
Breathers from infinity in the anti-continuum limit

Guillaume James1 and Dmitry Pelinovsky2

1 Institut National Polytechnique de Grenoble, France
2 Department of Mathematics, McMaster University, Canada

Brown University; November 7, 2009

D.Pelinovsky (McMaster University) Breathers from infinity 1 / 26



The problem

The discrete Klein–Gordon (KG) equation in one dimension:

ün + V ′(un) = γ(un+1 − 2un + un−1), n ∈ Z,

where γ > 0 is the coupling constant and V (u) is the nonlinear potential s.t.

P1 V (x) ∈ C4(R) and V (−x) = V (x) for all x ∈ R;

P2 V (x) = 1
2x2 + O(x4) as x → 0;

P3 0 ≤ V (x) ≤ 1 for all x ∈ R;

γ = 0 is referred to as the anti-continuum limit of weakly coupled oscillators
since the work of MacKay-Aubry (1994).
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Discrete breathers

We would like to construct solutions in space

x(t) ∈ H2
per((0, T ); l2(Z)),

so that
x(t + T ) = x(t), lim

|n|→∞
|xn(t)| = 0, t ∈ R.

These solutions are referred to as the discrete breathers.

Additional simplifications thanks to reversibility in t ∈ R and n ∈ Z:

xn(−t) = xn(t), x−n(t) = xn(t), n ∈ Z, t ∈ R.
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Physical contexts

Modeling of DNA (M. Peyrard, 2004)

Josephson junction arrays

Solid state physics
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Numerical illustrations by A. Miroshnichenko

http://www.mpipks-dresden.mpg.de/ andreym/dbanim/
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Why anti-continuum limit?

The anti-continuum limit in KG and NLS lattices allows ...

to continue uniquely solutions for small γ > 0 (MacKay-Aubry, 1994);

to classify all solution branches for small γ > 0 from the limiting
configuration for γ = 0 (Alfimov et al., 2004)

to count and approximate unstable eigenvalues in the spectral stability
problem for small γ > 0 (Koukouloyannis, Kevrekidis, 2009)

to study asymptotic stability and nonlinear dynamics analytically (P.,
Sakovich, in progress)
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Oscillations at the central site

Let γ = 0 and consider the simplest discrete breather in the form

xn(t) = 0, n ∈ Z\{0}.

x0(t) ≡ x(t) is a T -periodic classical solution of

ẍ + V ′(x) = 0 ⇒ E =
1
2

ẋ2 + V (x).

V (x) = tanh2(x/
√

2):
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Small-amplitude and large-amplitude breathers

E < 1: There exist two T -periodic even solutions x(t) ∈ H2
per(0, T ) for T > 2π.

The period T = T (E) is at least C1.

What if E > 1?

First answer: No T -periodic solutions exist at all.

Second answer:

ẍ0 + V ′(x0) = 2γ(x1 − x0) ⇒ ẍ0 + V ′
γ(x0) = 2γx1,

where Vγ(x) = V (x) + γx2, γ > 0.
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Large-amplitude breathers in Vγ(x) = V (x) + γx2

G. James, Levitt, Ferreira (Applicable Analysis, 2009) - large-amplitude
breathers near large-amplitude stationary states

We would like to prove existence of large-amplitude breathers far from
large-amplitude stationary states.
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Review of MacKay-Aubry theory

Theorem : Fix E < 1 and assume that T (E) 6= 2πN and T ′(E) 6= 0. There
exists a small γ0(E) > 0 such that for all γ ∈ (0, γ0) the dKG equation has a
unique solution x(t) ∈ H2

per((0, T ); l2(Z)) such that γ 7→ x(t) is C1 and

∃C > 0 : ‖x − xδ0‖H2
per

≤ C|γ|.

Here

(δ0)n =

{

1, n = 0,
0, n 6= 0

and x(t) is a solution of ẍ + V ′(x) = 0.

Two main steps in the proof:

No resonances at other sites n 6= 0;

No resonance at the central site n = 0.
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No resonances at other sites n 6= 0

For n ≥ 1, we have

ẍn + xn + N(xn) = γ(xn+1 − 2xn + xn−1),

where N(x) = V ′(x) − x = O(x3) as x → 0.

H2
per(0, T ) is a Banach algebra with respect to multiplication. For all

x ∈ Bδ(H2
per), there is C(δ) > 0 such that

‖N(x)‖H2
per

≤ C(δ)‖x‖3
H2

per
.

If linear operator L is invertible and there is C > 0 such that

∀f ∈ L2
per((0, T ); l2(N)) : ‖L−1f‖H2

per
≤ C‖f‖L2

per
,

the Implicit Function Theorem is applied. Therefore, there is a unique map
H2

per(0, T ) ∋ x0 7→ x ∈ H2
per((0, T ); l2(N)) for small γ > 0 so that for all

x0 ∈ Bδ(H2
per)

∃C(δ) > 0 : ‖x‖H2
per
≤ C(δ)γ.
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Invertibility of the linear operator

We have
ẍn + xn − γ(xn+1 − 2xn + xn−1) = fn, n ≥ 1

with x0 = 0 and f ∈ L2
per((0, T ); l2(N)).

