# Iteration method for nonlinear wave equations 

## Dmitry Pelinovsky

Department of Mathematics, McMaster University, Canada

Joint work with Yury Stepanyants (ANSTO, Australia) SIAM J. Numer. Anal. 42, 1110-1127 (2004)

Department of Mathematics, Purdue University, January 21, 2005

■ History of Petviashvili's algorithm Proof of convergence
Applications and numerical issues

■ History of Petviashvili's algorithm

- Proof of convergence

Applications and numerical issues

Nonlinear wave equation:

$$
u_{t}+u^{p} u_{x}+(\mathcal{L} u)_{x}=0
$$

■ History of Petviashvili's algorithm

- Proof of convergence

Applications and numerical issues

Nonlinear wave equation:

$$
u_{t}+u^{p} u_{x}+(\mathcal{L} u)_{x}=0
$$

- KdV equation $\mathcal{L}=\partial_{x}^{2}$
- BO equation $\mathcal{L}=\partial_{x} H$
- ZK equation $\mathcal{L}=\partial_{x}^{2}+\partial_{y}^{2}$
- KP equation $\mathcal{L}=\partial_{x}^{2}-\partial_{x}^{-2} \partial_{y}^{2}$

Kadomtsev-Petviashvili (KP-I) equation

$$
\left(u_{t}+2 u u_{x}+u_{x x x}\right)_{x}=u_{y y}
$$

Travelling wave solutions for $u(x, y, t)=\Phi(x-c t, y)$ :

$$
\left(c-\partial_{x}^{2}+\partial_{x}^{-2} \partial_{y}^{2}\right) \Phi(x, y)=\Phi^{2}(x, y)
$$

## Kadomtsev-Petviashvili (KP-I) equation

$$
\left(u_{t}+2 u u_{x}+u_{x x x}\right)_{x}=u_{y y}
$$

Travelling wave solutions for $u(x, y, t)=\Phi(x-c t, y)$ :

$$
\left(c-\partial_{x}^{2}+\partial_{x}^{-2} \partial_{y}^{2}\right) \Phi(x, y)=\Phi^{2}(x, y)
$$

such that

$$
c>0, \quad \Phi(x, y) \in L^{2}\left(\mathbb{R}^{2}\right),
$$

and

$$
\int_{-\infty}^{\infty} \Phi(x, y) d x=0, \quad \text { for any } \quad y \in \mathbb{R}
$$

Double Fourier transform:

$$
\Phi(x, y) \mapsto \Phi\left(k_{x}, k_{y}\right)=\iint_{\mathbb{R}^{2}} \Phi(x, y) e^{-i k_{x} x-i k_{y} y} d x d y
$$

Bound-state problem:

$$
\left(c+k_{x}^{2}+k_{x}^{-2} k_{y}^{2}\right) \hat{\Phi}\left(k_{x}, k_{y}\right)=\hat{\Phi^{2}}\left(k_{x}, k_{y}\right)
$$

such that

$$
c>0, \quad \hat{\Phi} \in L^{2}\left(\mathbb{R}^{2}\right), \quad \hat{\Phi}\left(0, k_{y}\right)=0
$$

Naive iteration algorithm:

$$
\hat{u}_{n+1}\left(k_{x}, k_{y}\right)=\frac{\hat{u}_{n}^{2}\left(k_{x}, k_{y}\right)}{c+k_{x}^{2}+k_{x}^{-2} k_{y}^{2}}
$$

Bad news: the algorithms always diverges!

