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The problem

The discrete Klein—Gordon (KG) equation in one dimension;
Un +V'(Un) = v(Uns1 — 2Up + Un—1), NEZ,

where v > 0 is the coupling constant and V (u) is the nonlinear potential s.t.
P1 V(x) € C*R) and V(—x) = V(x) forall x € R;

P2 V(x) = 1x*+ O(x*) as x — 0;

P3 0<V(x)<1forallx € R;

~ = 0 is referred to as the anti-continuum limit of weakly coupled oscillators
since the work of MacKay-Aubry (1994).
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Discrete breathers

We would like to construct solutions in space
X(t) € Ha((0,T);12(2)),

so that
X(t+T)=x(t), lim |[x,(t)]=0, teR.

[n|—o0

These solutions are referred to as the discrete breathers.

Additional simplifications thanks to reversibility int € R and n € Z:

Xn(=t) = Xn(t), X_n(t)=Xn(t), neZ, teR.
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Physical contexts

@ Modeling of DNA (M. Peyrard, 2004)

@ Josephson junction arrays

@ Solid state physics
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Numerical illustrations by A. Miroshnichenko

http://www.mpipks-dresden.mpg.de/ andreym/dbanim/
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Why anti-continuum limit?

The anti-continuum limit in KG and NLS lattices allows ...

@ to continue uniquely solutions for small v > 0 (MacKay-Aubry, 1994);

@ to classify all solution branches for small v > 0 from the limiting
configuration for v = 0 (Alfimov et al., 2004)

@ to count and approximate unstable eigenvalues in the spectral stability
problem for small v > 0 (Koukouloyannis, Kevrekidis, 2009)

@ to study asymptotic stability and nonlinear dynamics analytically (P,
Sakovich, in progress)
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Oscillations at the central site

Let v = 0 and consider the simplest discrete breather in the form

xn(t) =0, neZ\{0}.

Xo(t) = x(t) is a T -periodic classical solution of

X+V'(x)=0 = E= %)'(2+V(x).

V(x) = tanh?(x/v/2):
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Small-amplitude and large-amplitude breathers

E < 1: There exist two T -periodic even solutions x(t) € ng,(O,T) for T > 27.
The period T = T(E) is at least C1.
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Small-amplitude and large-amplitude breathers

E < 1: There exist two T -periodic even solutions x(t) € ng,(O,T) for T > 27.
The period T = T(E) is at least C1.

What if E > 17?

First answer: No T -periodic solutions exist at all.

Second answer:
Xo +V'(X0) = 2y(x1 —X0) = Xo+ V;(Xo) = 2yXa,

where V,,(x) = V(x) + vx2, v > 0.
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Large-amplitude breathers in V. (x) = V (x) + yx?

G. James, Levitt, Ferreira (Applicable Analysis, 2009) - large-amplitude
breathers near large-amplitude stationary states
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We would like to prove existence of large-amplitude breathers far from
large-amplitude stationary states.
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Review of MacKay-Aubry theory

Theorem: Fix E < 1 and assume that T(E) # 27N and T'(E) # 0. There
exists a small vo(E) > 0 such that for all v € (0, ) the dKG equation has a
unique solution x(t) € H3((0, T);1%(Z)) such that » — x(t) is C* and

iC >0: ||X—X5o||ng§C|'y|.

Here
1, n=0,
(50)“{ 0. n£0

and x(t) is a solution of X + V’(x) = 0.

Two main steps in the proof:
@ No resonances at other sites n # 0;
@ No resonance at the central site n = 0.
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No resonances at other sites n £ 0

Forn > 1, we have
Xn +Xn + N(Xn) = ¥(Xn1 — 2Xn + Xn—1),
where N(x) = V/(x) —x = O(x3) as x — 0.

ng,(o, T) is a Banach algebra with respect to multiplication. For all
x € Bs(HZ,), there is C(0) > 0 such that

ING)llg, < CO) x5,

If linear operator L is invertible and there is C > 0 such that
W e L2 (0. T)12(N) L™ ], < Cllflls,.

