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Nonlinear wave equation:

ut + upux + (Lu)x = 0

•KdV equation L = ∂2
x

•BO equation L = ∂xH

• ZK equation L = ∂2
x + ∂2

y

•KP equation L = ∂2
x − ∂−2

x ∂2
y
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The Problem

Kadomtsev–Petviashvili (KP-I) equation

(ut + 2uux + uxxx)x = uyy

Travelling wave solutions for u(x, y, t) = Φ(x− ct, y):(
c− ∂2

x + ∂−2
x ∂2

y

)
Φ(x, y) = Φ2(x, y),
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The Problem

Kadomtsev–Petviashvili (KP-I) equation

(ut + 2uux + uxxx)x = uyy

Travelling wave solutions for u(x, y, t) = Φ(x− ct, y):(
c− ∂2

x + ∂−2
x ∂2

y

)
Φ(x, y) = Φ2(x, y),

such that

c > 0, Φ(x, y) ∈ L2(R2),
and ∫ ∞

−∞
Φ(x, y)dx = 0, for any y ∈ R
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Iterative Solution

Double Fourier transform:

Φ(x, y) 7→ Φ̂(kx, ky) =

∫ ∫
R2

Φ(x, y) e−ikxx−ikyydxdy

Bound-state problem:(
c + k2

x + k−2
x k2

y

)
Φ̂(kx, ky) = Φ̂2(kx, ky)

such that

c > 0, Φ̂ ∈ L2(R2), Φ̂(0, ky) = 0.

Naive iteration algorithm:

ûn+1(kx, ky) =
û2

n(kx, ky)

c + k2
x + k−2

x k2
y

Bad news: the algorithms always diverges!
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Solution by Petviashvili (1976)

Iterations with a stabilizing factor:

ûn+1(kx, ky) = M
γ
n

û2
n(kx, ky)

c + k2
x + k−2

x k2
y

,

where

Mn =

∫∫
R2 dkxdky (c + k2

x + k−2
x k2

y) (ûn)2∫∫
R2 dkxdky ûn û2

n(k)
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Solution by Petviashvili (1976)

Iterations with a stabilizing factor:

ûn+1(kx, ky) = M
γ
n

û2
n(kx, ky)

c + k2
x + k−2

x k2
y

,

where

Mn =

∫∫
R2 dkxdky (c + k2

x + k−2
x k2

y) (ûn)2∫∫
R2 dkxdky ûn û2

n(k)

◦ Fixed points of iterations coincide with solutions of the problem.

◦ Algorithm converges if 1 < γ < 3 for any c > 0

◦ Convergence is the fastest at γ = 2

◦ The bound state Φ(x, y) exists for any c > 0, such that
Φ ∈ L2(R2) but Φ /∈ L1(R2)

5



Results on KP1 lumps (solitons)

◦ Exact analytical expression for Φ(x, y) (Zakharov et al, 1977):

Φ(x, y) = 12c
3 + c2y2 − cx2

(3 + c2y2 + cx2)2
.

◦ Inverse scattering transform for KPI equation (Ablowitz, Fokas, 1983)

◦ Non-uniqueness of non-positive bound states Φ(x, y) (Pelinovsky, 1993)
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Exact solutions of KP-I lumps

◦ No proof of convergence

◦ ”Spurious” multi-humped lumps

◦ Applicability to other nonlinear
wave equations
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Convergence of a self-similar sequence

◦ Assume existence of a bound state Φ(x, y)

◦ Consider a special self-similar sequence:

ûn(kx, ky) = xnΦ̂(kx, ky),

◦ xn satisfy the power iteration map:

xn+1 = x
2−γ
n , Mn = x−1

n .
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Convergence of a self-similar sequence

◦ Assume existence of a bound state Φ(x, y)

◦ Consider a special self-similar sequence:

ûn(kx, ky) = xnΦ̂(kx, ky),

◦ xn satisfy the power iteration map:

xn+1 = x
2−γ
n , Mn = x−1

n .

◦ Power iteration map converges for 1 < γ < 3.

◦When γ = 2, convergence occurs in a single iteration.

◦ There exists at least one sequence {xnΦ̂(kx, ky)}∞n=0, x0 > 0, that

converges to Φ̂(kx, ky).
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Convergence of a self-similar sequence

◦ γ = 1.1 - monotonic convergence

◦ γ = 2.0 - fastest convergence

◦ γ = 2.9 - sign-alternating convergence
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Contraction Mapping Principle

ûn 7→ ûn+1 = A(ûn), un ∈ X(R2)

Bound state is a fixed point of A:

Φ̂ = A(Φ̂), Φ ∈ X(R2)

Theorem: If A(ûn) has a continuous Frechet derivative A′(ûn)
in a small open neighborhood of Φ̂ in X(R2) and the spectral
radius of A′(Φ̂) is smaller than one, then there is a small
open ball S(Φ̂, δ) ∈ X(R2) such that

||A(f̂ )−A(ĝ)||X(R2) ≤ q||f̂ − ĝ||X(R2), ∀f̂ , ĝ ∈ S(Φ̂, δ)

where
q = sup

ûn∈S(Φ̂,δ)
||A′(ûn)|| < 1.
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Frechet derivative A′(Φ̂)

◦ Linearize the nonlinear iteration map with

ŵn(kx, ky) = ûn(kx, ky)− Φ̂(kx, ky),
and

mn = Mn − 1

◦ Linearized iteration map:

ŵn+1(kx, ky) = γmnΦ̂(kx, ky) + 2
Φ̂(kx, ky) ∗ ŵn(kx, ky)

c + k2
x + k−2

x k2
y

,

such that

mn = −〈Φ
2, wn〉

〈Φ2, Φ〉
◦ Constrained function space Xp(R2):

