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Short-pulse equation

The short-pulse equation is a model for propagation of ultra-short pulses
with few cycles on the pulse scale [Schafer, Wayne 2004]:

Uzt = U+ % (u3)zz’

where all coefficients are normalized.

The short-pulse equation
@ replaces the nonlinear Schrédinger equation for short wave packets
@ features exact solutions for modulated pulses

@ enjoys inverse scattering and an infinite set of conserved quantities



Relevant results for the short-pulse equation

@ T. Schafer and C.E. Wayne (2004) proved local existence in H?(R).

@ A. Stefanov et al. (2010) considered a family of the generalized
short-pulse equations
Uzt = U+ (up)zz

and proved scattering to zero for small initial data if p > 4.

@ D.P. and A. Sakovich (2010) proved global well-posedness for small
initial data if p = 3.

@ Y. Liu, D.P. and A. Sakovich (2010) proved wave breaking for large initial
dataifp =2 and p = 3.

@ Remark: Global existence for small initial data is still opened for p = 2.



Integrability of the short-pulse equation

Let z = z(y, t) satisfy

Then, w = w(y, t) satisfies the sine—Gordon equation in characteristic
coordinates [A. Sakovich, S. Sakovich, (2005), (2006)]:

wy = sin(w).

Lemma
Let the mapping [0, 7] 3 t — w(-,t) € H: be C* and

Hﬁ:{weHS(R); ||w\|ngwc<g}, s> 1.

Then, z(y, t) is invertible in y for any ¢ € [0, T] and u(z, t) = w(y(z, t),t)
solves the short-pulse equation

Ugt :u+%(u3)zz, z€eR, tel0,T].




Solutions of the short-pulse equation

A kink of the sine—Gordon equation gives a loop solution of the short-pulse
equation:

u = 2sech(y + t),
x =y — 2tanh(y +t).

u(z,t)

u. )

Figure: The loop solution u(z, t) to the short-pulse equation



Solutions of the short-pulse equation

A breather of the sine—Gordon equation gives a modulated pulse solution:

msinysinh ¢ +ncosycoshg

m?2sin? ¢ + n2 cosh? ¢
msin 2y — nsinh 2¢ —x( o t+1)+ .
m?2sin® ¢ +n2cosh® ¢ Y= m

u(y,t):4mn ’U‘(y—%,tﬁ-%),

z(y,t) =y +2mn

where
¢:m(y+t)7 ?/):n(y*t)v n:\/lme’

and m € R is a free parameter. For smooth modulated pulses,
m < sin(7/8) =~ 0.383.

Figure: The pulse solution to the short-pulse equation with m = 0.25



Nonlinear dispersive equations for short pulses have been justified in a
similar context.

@ D. Alterman, J. Rauch (2003) - geometric optics approach

@ K. Barrailh, D. Lannes (2002); T. Colin, G. Gallice, K. Laurioux (2005) -
nonlocal envelope equation with full dispersion

@ M. Colin, D. Lannes (2009); D. Lannes (2011) -
regularized nonlinear Schrédinger equation

For the short-pulse equation, only linearized equations were justified from
Maxwell equations by using oscillatory integrals and Fourier analysis
Y. Chung, C. Jones, T. Schéfer, C.E. Wayne (2005).



Toy problem - quasilinear Klein—Gordon—Maxwell equation

Let us consider the quasilinear Klein-Gordon—Maxwell equation,

Ut — Uge + U+ (ug)zz =0.

Using new variables,

x—t

u(t7 IE) = QEU(Ta 5)7 T = €t, 5 = 2¢

the quasilinear equation can be written in the equivalent form,

Ure =U + (Ug)gg + 62U7—-,—.

The short-pulse equation appears by neglecting the last term €U,

Agr = A+ (A%)ge.

Main question: Can this approximation be rigorously justified?



Justification theorem

Theorem

Fix s > % and T > 0. For sufficiently small § > 0, there exist ¢, > 0 and
Co > 0 such that for all € € (0, o), the following holds:

Let A € C([0,T], H°(R)) be a local solution of the short-pulse equation such
that
Sup ||8 A( )HHs_k §67 k:07172537

T€[0,

and let Uy € H3(R) and V, € H?(R) be such that

0o — A0, )l g2 + [IVo = A+ (0, )]l g1 < €.