the Implicit Function Theorem is applied. Therefore, there is a unique map
H2%(0,T) 3 X0 — X € HZ((0, T); 13(N)) for small > 0 so that for all
Xo € Bg(ngr)

IC(8) > 0: Xz, < C(0).
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Invertibility of the linear operator

We have
Xn +Xn — Y(Xp41 — 2%n +Xn—1) =fr, n>1

with Xg =0 and f ¢ Lﬁa((O,T); 12(N)).
We can use the discrete sine-Fourier transform
Xn(t) :/ X(q,t)sin(nq)dgq, neN
and the Fourier series
A . : 2
R(a,t) = > Km(q)e™', w= %

mez

Then, we have
(1 —m2w? + 2y — 2yc0s(q)) &m(q) = fm(a), q €[~ 7], meZ

No resonances occur if w=! ¢ N and ~ is small.
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No resonances at the central siten =0

For n = 0, we have
Xo + VI(Xo) = 2’y(X1 — Xo)

Let Xxo = X + u and write

. 1
Lou + No(u) = G + V" (x)u + EV”’(x)u2 o =29(X1 — X — U)

We have Lox = 0 but x is odd. The second solution of Lou = 0 is even but not
periodic if T'(E) # 0. Therefore, there is C > 0 such that

W e L2 (0.T):  [|Lg g, < ClIfllz, -
By the Implicit Function Theorem, there is a unique map

R 3y — u € H3(0,T) such that

iC >0: ||u||ng' < Cr.
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Numerical results

G. James, Levitt, Ferreira (Applicable Analysis, 2009) - large-amplitude
breathers near large-amplitude stationary states
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Left: the breather in the non-resonance domain;
Right: the breather in the resonance domain.
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Suspense story for large-amplitude breathers

Let us add another assumption on V (x):
(P4) V'(x) is compactly supported on [—ao, ag] and

(@) Iimxﬂoov( ) =V €(0,1)
(b) Jo©xV'(x)dx # 0.

Theorem: Fix E > 1. Let x(t) be a T -periodic solution of X + V. (x) = 0 for
small v > 0. For sufficiently small v, there exists a T -periodic solution
X(t) € H((0,T);13(Z)) of the dKG equation such that

3C >0: sup |xo(t) —x(t)] < Cy Y4  sup sup |x(t)| < CHY4.
te[0,T] n>1te€[0,T]

Remark: [|x L = O(v7/2).
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Large-amplitude long-period breathers

Feature # 1: Large-amplitude oscillations in —a < x(t) < a, where
E=va’+V(a) = E -V, <~ya®<E,

so thata = O(y~1/?).

Feature # 2: Large period of oscillations

2v2 [7/? do

dx
VE-—m2-V(Xx) V7 Jo I+W(O)

T_zfz/oa

where

V(a) —V(asinf)
~a2 cos? 6

V0 e (0,7/2]: W(0) = —0 a vy—0.
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Rescaling transformation

By the Dominant Convergence Theorem, T = O(y~1/2).

Feature # 3: Scaling transformation brings about a linear oscillator with a
singular nonlinear perturbation.

Let
X(7
x(t) = # T=7"2, = X[ =0(1), To=0(1).

New equations in rescaled variables
. 1.-
X 4+ 2X +771/2V/(771/2X) =0 = E-= E)(2 +X2 +V(771/2X).

Therefore, ||X||Héef = O(1) as v — 0, whereas ||X||ng — 00.
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No resonance with other sites

Feature # 4 : Proximity of resonances with other sites.
For n > 1, we have two systems
n 2 2: 'YXn + Xn + N(Xn) = 'Y(XrH_l — ZXn + Xn_]_)

and
n=1: Xy + X1+ N(X1)=~(Xa — 2X1) + ¥*/?Xo,

where N(X) = V/(X) = X = O(X3) as X — 0.
Using the same Fourier transforms for the linear part, we have

(1 —ym*wj + 2y — 27¢08(q)) Xn(q) = Fm(a), g€ [-m,7], meZ,

where w = woy/2 is the breather frequency (wo ~ v/2) and the phonon
frequencies lie in the intervals