## Solution by Petviashvili (1976)

## Iterations with a stabilizing factor:

$$
\hat{u}_{n+1}\left(k_{x}, k_{y}\right)=M_{n}^{\gamma} \frac{\hat{u_{n}^{2}}\left(k_{x}, k_{y}\right)}{c+k_{x}^{2}+k_{x}^{-2} k_{y}^{2}},
$$

where

$$
M_{n}=\frac{\iint_{\mathbb{R}^{2}} d k_{x} d k_{y}\left(c+k_{x}^{2}+k_{x}^{-2} k_{y}^{2}\right)\left(\hat{u}_{n}\right)^{2}}{\iint_{\mathbb{R}^{2}} d k_{x} d k_{y} \hat{u}_{n} \hat{u_{n}^{2}}(k)}
$$

## Solution by Petviashvili (1976)

## Iterations with a stabilizing factor:

$$
\hat{u}_{n+1}\left(k_{x}, k_{y}\right)=M_{n}^{\gamma} \frac{\hat{u_{n}^{2}}\left(k_{x}, k_{y}\right)}{c+k_{x}^{2}+k_{x}^{-2} k_{y}^{2}},
$$

where

$$
M_{n}=\frac{\iint_{\mathbb{R}^{2}} d k_{x} d k_{y}\left(c+k_{x}^{2}+k_{x}^{-2} k_{y}^{2}\right)\left(\hat{u}_{n}\right)^{2}}{\iint_{\mathbb{R}^{2}} d k_{x} d k_{y} \hat{u}_{n} \hat{u_{n}^{2}}(k)}
$$

- Fixed points of iterations coincide with solutions of the problem.
- Algorithm converges if $1<\gamma<3$ for any $c>0$
- Convergence is the fastest at $\gamma=2$
- The bound state $\Phi(x, y)$ exists for any $c>0$, such that $\Phi \in L^{2}\left(\mathbb{R}^{2}\right)$ but $\Phi \notin L^{1}\left(\mathbb{R}^{2}\right)$


## Results on KP1 lumps (solitons)

- Exact analytical expression for $\Phi(x, y)$ (Zakharov et al, 1977):

$$
\Phi(x, y)=12 c \frac{3+c^{2} y^{2}-c x^{2}}{\left(3+c^{2} y^{2}+c x^{2}\right)^{2}}
$$

- Inverse scattering transform for KPI equation (Ablowitz, Fokas, 1983)
- Non-uniqueness of non-positive bound states $\Phi(x, y)$ (Pelinovsky, 1993)


- No proof of convergence
- "Spurious" multi-humped lumps
- Applicability to other nonlinear wave equations
- Assume existence of a bound state $\Phi(x, y)$
- Consider a special self-similar sequence:

$$
\hat{u}_{n}\left(k_{x}, k_{y}\right)=x_{n} \hat{\Phi}\left(k_{x}, k_{y}\right)
$$

- $x_{n}$ satisfy the power iteration map:

$$
x_{n+1}=x_{n}^{2-\gamma}, \quad M_{n}=x_{n}^{-1}
$$

- Assume existence of a bound state $\Phi(x, y)$
- Consider a special self-similar sequence:

$$
\hat{u}_{n}\left(k_{x}, k_{y}\right)=x_{n} \hat{\Phi}\left(k_{x}, k_{y}\right)
$$

- $x_{n}$ satisfy the power iteration map:

$$
x_{n+1}=x_{n}^{2-\gamma}, \quad M_{n}=x_{n}^{-1}
$$

- Power iteration map converges for $1<\gamma<3$.
- When $\gamma=2$, convergence occurs in a single iteration.
- There exists at least one sequence $\left\{x_{n} \hat{\Phi}\left(k_{x}, k_{y}\right)\right\}_{n=0}^{\infty}, x_{0}>0$, that converges to $\hat{\Phi}\left(k_{x}, k_{y}\right)$.