Xp = {U ∈ X(R2) : 〈Φ2, U〉 = 0}.
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Homogeneous linearization problem

In Fourier space,

q̂n+1(kx, ky) = 2
Φ̂(kx, ky) ∗ q̂n(kx, ky)

c + k2
x + k−2

x k2
y

In physical space,

qn+1(x, y) = qn(x, y)− (c + L)−1Hqn(x, y).
where

L = −∂2
x + ∂−2

x ∂2
y, H = c + L − 2Φ(x, y)

Consider the generalized eigenvalue problem:

HU = λ(c + L)U

equipped with the sign-definite inner product:

〈U, (c + L)V 〉
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Decompositions and projections

◦ There exists a solution U = Φ for λ = −1, such that (c + L)Φ = Φ2

◦ There exists a solution U = Φx, Φy for λ = 0
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◦ There exists a solution U = Φx, Φy for λ = 0

◦ There exists an orthogonal decomposition:

ŵn = anΦ̂(kx, ky) + q̂n,
such that

◦ an = −mn

◦mn+1 = (2− γ)mn

◦ 〈Φ2, qn〉 = 0
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Decompositions and projections

◦ There exists a solution U = Φ for λ = −1, such that (c + L)Φ = Φ2

◦ There exists a solution U = Φx, Φy for λ = 0

◦ There exists an orthogonal decomposition:

ŵn = anΦ̂(kx, ky) + q̂n,
such that

◦ an = −mn

◦mn+1 = (2− γ)mn

◦ 〈Φ2, qn〉 = 0

◦ limn→∞mn = 0 if and only if 1 < γ < 3

◦ limn→∞ qn(x, y) = 0 if and only if 0 < λ < 2 where λ are eigenvalues
of HU = λLU in Xp(R2)
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Negative spectrum of (c + L)−1H

◦ The spectrum of H in L2(R2) consists of n(H) negative eigenvalues,
z(H) zero eigenvalues, and the rest of the spectrum is bounded away
of zero.

14



Negative spectrum of (c + L)−1H

◦ The spectrum of H in L2(R2) consists of n(H) negative eigenvalues,
z(H) zero eigenvalues, and the rest of the spectrum is bounded away
of zero.

◦ There exists n(H)− 1 negative eigenvalues of H in Xp(R2)

HU = µU − νΦ2, U ∈ Xp(R2)

14



Negative spectrum of (c + L)−1H

◦ The spectrum of H in L2(R2) consists of n(H) negative eigenvalues,
z(H) zero eigenvalues, and the rest of the spectrum is bounded away
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◦ There exists n(H)− 1 negative eigenvalues of H in Xp(R2)

HU = µU − νΦ2, U ∈ Xp(R2)

◦ There exists n(H)− 1 negative eigenvalues of (c + L)−1H in Xp(R2)

∀U ∈ Xp(R2) :

〈U,HU〉 =
∑
σ(H)

µk〈Uk, Uk〉 =
∑

σ((c+L)−1H)

λk〈Uk, (c + L)Uk〉
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Positive spectrum of (c + L)−1H

◦ Equivalent form:

(c + L)U =
2

1− λ
Φ(x, y)U

◦ Equivalent form:

MV =
1− λ

2
V, M = (c + L)−1/2Φ(x, y)(c + L)−1/2
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Positive spectrum of (c + L)−1H

◦ Equivalent form:

(c + L)U =
2

1− λ
Φ(x, y)U

◦ Equivalent form:

MV =
1− λ

2
V, M = (c + L)−1/2Φ(x, y)(c + L)−1/2

◦ There exist infinitely many isolated eigenvalues λ in the interval 0 <
λ < 1 that accumulate to λ → 1−

◦When Φ ≥ 0, no eigenvalues exist for λ > 1

◦When Φ is sign-indefinite, there exists infinitely many isolated eigen-
values λ in the interval 1 < λ < λmax that accumulate to λ → 1+
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Bound on the largest eigenvalue of (c + L)−1H

λ = 1− 2
〈U, ΦU〉

〈U, (c + L)U〉
, λmax < 1 +

2

c

∣∣∣∣∣ min
(x,y)∈R2

Φ(x, y)

∣∣∣∣∣
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Convergence of the algorithm for KP-I equation

◦ 1 < γ < 3 with the maximal rate at γ = 2

◦ n(H) = 1

◦ λmax < 1 + 1 = 2, since

min
(x,y)∈R2

Φ(x, y) = Φ

(
± 3√

c
, 0

)
= −c

2
.
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Convergence of the algorithm for KP-I equation

◦ 1 < γ < 3 with the maximal rate at γ = 2

◦ n(H) = 1

◦ λmax < 1 + 1 = 2, since

min
(x,y)∈R2

Φ(x, y) = Φ

(
± 3√

c
, 0

)
= −c

2
.

Extension to the generalized KP-I equation:(
c− ∂2

x + ∂−2
x ∂2

y

)
Φ(x, y) = Φp(x, y), p = 2, 3, 4

◦ Proof of existence for p = 2, 3, 4 by A. de Bourd, J.C.Saut (1997)

◦ Proof of non-existence for p ≥ 5 by Y. Liu and X.P. Wang (1997)
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Numerical solutions for p = 2, 3, 4
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Summary

• Systematic proof of convergence of the iteration
method

•Applications to classes of KdV, BO, ZK, and KP
equations

•Analysis of single-humped and multi-humped non-
linear waves

•Possibility of generalizations
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