1, citd
m m
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No resonance with other sites
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No resonance with other sites

Fix 6 € (0,1) and let C.,, 5 = Umsmo (Fm, 3m) C Cu, With
~ K/z K/z

m= A= —5————.
" RA(M1Z _omiL) 4 ™ GZ(mZtom)

For any v € C,,.s, we have

5C>0: Ve (O, T)PN) Ll < Cy Y2l

Back to equation
N=1: ~X;+ X1 +N(X1) =v(Xa — 2X1) + 7*/?Xo,

No fixed-point iterations are possible as ||Xo|nz, = O(1)!..
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Normal form transformation

Feature # 5: Normal form transformation
X1 =Y1+77?Xo, Xn=VYn, n>2.
Then,

n=1: 7\?1 + Y1+ N(Yl + ’Yl/ZXo) = ’y(Yz — 2Y1) — 73/2()20 + 2Xo).

Question: What do we know about [|Xo + 2Xo||yz, ?
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Bounds on Xo -+ 2Xo

Let X, satisfy )
Xo +2Xo +7 72V (y71/2Xo) = 0.

Thanks to the compact support of V/(x) on [—ay, ag], we have |X ()| < agy*/?
for time interval |ATo| = O(yY/?) as v — 0. As a result, we have

Feature # 6 : growth of |[Xo + 2Xol|uy,

To B To
[ Bow2xePar = 47t [T a()Pdr < G,
0 0

To . To
|10 200y Par = 42 [TREEV G ()7 < oy,

Therefore, )
dC>0: [ Xo+ ZXOHH,%Q < CHy 34,
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No resonance at the central site n =0

Back to equation
N=1: ~Y1+ Y1+ N(Ys+~Y2X0) = v(Y2 — 2Y1) — v¥/2(Xo + 2Xo).
Fixed-point arguments now give

3C>0: YXo € Hgr(0,To) s [[Yalluy < c71/4||xo||H3a.

At the central site n = 0, we have

Nn=0: Xo+2Xo+~ Y2V (y"¥2Xo) = 24Y2Y1 + 27 Xo.

Feature # 7 : almost harmonic oscillations
1/2

ag
_ _ Y / 1/2
To=V2r (1 E V7 /0 XV’ (x)dx 4 o(y )) .
But
V/(77Y2X0) = V(v 2X) + 47 AV (X ) (Xo — X) ..
and the nonlinear terms become too big for fixed-point arguments!..
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No resonance at the central site n =0

Let us use the Fourier cosine-series
VF € L2,(0,To): F(r)= Fm cOS(M _2r
€L3(0.To): F(r)= > Fmcos(mwor), wo =
meNodd

and consider the nonlinear equation

Z(r)+22(7) + 7 YAV (22 (7)) = M2 (7),
Then, we have
(2 = m2wd)Zm + Win(2) = 4Y?Fm, meN,

where

2 To _
Wo(@) = 15 /O V/(y"Y/2Z (7)) cos(mwor)d -
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No resonance at the central site n =0

Thanks to the compact support of V/(x) on [—ay, a¢], we have

IC>0: VZeHL(0,To): |Wn(Z) <Cmy*?2, meNodd,

The vector Z = (21,73, Zs, ...) is split into two parts Z; and Z= (Z3,Zs, ...).
Then, we have a continuous map R > Z; — Z € I?(N) such that

IC>0: VZieR: |Zix+]Z]ie < CY2 (1 +[|F]2) .
We need Z € 12(Z) to control

Z(r) =Y _ Zmcos(muwor)!

m>3
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Final step - projection to Z;

Eliminating Z, we obtain

/2 2o xy/(x
(2 - wd)Zy + 2 - / £2) dx = ~y/2F;.
7TZl 0 (1— ’YZ—Z)]-/Z
1

By the Implicit Function Theorem, this gives

3C>0: |Z1— (E — Voo)Y?| < C|F || small.

By fixed-point iterations, this construction finally gives

X0 = X[l < CyY/4.
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