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Stability of stationary states in Hamiltonian systems

Consider an abstract Hamiltonian dynamical system

d
d—‘t’ = JgradH(u), u(t) € X
where X C L? is a phase space, J* = —J is a bounded invertible operator

for the symplectic structure, and H : X — R is the Hamilton function.

@ Assume existence of the stationary state vy € X such that
gradH(up) = 0.

@ Perform linearization u(t) = ug + ve*t, where X is the spectral
parameter and v € X satisfies the spectral problem

JH" (up)v = Av,

where H"(ug) : X — L2 is a self-adjoint Hessian operator.
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Spectral stability
Consider the spectral problem:
JH (wo)v = v, veX.

Assumptions:

@ The spectrum of H”(up) is positive except for finitely many negative
and zero eigenvalues of finite multiplicity.

@ The continuous wave spectrum of JH"(ug) is purely imaginary.

o Multiplicity of the zero eigenvalue of JH”(ug) is given by the number
of parameters in up (symmetries).

Question: Is there a relation between unstable eigenvalues of JH" (up) and
negative eigenvalues of H"(up)?
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Example: NLS equation
Consider the nonlinear Schrodinger equation
iy = —tge + V(xX)u + |ulPu, x €R,

V is an external potential and u(t,x) = up(x)e™™t is a stationary state.

@ up is a critical point of the conserved energy:
1
H(u) = / <|ux\2 + V)ul? — wlu)® + §\u|4> dx.
R

@ The self-adjoint Hessian operator H”(up) is given by

—02 +V —w+2|upl? u3
" _ X 0
H (o) = [ g —2+V —w+2|ug|?

@ The bounded invertible operator J is

[42)
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Example: nonlinear Dirac equation
Consider the nonlinear Dirac equation

i(ue + uy) + v+ (Jul? +2v[?)u =0,
i(ve — ve) + u+ (2luf? + |v]?)v =0,

—iwt

where (u, v)(t,x) = (uo, vo)(x)e is a stationary state.

@ (up, vp) is a critical point of the conserved energy:
H(u,v) = / (uxl — ully — vV + vk + vO + uv) dx
R

1 1
- (wuu\z+|v|2)——\u|4—2\u|2|v|2——\v\4) dx.
. 2 2

@ The continuous wave spectrum of H”(ug, vy) is sign-indefinite and
hence violates assumptions of the theory.
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Main question

Question: Is there a relation between unstable eigenvalues of JH" (up) and
negative eigenvalues of H"”(up)?

For a gradient system:

du "

g = —gradF(u) = Av=—F"(u)v,
Theorem

The number of unstable eigenvalues of —F"(ug) equals the number of
negative eigenvalues of F"(up).

The relation is less straightforward in a Hamiltonian system
Av = JH (wp)v, veEX.

Symmetry: If X is an eigenvalue, so is —J, X, and —\.
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Example: two coupled oscillators

Question: Is there a relation between unstable eigenvalues of JH" (up) and
negative eigenvalues of H"”(up)?

Consider energy

1 1
H= 5(}’12 +y3)+ E(W%Xf + wix3)

The quadratic form for H has four positive eigenvalues.

The two oscillators are stable:

X1 =,

X2 = y2, N { X +wixg =0,
y'1 = —wfxl, X2 +OJ%X2 =0.
Yo = —wixy,
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Example: two coupled oscillators

Question: Is there a relation between unstable eigenvalues of JH"(up) and
negative eigenvalues of H”(up)?

Consider energy

H= 2(}’1 +y3)+ = (W1X1 A5x3)

The quadratic form for H has three positive and one negative eigenvalues.

One of the two oscillators is unstable:

X.l =¥,

. _ . 2 _
X2 = Yo, X1 +wixy =0,
2 = . )\2 o 0
n = —wix, X2 5x2 = 0.
S 2

Y2 = A5x2,

Negative index count:

Neo(JH) = 1 = Npeg(H)
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Example: two coupled oscillators

Question: Is there a relation between unstable eigenvalues of JH"(up) and
negative eigenvalues of H”(up)?

Consider energy
H —

2(}’1 +y3)+ = ( Ax — A3x3)

The quadratic form for H has two positive and two negative eigenvalues
Both oscillators are unstable:

X1 =,

X2 =y, N {Xi—)\%xlz(),
yi = )\lxl, X3 — A3xa = 0.
Y2 = )\2X27

Negative index count:

Neo(JH) = 2 = Noeg(H)
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Example: two coupled oscillators

Question: Is there a relation between unstable eigenvalues of JH"(up) and
negative eigenvalues of H”(up)?

Consider energy
H_l( 2 2)+l( 2,2 2 2)
=W ) S \WiX1 = WaXo
The quadratic form for H has two positive and two negative eigenvalues.

The two oscillators are nevertheless stable:

X1 = Y1,

Xo = —y, N { X +wix =0,
y'1 = —wfxl, X2 +OJ%X2 =0.
Y2 = wixo,

Negative index count:

2N (JH) = 2 = Nyog (H)
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Example: two coupled oscillators
Question: Is there a relation between unstable eigenvalues of JH"(up) and
negative eigenvalues of H”(up)?