There exists a unique solution
U € C([0,T), H*(R)) n C*([0, T], H*(R)) N C*([0, T], H' (R))

of the quasilinear equation subject to the initial data U (0, -) = Uo,
U-(0, ) = Vs satisfying

sup ”U(T? ) - A(Tv ')||H2 S COQ
T€[0,T]




Steps of the proof

©

Local well-posedness of the short-pulse equation

@ Remarks on the global well-posedness of the short-pulse equation

Local well-posedness of the quasilinear equation
@ Continuation criteria of the local solution of the quasilinear equation

@ Energy estimates and the control of the approximation error.



Assumptions of the theorem

We need to show that solutions of the short-pulse equation may satisfy

sup [|OFA(T, )|l ge-r <0, k=0,1,2,3.
T€[0,T]

Proposition (Schafer & Wayne, 2004; Stefanov et al., 2010)

Fix s > g For any Ay € H°(R), there exists a time 7, > 0 and a unique
solution to the short-pulse equation such that

A € C([0,70], H* (R)) N C*((0, 70], H* "' (R))

and A(0, -) = Ag. The solution depends continuously on Ay.

To obtain estimates on 8* A, we note that

A = 9TTA+ (A%,
A = 077A+3(A%)07 A+ 4A4% + %(AS)&,
Arer = 0°A+0; 'A%+ 18A26g1A +3(A%)c0: A+ 6A(0; ' A)?

27 27
2T (A6l A+ T (A7) + 2 (A e,



Bootstrapping of local solutions

Lemma

Let By € Lz(R) and consider the linear inhomogeneous equation,

B,e=B+F,
B(0,-) = By.

There exists a unique solution B € C([0, 70], L*(R)) for some 7, > 0 if either
(@) F = G¢ with G € C([0, 70], L*(R)) or (b) F € C*([0, 10], L*(R)).




Bootstrapping of local solutions

Lemma
Let By € Lz(R) and consider the linear inhomogeneous equation,

B,e=B+F,
B(0,-) = By.

There exists a unique solution B € C([0, 70], L*(R)) for some 7, > 0 if either
(@) F = G¢ with G € C([0, 70], L*(R)) or (b) F € C*([0, 10], L*(R)).

@ If Ag € H*(R)N H ' (R), s > 3, then
O 'AeC(o,n], H*H (R), A€ C'([0,70), H'(R)).
@ If Ag € H*(R)n H *(R), s > £, then
9 2A e C(0,70], H***(R)), A€ C*([0,70), H*(R)).
® If Ag € H*(R) N H*(R), s > £, and 9;° Ao + 0; ' A € L*(R), then

A e C3([0,70], H3(R))



Global well-posedness of the short-pulse equation

Proposition (D.P., A. Sakovich, 2010)
If Ap € H°(R), s > 2 and

1
65
there exists C' > 0 and a unique solution A € C(R,, H°(R)) of the
short-pulse equation with A(0, -) = Ao such that ||A(7, )|z < C.

1 40llZ2 + 1451172 <

This results follows from conserved quantities [J.C. Brunelli (2005)]:

2

2
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dz, - .



Local well-posedness of the quasilinear equation

Starting with the quasilinear Klein—-Gordon—Maxwell equation,
Uty — Ugey + U + (Us)mx =0.

we assume ||ul|ree < % and introduce

Ul = U, ug:(l—?ﬂf)I/Qu227 Uz = u.
The scalar equation is equivalent to the symmetric quasilinear system
w1 0 —(1-3u3)¥? 0 w1
0 2\1/2 0
= | w2 |+ —(1—3u3) 0 0| 5= | ue | =f(u).
ot ox
u3 0 0 0 us



Local well-posedness of the quasilinear equation

Starting with the quasilinear Klein—-Gordon—Maxwell equation,
Uty — Ugey + U + (Us)xx =0.
we assume |ju||z~ < % and introduce
up =ug, uz=(1- 3112)1/211827 Uz = u.

