundamental soliton).

If p = 1 and $N \ge 2$, degeneracy of the resolvent operator near the end points of the continuous spectrum at $\Omega = \pm 1$ and $\Omega = \pm (1 + 4\epsilon)$ (resonances) requires computations of perturbation theory beyond the first order.

If the set of active nodes *U* has some holes, the limiting resolvent operator is singular in the interior points of the continuous spectrum (resonant poles). Boundness of the resolvent operator can only be clarified with higher-order perturbation theory.

イロト イポト イヨト イヨト

Two-site soliton without holes N = 2

Figure: Level sets for $\|(L - \Omega I)^{-1}\|_2$ in Ω -plane for a discrete soliton ϕ supported on $U = \{0, 1\}$. Here L is a $(4K + 2) \times (4K + 2)$ matrix approximation of operator \mathcal{L} .

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Two-site soliton with a hole N = 2

Figure: Level sets for $\|(L - \Omega I)^{-1}\|_2$ in Ω -plane for a discrete soliton ϕ supported on $U = \{0, 2\}$ (Left) and on $U = \{0, 3\}$ (Right).

イロト 不得下 イヨト イヨ

Discussion: asymptotic stability of discrete solitons

We would like to consider asymptotic stability of discrete solitons

$$\left| i\dot{u}_{n} + \epsilon \left(u_{n-1} - 2u_{n} + u_{n+1} \right) - V_{n}u_{n} + \left| u_{n} \right|^{2p} u_{n} = 0,$$

where $V : \mathbb{Z} \to \mathbb{R}$ is a trapping potential.

Assume that the discrete solitons $u_n(t) = \phi_n e^{i\omega t}$ exist for some $\omega \in \mathbb{R}$ and are orbitally stable in $l^2(\mathbb{R})$, that is, for any $\epsilon > 0$ there is a $\delta(\epsilon) > 0$, such that if $||u(0) - \phi||_{l^2} \le \delta(\epsilon)$ then

$$\inf_{\theta\in\mathbb{R}}\|u(t)-e^{i\theta}\phi\|_{l^2}\leq\epsilon,$$

for all t > 0.

- Kevrekidis, Pelinovsky, Stefanov (2009) and Cuccagna, Tarulli (2009) proved asymptotic stability of discrete solitons for $p \ge 3$ using Stritcharz analysis.
- Pelinovsky, Mizumachi (2011) improved the results with pointwise decay estimates for p > 2.75.
- No results are available for p = 1 and p = 2.

f

(日) (周) (日) (日)