## Convergence of a self-similar sequence



- $\gamma=1.1$ - monotonic convergence
- $\gamma=2.0$ - fastest convergence
- $\gamma=2.9$ - sign-alternating convergence

$$
\hat{u}_{n} \mapsto \hat{u}_{n+1}=\mathcal{A}\left(\hat{u}_{n}\right), \quad u_{n} \in X\left(\mathbb{R}^{2}\right)
$$

Bound state is a fixed point of $\mathcal{A}$ :

$$
\hat{\Phi}=\mathcal{A}(\hat{\Phi}), \quad \Phi \in X\left(\mathbb{R}^{2}\right)
$$

Theorem: If $\mathcal{A}\left(\hat{u}_{n}\right)$ has a continuous Frechet derivative $\mathcal{A}^{\prime}\left(\hat{u}_{n}\right)$ in a small open neighborhood of $\hat{\Phi}$ in $X\left(\mathbb{R}^{2}\right)$ and the spectral radius of $\mathcal{A}^{\prime}(\hat{\Phi})$ is smaller than one, then there is a small open ball $S(\hat{\Phi}, \delta) \in X\left(\mathbb{R}^{2}\right)$ such that

$$
\|\mathcal{A}(\hat{f})-\mathcal{A}(\hat{g})\|_{X\left(\mathbb{R}^{2}\right)} \leq q\|\hat{f}-\hat{g}\|_{X\left(\mathbb{R}^{2}\right)}, \quad \forall \hat{f}, \hat{g} \in S(\hat{\Phi}, \delta)
$$

where

$$
q=\sup _{\hat{u}_{n} \in S(\hat{\Phi}, \delta)}\left\|\mathcal{A}^{\prime}\left(\hat{u}_{n}\right)\right\|<1
$$

- Linearize the nonlinear iteration map with

$$
\hat{w}_{n}\left(k_{x}, k_{y}\right)=\hat{u}_{n}\left(k_{x}, k_{y}\right)-\hat{\Phi}\left(k_{x}, k_{y}\right),
$$

and

$$
m_{n}=M_{n}-1
$$

- Linearized iteration map:

$$
\hat{w}_{n+1}\left(k_{x}, k_{y}\right)=\gamma m_{n} \hat{\Phi}\left(k_{x}, k_{y}\right)+2 \frac{\hat{\Phi}\left(k_{x}, k_{y}\right) * \hat{w}_{n}\left(k_{x}, k_{y}\right)}{c+k_{x}^{2}+k_{x}^{-2} k_{y}^{2}}
$$

such that

$$
m_{n}=-\frac{\left\langle\Phi^{2}, w_{n}\right\rangle}{\left\langle\Phi^{2}, \Phi\right\rangle}
$$

- Constrained function space $X_{p}\left(\mathbb{R}^{2}\right)$ :

$$
X_{p}=\left\{U \in X\left(\mathbb{R}^{2}\right):\left\langle\Phi^{2}, U\right\rangle=0\right\}
$$

## Homogeneous linearization problem

In Fourier space,

$$
\hat{q}_{n+1}\left(k_{x}, k_{y}\right)=2 \frac{\hat{\Phi}\left(k_{x}, k_{y}\right) * \hat{q}_{n}\left(k_{x}, k_{y}\right)}{c+k_{x}^{2}+k_{x}^{-2} k_{y}^{2}}
$$

In physical space,
where

$$
q_{n+1}(x, y)=q_{n}(x, y)-(c+\mathcal{L})^{-1} \mathcal{H} q_{n}(x, y) .
$$

$$
\mathcal{L}=-\partial_{x}^{2}+\partial_{x}^{-2} \partial_{y}^{2}, \quad \mathcal{H}=c+\mathcal{L}-2 \Phi(x, y)
$$

Consider the generalized eigenvalue problem:

$$
\mathcal{H} U=\lambda(c+\mathcal{L}) U
$$

equipped with the sign-definite inner product:

$$
\langle U,(c+\mathcal{L}) V\rangle
$$

## Decompositions and projections

- There exists a solution $U=\Phi$ for $\lambda=-1$, such that $(c+\mathcal{L}) \Phi=\Phi^{2}$
- There exists a solution $U=\Phi_{x}, \Phi_{y}$ for $\lambda=0$
- There exists a solution $U=\Phi$ for $\lambda=-1$, such that $(c+\mathcal{L}) \Phi=\Phi^{2}$
- There exists a solution $U=\Phi_{x}, \Phi_{y}$ for $\lambda=0$
- There exists an orthogonal decomposition:

