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Nonlinear wave equation:
ug + uPuy + (Lu), =0

e KdV equation £ = 9?

e BO equation £ =0,H

e ZK equation £ = 0, + 0,

e KP equation £ = 0; — 0,70,



Kadomtsev—Petviashvili (KP-I) equation
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Kadomtsev—Petviashvili (KP-I) equation

Travelling wave solutions for u(z,y,t) = &(x — ct, y):
(c= 02 +0,%03) ®lx,y) = ¥(x,y)

such that

c >0, O(z,y) € LA(R?),
and

O
/ O(x,y)de =0, for any yeR



Double Fourier transform:

Vo,y) o bllosky) = [ [ @) e e ivduy
R

Bound-state problem:
(c 2 k;%;) b(ky, ky) = D2(ky, ky)
such that

AN

¢ >0, O e LA(R?), b0, ky) = 0.

Naive iteration algorithm:

ﬂ%<kl‘v ky)
c+ k3 + ki °k?

ﬂn—I—l(’ZCCUa ky) —

Bad news: the algorithms always diverges!



Iterations with a stabilizing factor

M U (kx,ky)
Yot k24 ky k2

@n—l—l(k% ky)

where

[z dkadky (¢ + k3 + ki 2ks) (dn)?

Mn:



Iterations with a stabilizing factor

X u2 (ky, ky)
Gy 11 (kg k) = M) R
wrilbe, ) = Yot k24 ky k2

where

[z dkadky (¢ + k3 + ki 2ks) (dn)?

an:

o Fixed points of iterations coincide with solutions of the problem.
o Algorithm converges if 1 < v < 3 for any ¢ > 0
o Convergence is the fastest at v = 2

o The bound state ®(x,y) exists for any ¢ > 0, such that
® € L*(R?) but & ¢ LI(R?)



o Exact analytical expression for ®(x,y) (Zakharov et al, 1977):
3+ c2y2 — cx?
(3 + 2y? + cx?)?

o Inverse scattering transform for KPI equation (Ablowitz, Fokas, 1983)

d(x,y) = 12c

o Non-uniqueness of non-positive bound states ®(x, y) (Pelinovsky, 1993)




o No proof of convergence
o "Spurious” multi-humped lumps

o Applicability to other nonlinear
wave equations




o Assume existence of a bound state ¢(x, y)

o Consider a special self-similar sequence:

o oy, satisty the power iteration map:
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o Assume existence of a bound state ¢(x, y)

o Consider a special self-similar sequence:
o oy, satisty the power iteration map:

2— —1
In+1 = In Va Mp =z, "

o Power iteration map converges for 1 < v < 3.
o When v = 2, convergence occurs in a single iteration.

o There exists at least one sequence {z,®(k,, ky) oo o, vo > 0, that

converges to @(/@E, ky).
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o« = 1.1 - monotonic convergence
o v = 2.0 - fastest convergence

o v = 2.9 - sign-alternating convergence



Bound state is a fixed point of A:
O = A(D), d € X(R?)

Theorem: If A(i,) has a continuous Frechet derivative A’ (i)
in a small open neighborhood of ® in X (R?) and the spectral
radius of A'(d) is smaller than one, then there is a small
open ball S(®,6) € X(R?) such that

JA(f) — A() llxmey  Vf.0€S(d,0)

where

X(

q =51, g5l A (@)l < 1



o Linearize the nonlinear iteration map with

and

o Linearized iteration map:

AN

X . S (ky, ky) x W (K, k’y)
W ky, ky) = ymn®(ky, ky) + 2
1 (b y) Y P (ky y) oy k% N k;zkz

)

such that
<CI)27 wn>
(92, D)

mn:_

o Constrained function space X,(R?):
X, ={U € X(R?) : (&* U) = 0}.



In Fourier space,

qAn—l—l(k‘ZIh ky) = 2

AN

c+ k2 + kg °k2

In physical space,

Ini1(2,y) = qnl(z,y) — (c + L) " Han(z, ).
where

L=—-0;+09;°0;, H=c+L—20(z,y)

Consider the generalized eigenvalue problem:
HU = XNc+ L)U
equipped with the sign-definite inner product:
(U, (c+ L)V)



o There exists a solution U = ® for A = —1, such that (¢ + £)d = 7

o There exists a solution U = g, &y for A =0



o There exists a solution U = ® for A = —1, such that (¢ + £)d = 7
o There exists a solution U = g, &y for A =0

o There exists an orthogonal decomposition:

/U/\]fn/ — ancp(kx, k'y) —I_ qA’n,7
such that
©0p = —Mn

O Mp+1 = (2—7)mnp
© <(I)27 Qn> =0



o There exists a solution U = ® for A = —1, such that (¢ + £)d = 7
o There exists a solution U = g, &y for A =0

o There exists an orthogonal decomposition:

wn — anci)(kx, k'y) _I_ qA’n,7
such that

©0p = —Mn
O Mp+1 = (2—7)mnp
O <(I)27 qn> — O
olimpy—oomp =0ifandonlyif 1 <v <3

o limyp— 00 gn(x,y) = 0 if and only if 0 < A < 2 where \ are eigenvalues

of HU = ALU in X,(R?)
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of zero.
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o The spectrum of H in L?(R?) consists of n(H) negative eigenvalues,
2(H) zero eigenvalues, and the rest of the spectrum is bounded away
of zero.

o There exists n(H) — 1 negative eigenvalues of H in Xp(RQ)
HU = puU — v®?, U € X,(R?)
o There exists n(H) — 1 negative eigenvalues of (¢ + £)7'H in X,(R?)
YU € Xp(R?) :

(UHU) =Y welUp, Uy = > Mp{Up, (c+ L)Uy)
o(H) o((c+L)~'H)



o Equivalent form:

o Equivalent form:
1— A
MV =—"V, M= (c+ L)o@, y) e+ L)/
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o Equivalent form:

(c+ LU = —(x,y)U

o Equivalent form:

MV — %v, M = (c+ £)"V20(z, y)(c + £)2

o There exist infinitely many isolated eigenvalues A in the interval 0 <
A < 1 that accumulate to A — 1™

o When ® > 0, no eigenvalues exist for A > 1

o When @ is sign-indefinite, there exists infinitely many isolated eigen-
values ) in the interval 1 < \ < Apax that accumulate to A — 17T



U, dU 2
< > )\maX < 1 —|_ - mil’l (I)(Qj, y)

A=1—2
(U, (c+ L)U)’ C |(x,y)ER?




o1 < v < 3 with the maximal rate at v = 2
on(H) =1
O Amax < 1+ 1 =2, since

3 C
min P(x,y) = (:l:—,()) = ——.
(z,y)ER? (@,9) Ve 2



o1 < v < 3 with the maximal rate at v = 2
on(H) =1

O Amax < 1+ 1 =2, since

3 C
min P(x,y) = (:l:—,()) = ——.
(z,y)ER? (@,9) Ve 2

Extension to the generalized KP-I equation:
(c= 02 +0;20) 0(w,y) = W(z,y),  p=234

o Proof of existence for p = 2,3,4 by A. de Bourd, J.C.Saut (1997)
o Proof of non-existence for p > 5 by Y. Liu and X.P. Wang (1997)



-
5]

0.5 L
Q J 10 20 30 40

Mumber of iterations



e Systematic proof of convergence of the iteration
method

e Applications to classes of KdV, BO, ZK, and KP
equations

e Analysis of single-humped and multi-humped non-
linear waves

e Possibility of generalizations



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