We can use the discrete sine-Fourier transform

xn(t) =

∫ π

−π

x̂(q, t) sin(nq)dq, n ∈ N

and the Fourier series

x̂(q, t) =
∑

m∈Z

x̂m(q)eimωt , ω =
2π

T
.

Then, we have
(

1 − m2ω2 + 2γ − 2γ cos(q)
)

x̂m(q) = f̂m(q), q ∈ [−π, π], m ∈ Z.

No resonances occur if ω−1 /∈ N and γ is small.
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No resonances at the central site n = 0

For n = 0, we have
ẍ0 + V ′(x0) = 2γ(x1 − x0)

Let x0 = x + u and write

L0u + N0(u) ≡ ü + V ′′(x)u +
1
2

V ′′′(x)u2 + ... = 2γ(x1 − x − u)

We have L0ẋ = 0 but ẋ is odd. The second solution of L0u = 0 is even but not
periodic if T ′(E) 6= 0. Therefore, there is C > 0 such that

∀f ∈ L2
per(0, T ) : ‖L−1

0 f‖H2
per

≤ C‖f‖L2
per

.

By the Implicit Function Theorem, there is a unique map
R ∋ γ 7→ u ∈ H2

per(0, T ) such that

∃C > 0 : ‖u‖H2
per
≤ Cγ.
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Numerical results

G. James, Levitt, Ferreira (Applicable Analysis, 2009) - large-amplitude
breathers near large-amplitude stationary states

Left: the breather in the non-resonance domain;
Right: the breather in the resonance domain.
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Suspense story for large-amplitude breathers

Let us add another assumption on V (x):
(P4) V ′(x) is compactly supported on [−a0, a0] and

(a) limx→∞ V (x) = V∞ ∈ (0, 1)

(b)
∫ a0

0 xV ′(x)dx 6= 0.

Theorem : Fix E > 1. Let x(t) be a T -periodic solution of ẍ + V ′
γ(x) = 0 for

small γ > 0. For sufficiently small γ, there exists a T -periodic solution
x(t) ∈ H1

per((0, T ); l2(Z)) of the dKG equation such that

∃C > 0 : sup
t∈[0,T ]

|x0(t) − x(t)| ≤ Cγ−1/4, sup
n≥1

sup
t∈[0,T ]

|xn(t)| ≤ Cγ1/4.

Remark : ‖x‖L∞per
= O(γ−1/2).
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Large-amplitude long-period breathers

Feature # 1 : Large-amplitude oscillations in −a ≤ x(t) ≤ a, where

E = γa2 + V (a) ⇒ E − V∞ ≤ γa2 ≤ E ,

so that a = O(γ−1/2).

Feature # 2 : Large period of oscillations

T = 2
√

2
∫ a

0

dx
√

E − γx2 − V (x)
=

2
√

2√
γ

∫ π/2

0

dθ
√

1 + W (θ)
,

where

∀θ ∈ (0, π/2] : W (θ) =
V (a) − V (a sin θ)

γa2 cos2 θ
→ 0 as γ → 0.
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Rescaling transformation

By the Dominant Convergence Theorem, T = O(γ−1/2).

Feature # 3 : Scaling transformation brings about a linear oscillator with a
singular nonlinear perturbation.

Let

x(t) =
X(τ)

γ1/2
, τ = γ1/2t, ⇒ ‖X‖L∞ = O(1), T0 = O(1).

New equations in rescaled variables

Ẍ + 2X + γ−1/2V ′(γ−1/2X) = 0 ⇒ E =
1
2

Ẋ2 + X2 + V (γ−1/2X).

Therefore, ‖X‖H1
per

= O(1) as γ → 0, whereas ‖X‖H2
per

→ ∞.

D.Pelinovsky (McMaster University) Breathers from infinity 17 / 26



No resonance with other sites

Feature # 4 : Proximity of resonances with other sites.

For n ≥ 1, we have two systems

n ≥ 2 : γẌn + Xn + N(Xn) = γ(Xn+1 − 2Xn + Xn−1)

and
n = 1 : γẌ1 + X1 + N(X1) = γ(X2 − 2X1) + γ1/2X0,

where N(X) = V ′(X) − X = O(X3) as X → 0.

Using the same Fourier transforms for the linear part, we have
(

1 − γm2ω2
0 + 2γ − 2γ cos(q)

)

X̂m(q) = F̂m(q), q ∈ [−π, π], m ∈ Z,

where ω = ω0γ
1/2 is the breather frequency (ω0 ∼

√
2) and the phonon

frequencies lie in the intervals

1
m

≤ ω ≤
√

1 + 4γ

m
.
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No resonance with other sites
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No resonances occur in the disjoint set

Cω0 = ∪m≥m0 (Γm, γm), Γm =
κ2

ω2
0(m + 1)2 − 4

, γm =
κ2

ω2
0m2

.
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No resonance with other sites

Fix δ ∈ (0, 1) and let C̃ω0,δ = ∪m≥m0 (Γ̃m, γ̃m) ⊂ Cω0 with

Γ̃m =
κ2

ω2
0((m + 1)2 − δ(m + 1)) − 4

, γ̃m =
κ2

ω2
0(m2 + δm)

.