$$
\hat{w}_{n}=a_{n} \hat{\Phi}\left(k_{x}, k_{y}\right)+\hat{q}_{n}
$$

such that
$\circ a_{n}=-m_{n}$

- $m_{n+1}=(2-\gamma) m_{n}$
- $\left\langle\Phi^{2}, q_{n}\right\rangle=0$
- There exists a solution $U=\Phi$ for $\lambda=-1$, such that $(c+\mathcal{L}) \Phi=\Phi^{2}$
- There exists a solution $U=\Phi_{x}, \Phi_{y}$ for $\lambda=0$
- There exists an orthogonal decomposition:

$$
\hat{w}_{n}=a_{n} \hat{\Phi}\left(k_{x}, k_{y}\right)+\hat{q}_{n},
$$

such that
$\circ a_{n}=-m_{n}$

- $m_{n+1}=(2-\gamma) m_{n}$
- $\left\langle\Phi^{2}, q_{n}\right\rangle=0$
- $\lim _{n \rightarrow \infty} m_{n}=0$ if and only if $1<\gamma<3$
- $\lim _{n \rightarrow \infty} q_{n}(x, y)=0$ if and only if $0<\lambda<2$ where $\lambda$ are eigenvalues of $\mathcal{H} U=\lambda \mathcal{L} U$ in $X_{p}\left(\mathbb{R}^{2}\right)$
- The spectrum of $\mathcal{H}$ in $L^{2}\left(\mathbb{R}^{2}\right)$ consists of $n(\mathcal{H})$ negative eigenvalues, $z(\mathcal{H})$ zero eigenvalues, and the rest of the spectrum is bounded away of zero.
- The spectrum of $\mathcal{H}$ in $L^{2}\left(\mathbb{R}^{2}\right)$ consists of $n(\mathcal{H})$ negative eigenvalues, $z(\mathcal{H})$ zero eigenvalues, and the rest of the spectrum is bounded away of zero.
- There exists $n(\mathcal{H})-1$ negative eigenvalues of $\mathcal{H}$ in $X_{p}\left(\mathbb{R}^{2}\right)$

$$
\mathcal{H} U=\mu U-\nu \Phi^{2}, \quad U \in X_{p}\left(\mathbb{R}^{2}\right)
$$

- The spectrum of $\mathcal{H}$ in $L^{2}\left(\mathbb{R}^{2}\right)$ consists of $n(\mathcal{H})$ negative eigenvalues, $z(\mathcal{H})$ zero eigenvalues, and the rest of the spectrum is bounded away of zero.
- There exists $n(\mathcal{H})-1$ negative eigenvalues of $\mathcal{H}$ in $X_{p}\left(\mathbb{R}^{2}\right)$

$$
\mathcal{H} U=\mu U-\nu \Phi^{2}, \quad U \in X_{p}\left(\mathbb{R}^{2}\right)
$$

- There exists $n(\mathcal{H})-1$ negative eigenvalues of $(c+\mathcal{L})^{-1} \mathcal{H}$ in $X_{p}\left(\mathbb{R}^{2}\right)$

$$
\langle U, \mathcal{H} U\rangle=\sum_{\sigma(\mathcal{H})} \mu_{k}\left\langle U_{k}, U_{k}\right\rangle=\sum_{\sigma\left((c+\mathcal{L})^{-1} \mathcal{H}\right)} \lambda_{k}\left\langle U_{k},(c+\mathcal{L}) U_{k}\right\rangle
$$

- Equivalent form:

$$
(c+\mathcal{L}) U=\frac{2}{1-\lambda} \Phi(x, y) U
$$

- Equivalent form:

$$
\mathcal{M} V=\frac{1-\lambda}{2} V, \quad \mathcal{M}=(c+\mathcal{L})^{-1 / 2} \Phi(x, y)(c+\mathcal{L})^{-1 / 2}
$$