The scalar equation is equivalent to the symmetric quasilinear system

o [ w 0 —(1-3u3)¥? 0 g [w
— | w2 |+ | —(1—3u3)"/? 0 0| = | u | =£f(u).
ot ox

us 0 0 0 us

Proposition (T. Kato, 1975)

For any uo € H**'(R) and vo € H*(R), s > 2 such that [|uo||r= < % there
exists a time ¢, > 0 and a unique solution of the quasilinear equation such
that

u € C([0, 1], H* T (R)) N C*([0, to], H*(R)) N C*([0, to], H* ' (R)),

subject to u(0, -) = uo and u.(0, -) = vo. Moreover, the local solution depends
continuously on the initial data (uo, vo).

v




Continuation criterion

The local solution is continued on the time interval [0, ¢o] for some ¢, > 0 as
long as

1
sup [u(t,-)llzee < —= and  sup (Jlue(t, )|l + [lua(t, )|[Le) < 0.
te[0,to] V3 te[0,to]

When s =2 > % the result follows from apriori estimates on the energy,
Ei(u) = /(u2—|—uf +ui(1—3u2))dx,
R
FEo(u) = /(ui + uiy +usy (1 — 3u®))de,
R

By(u) = / 2y + won + 1o (1 — 3u%))da.
R



Flavor of the proof

For
Ei(u) = /(u2 +up +ui(l — 3u®))dz
R
we have from the quaslinear equation,

1 dE1 (u)
2 dt

= 73/uutuidx, t €10, to],
R

Assume that My,1,2 < oo, Where

Mo = sup [lu(t,)lle, Mi= sup |lue(t,)|[zoe, Mz= sup [us(t,-)|re.

t€[0,to] te[0,to] te[0,to]
Then,
dF1 (u) C(Mo)MoM;t
T < C(Mo)MoMlEl(u) = El(u) < El(uo)e , te€ [O,t()],

hence E, (u) cannot blow up in a finite time ¢o.



Reformulation in new variables

Recall that in new variables,

xr—t
2¢ ’
the quasilinear equation can be written in the equivalent form,

u(t,z) =2eU(1,€), T=¢€t, &=

U‘rg =U + (Ug)gg -+ 62U7—-,—.

Lemma

Fix Co > 0 independently of e. For any Us € H*™'(R) and Vp € H*(R), s > 3
such that || Uy ||~ < Co, there exists an e-independent time 7, > 0 and a
unique solution of the rescaled quasilinear equation for any e # 0 such that

U(r,-) € C([0,eTo], HT(R)) N C*([0, €To], H*(R)) N C2([0, €To], H*~*(R)),

subjectto U(0, -) = Up and U~ (0, -) = Vu. Moreover, the local solution is
continued on the time interval [0, T'] if

sup [|U(7,)[[ze <C and  sup (|Ur(7,")l|lzee + ||Ue(r,")|lLo) < 0.
T7€[0,T] T€[0,T]




Energy estimates for the error term

Setting U = A + €R, we obtain the quasilinear equation for the error term,

Rer = R+ € Rer + (3A’R + 3eAR” + €R’) , + €Arr.
We shall control the energy for the error term,
E= / (R? + R + R + 2R + 'R2,) dx.
R
By Sobolev embedding, R and R, decay to zero at infinity as |£| — co and
IRz + || Rellz < CEY?

From the quasilinear equation, we also have

[Rerll2 <C (6e+ EY? 4 §°E'/? +5€E+62E3/2) 7

which yields the control of [[eR, ||~ < C (E1/2 +6¢% + 02E + e3E3/2).



Summary of the prerequisites:

(1) We have seen that the short-pulse equation has local solutions
A € C([0,T), H*(R)) for fixed T > 0, s > % and sufficiently small § > 0:

sup ||85A(7_? ')HHS*IC < 57 k= 07 17 27 3.
7€[0,T)
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(2) If the initial data satisfy
1U(0,-) = A0, )l g2 + [IV(0,-) = A+ (0, )| 1 <€,

then
IR0, )2 + [[R+(0, )|z <1,

or £ < oo.



Summary of the prerequisites:

(1) We have seen that the short-pulse equation has local solutions
A € C([0,T), H*(R)) for fixed T > 0, s > % and sufficiently small § > 0:

sup [|OFA(T, )| ge—r <6, k=0,1,2,3.
T€[0,T]

(2) If the initial data satisfy
1U(0,-) = A0, )l g2 + [IV(0,-) = A+ (0, )| 1 <€,

then
IR0, )2 + [[R+(0, )|z <1,

or £ < oo.