For any γ ∈ C̃ω0,δ, we have

∃C > 0 : ∀f ∈ L2
per((0, T ); l2(N)) : ‖L−1f‖L2

per
≤ Cγ−1/2‖f‖L2

per
,

Back to equation

n = 1 : γẌ1 + X1 + N(X1) = γ(X2 − 2X1) + γ1/2X0,

No fixed-point iterations are possible as ‖X0‖H1
per

= O(1)!..
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Normal form transformation

Feature # 5 : Normal form transformation

X1 = Y1 + γ1/2X0, Xn = Yn, n ≥ 2.

Then,

n = 1 : γŸ1 + Y1 + N(Y1 + γ1/2X0) = γ(Y2 − 2Y1) − γ3/2(Ẍ0 + 2X0).

Question: What do we know about ‖Ẍ0 + 2X0‖H1
per

?
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Bounds on Ẍ0 + 2X0

Let X0 satisfy
Ẍ0 + 2X0 + γ−1/2V ′(γ−1/2X0) = 0.

Thanks to the compact support of V ′(x) on [−a0, a0], we have |X(τ)| ≤ a0γ
1/2

for time interval |∆T0| = O(γ1/2) as γ → 0. As a result, we have

Feature # 6 : growth of ‖Ẍ0 + 2X0‖H1
per

:

∫ T0

0
|Ẍ0 + 2X0|2dτ = γ−1

∫ T0

0
|V ′(γ−1/2X(τ))|2dτ ≤ C1γ

−1/2,

∫ T0

0
|(Ẍ0 + 2X0)

′|2dτ = γ−2
∫ T0

0
|Ẋ (τ)|2|V ′′(γ−1/2X(τ))|2dτ ≤ C2γ

−3/2.

Therefore,
∃C > 0 : ‖Ẍ0 + 2X0‖H1

per
≤ Cγ−3/4.
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No resonance at the central site n = 0

Back to equation

n = 1 : γŸ1 + Y1 + N(Y1 + γ1/2X0) = γ(Y2 − 2Y1) − γ3/2(Ẍ0 + 2X0).

Fixed-point arguments now give

∃C > 0 : ∀X0 ∈ H1
per(0, T0) : ‖Y1‖H1

per
≤ Cγ1/4‖X0‖H1

per
.

At the central site n = 0, we have

n = 0 : Ẍ0 + 2X0 + γ−1/2V ′(γ−1/2X0) = 2γ1/2Y1 + 2γX0.

Feature # 7 : almost harmonic oscillations

T0 =
√

2π

(

1 − γ1/2

π(E − V∞)3/2

∫ a0

0
xV ′(x)dx + o(γ1/2)

)

.

But
V ′(γ−1/2X0) = V ′(γ−1/2X) + γ−1/2V ′′(γ−1/2X)(X0 − X) + ...

and the nonlinear terms become too big for fixed-point arguments!..
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No resonance at the central site n = 0

Let us use the Fourier cosine-series

∀F ∈ L2
per(0, T0) : F (τ) =

∑

m∈Nodd

Fm cos(mω0τ), ω0 =
2π

T0
.

and consider the nonlinear equation

Z̈ (τ) + 2Z (τ) + γ−1/2V ′(γ−1/2Z (τ)) = γ1/2F (τ),

Then, we have

(2 − m2ω2
0)Zm + Wm(Z) = γ1/2Fm, m ∈ N,

where

Wm(Z) =
2

T0γ1/2

∫ T0

0
V ′(γ−1/2Z (τ)) cos(mω0τ)dτ.
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No resonance at the central site n = 0

Thanks to the compact support of V ′(x) on [−a0, a0], we have

∃C > 0 : ∀Z ∈ H1
per(0, T0) : |Wm(Z)| ≤ Cmγ1/2, m ∈ N odd,

The vector Z = (Z1, Z3, Z5, ...) is split into two parts Z1 and Z̃ = (Z3, Z5, ...).
Then, we have a continuous map R ∋ Z1 7→ Z̃ ∈ l2(N) such that

∃C > 0 : ∀Z1 ∈ R : ‖Z̃‖l∞1
+ ‖Z̃‖l2 ≤ Cγ1/2 (1 + ‖F‖l2) .

We need Z̃ ∈ l21 (Z) to control

Z̃ (τ) =
∑

m≥3

Zm cos(mω0τ)!

D.Pelinovsky (McMaster University) Breathers from infinity 25 / 26



Final step - projection to Z1

Eliminating Z̃ , we obtain

(2 − ω2
0)Z1 +

γ1/2

πZ 2
1

∫ a0

0

xV ′(x)

(1 − γx2

Z 2
1

)1/2
dx = γ1/2F1.

By the Implicit Function Theorem, this gives

∃C > 0 : |Z1 − (E − V∞)1/2| ≤ C‖F‖L2 small.

By fixed-point iterations, this construction finally gives

‖X0 − X‖H1
per

≤ Cγ1/4.
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