- Equivalent form:

$$
(c+\mathcal{L}) U=\frac{2}{1-\lambda} \Phi(x, y) U
$$

- Equivalent form:

$$
\mathcal{M} V=\frac{1-\lambda}{2} V, \quad \mathcal{M}=(c+\mathcal{L})^{-1 / 2} \Phi(x, y)(c+\mathcal{L})^{-1 / 2}
$$

- There exist infinitely many isolated eigenvalues $\lambda$ in the interval $0<$ $\lambda<1$ that accumulate to $\lambda \rightarrow 1^{-}$
- Equivalent form:

$$
(c+\mathcal{L}) U=\frac{2}{1-\lambda} \Phi(x, y) U
$$

- Equivalent form:

$$
\mathcal{M} V=\frac{1-\lambda}{2} V, \quad \mathcal{M}=(c+\mathcal{L})^{-1 / 2} \Phi(x, y)(c+\mathcal{L})^{-1 / 2}
$$

- There exist infinitely many isolated eigenvalues $\lambda$ in the interval $0<$ $\lambda<1$ that accumulate to $\lambda \rightarrow 1^{-}$
- When $\Phi \geq 0$, no eigenvalues exist for $\lambda>1$
- Equivalent form:

$$
(c+\mathcal{L}) U=\frac{2}{1-\lambda} \Phi(x, y) U
$$

- Equivalent form:

$$
\mathcal{M} V=\frac{1-\lambda}{2} V, \quad \mathcal{M}=(c+\mathcal{L})^{-1 / 2} \Phi(x, y)(c+\mathcal{L})^{-1 / 2}
$$

- There exist infinitely many isolated eigenvalues $\lambda$ in the interval $0<$ $\lambda<1$ that accumulate to $\lambda \rightarrow 1^{-}$
- When $\Phi \geq 0$, no eigenvalues exist for $\lambda>1$
- When $\Phi$ is sign-indefinite, there exists infinitely many isolated eigenvalues $\lambda$ in the interval $1<\lambda<\lambda_{\text {max }}$ that accumulate to $\lambda \rightarrow 1^{+}$

$$
\lambda=1-2 \frac{\langle U, \Phi U\rangle}{\langle U,(c+\mathcal{L}) U\rangle}, \quad \lambda_{\max }<1+\frac{2}{c}\left|\min _{(x, y) \in \mathbb{R}^{2}} \Phi(x, y)\right|
$$



## Convergence of the algorithm for KP-I equation

- $1<\gamma<3$ with the maximal rate at $\gamma=2$
- $n(\mathcal{H})=1$
- $\lambda_{\max }<1+1=2$, since

$$
\min _{(x, y) \in \mathbb{R}^{2}} \Phi(x, y)=\Phi\left( \pm \frac{3}{\sqrt{c}}, 0\right)=-\frac{c}{2}
$$

- $1<\gamma<3$ with the maximal rate at $\gamma=2$
- $n(\mathcal{H})=1$
- $\lambda_{\max }<1+1=2$, since

$$
\min _{(x, y) \in \mathbb{R}^{2}} \Phi(x, y)=\Phi\left( \pm \frac{3}{\sqrt{c}}, 0\right)=-\frac{c}{2} .
$$

Extension to the generalized KP-I equation:

$$
\left(c-\partial_{x}^{2}+\partial_{x}^{-2} \partial_{y}^{2}\right) \Phi(x, y)=\Phi^{p}(x, y), \quad p=2,3,4
$$

- Proof of existence for $p=2,3,4$ by A. de Bourd, J.C.Saut (1997)
- Proof of non-existence for $p \geq 5$ by Y. Liu and X.P. Wang (1997)


## Numerical solutions for $p=2,3,4$




- Systematic proof of convergence of the iteration method
- Applications to classes of KdV, BO, ZK, and KP equations
- Analysis of single-humped and multi-humped nonlinear waves
- Possibility of generalizations