(3) IfU(0,-) € H*(R), and V(0,-) € H*(R), then there exists a local solution
of the quasilinear equation for the error term,

R e C([0,eT], H*(R)) N C ([0, €T], H*(R)) N C*([0, €T, H (R))

The existence interval is extended as long as R is controlled in the energy
space E(7) < oo for 7 € [0,T].



Control of energy:

(1) We have the energy estimates:

ilTE —J, |J<cC (6E1/2 4 6%E 4 6E*/? +6E2) 7
-

for some (¢, d)-independent constant C' > 0, as long as the solution remains
in the function space

R e C([0,T], H*(R)) n C*([0, T], H*(R)) N C*([0, T), H' (R)).
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(1) We have the energy estimates:

iZTE —J, |J<cC (6E1/2 4 6%E 4 6E*/? +6E2) 7
-

for some (¢, d)-independent constant C' > 0, as long as the solution remains
in the function space

R e C([0,T], H*(R)) n C*([0, T], H*(R)) N C*([0, T), H' (R)).

(2) By Gronwall's inequality, there exist Cy, C1 > 0 such that
E(7) < Co(E(0) + 6T)e“°", 7€ [0,T).

This bound allows us to continue the solution from [0, €T’ to [0, T7].



Control of energy:

(1) We have the energy estimates:

iZTE —J, |J<cC (6E1/2 4 6%E 4 6E*/? +6E2) 7
-

for some (¢, d)-independent constant C' > 0, as long as the solution remains
in the function space

R e C([0,T], H*(R)) n C*([0, T], H*(R)) N C*([0, T), H' (R)).

(2) By Gronwall's inequality, there exist Cy, C1 > 0 such that
E(7) < Co(E(0) + 6T)e“°", 7€ [0,T).
This bound allows us to continue the solution from [0, €T’ to [0, T7].
(3) As a result, we have obtained a local solution,
U e C([0,T), H*(R)) N C'([0,T], H*(R)) N C*([0,T], H' (R)),
satisfying

sup HU(Tv ) - A(T7 .)”H? < 006.
T€[0,T]



Solutions of the quasilinear Klein—-Gordon—Maxwell equation,
Ugt — Ugy + U + (u?’)m =0,
which are initially closer to small solutions of the short-pulse equation,
Agr = A+ (A%)ee,

remain close to these solutions for long but finite time intervals.



Solutions of the quasilinear Klein—Gordon—Maxwell equation,
Ugt — Ugy + U + (ug)m =0,
which are initially closer to small solutions of the short-pulse equation,
Agr = A+ (A)ee,
remain close to these solutions for long but finite time intervals.

Initial proximity

Hu(o, ) — 2¢A (0, ﬂ)‘ < Ce?, ‘ w(0,-) + Ae (0, E) Hm < Ce?,
implies
sup ||u(t,-) — 2eA | et, - < 0061/2,
2
t€[0,T /€] € H?

where the leading-order term is

oo =0t [ G,



Criteria of well-posedness and wave breaking

Consider the short-pulse equation

Ugt = U + 6 (us)xm’
with Gaussian initial data
uo(z) = a(l — 2bx2)eszz, r €R,

where (a,b) are arbitrary and [, uo(z)dz = 0 is satisfied.

30

x  wave breaking
25 + well-posedness

0 0.5 1 1.5 2
a

Figure: Global solutions exist in the red region and wave breaking occurs in the blue
region [D.P.,, A. Sakovich, 2010].



Numerical simulation

Using the pseudospectral method, we solve

8A o 7:,\ ik —1\3
i =—ru+ ZF [(F9)°] L k#0, t>0.

Consider the 1-periodic initial data

uo(x) = acos(2wx)

@ Criterion for wave breaking: a > 1.053.
@ Criterion for global solutions: a < 0.0354.



Evolution of the cosine initial data

0.1
0.16
0.14
sup(uu)
0.12
0.1}
0.
0 10 20 30 40 50 60
t
10"
sup(u ux)
10°
107 107 10°
T-t

Figure: Solution surface u(z, t) (left) and the supremum norm W (t) (right) for a = 0.2
(top) and a = 0.5 (bottom).



Further questions

@ Does the approximation error grow for wave breaking solutions?

@ Can the justification analysis be extended to models with dispersive
regularizations of the short-pulse equation, when no wave breaking may
occur?

@ Does the justification analysis hold for short-wave (quadratic
nonlinearity) equation?
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