Consider energy
1
H= E(yl2 — y22) + w2x1x2
The quadratic form for H has two positive and two negative eigenvalues.

The two oscillators are unstable with a quartet of complex eigenvalues:

X.1:y17

. . 2

Xo = — X1 +wxp=0 4

.2 y22’ = 1 2 2 ’ = X]F )+w4X]_ = 0.
y1=—wx, xp —wxy =0,

. 2

Y2 = —WwW Xy,

Negative index count:

2NC(JH) =2= Nneg(H)
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Spectral stability theorems

Consider the spectral stability problem:
JH (wo)v = Av, veX.
For simplicity, assume a zero-dimensional kernel of H”(up).

@ Grillakis, Shatah, Strauss, 1990 Orbital Stability Theory:

» If H”(up) has no negative eigenvalues, then JH”(up) has no unstable
eigenvalues.

» If H”(up) has an odd number of negative eigenvalues, then JH" (up)
has at least one real unstable eigenvalue.

o Kapitula, Kevrekidis, Sandstede, 2004; Pelinovsky, 2005
Negative Index Theory:

Nee(JH" (o)) + 2Ne(JH" (u0)) + 2Ni, (JH" (t0)) = Nieg (H" (o))
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What is Krein signature for eigenvalues?

@ Suppose that A € iR is a simple isolated eigenvalue of JH" (ug) with
the eigenvector v. Then, the sign of

E(v) = (H"(up)v,v) 2

is called the Krein signature of the eigenvalue .

@ If X is a multiple isolated eigenvalue of JH”(ug), then the number
N. (JH"(ug)) is introduced as the number of negative eigenvalues of
the quadratic form E//(v) restricted at the invariant subspace of
JH" (up) associated with the eigenvalue A.
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Example of two coupled NLS equations

Consider the system of two coupled NLS equations:

up + Uxx + (‘U|2 +X|V|2) u = 0,
Ve + Vs + (x\u|2 + M2) v = 0,

where x > 0 is the coupling constant.

Stationary states are given by
u=U(x)e", v=V(x)e"“t,
where w > 0 is a frequency parameter.

Consider families of excited states, for which U(x) > 0 for all x € R and
V(x) has n zeros on R.

Reference: D.P., J. Yang, Stud. Appl. Math. 115 (2005), 109-137.
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Example n =1

0 1 2 3 -20 0 20
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Count of eigenvalues
The ODE system for stationary states:

U' = U+ (> +xV*) U = 0,
V' —wV+ (xUP+ V) v =

o If V is small [near point (c)], then
U(x) = V2sechx+0(e?),  V(x) = egn(x)+O(e%), w = wyt+O(),
where (wp, ¢,) is an eigenvalue—eigenfunction pair of
d2
(—W + wp — 2x sech2(x)> ¢n =0.

where ¢, has n zeros on R.

@ For small positive ¢, the negative index count
Nye (JH" (ug)) + 2N, (JD" H(ug)) + 2N (JH" (up)) = 2n,
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Example n =1

2' //,
0
Q 157 .
g - Im(a,)
o 1f
2 e
) o, -

05} =
@/x Re(o,)
O L "

For 1 < x < x2, we have
2N (JH" (ug)) = 2 = Nyeg(H" (u0)).

Dmitry Pelinovsky (McMaster University Nonlinear instabilities of solitons and breaB WAV 1 YY1 N BT T4 17 / 35



Why spectral instability?

The spectral stability problem
JH (uwp)v = Av, veX.
has continuous spectrum for [Im(A)| > 1.
The distance between two consequent eigenvalues,
lwn —wp-1| >1, neN,

therefore, the eigenvalues of negative Krein signature A = +ijw; — wy| are
embedded into continuous spectrum, inducing spectral instability.
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Why spectral instability?

The spectral stability problem
JH (uwp)v = Av, veX.
has continuous spectrum for [Im(A)| > 1.
The distance between two consequent eigenvalues,
lwp —wp—1| >1, neN,

therefore, the eigenvalues of negative Krein signature A\ = £i|w; — wp| are
embedded into continuous spectrum, inducing spectral instability.

If the eigenvalues of negative Krein signature are isolated, they are
spectrally stable. Are these excited states also stable in nonlinear dynamics?
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Klein-Gordon lattice

Klein-Gordon (KG) lattice models a chain of coupled anharmonic oscillators
with a nearest-neighbour interactions

i+ V'(up) = €(uny1 — 2up + Up_1),

where {u,(t)}nez : R — RZ, dot represents time derivative, € is the
coupling constant, and V : R — R is an on-site potential.

Un, Un+1
- - - -
RAAAAA AAAAAL GVAVAVAVAL QVAVAVAVA. ZaVAVAVAVA

\

Applications:
o dislocations in crystals (e.g. Frenkel & Kontorova '1938)
@ oscillations in biological molecules (e.g. Peyrard & Bishop '1989)
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Nonlinear Schroédinger lattice

Discrete nonlinear Schrodinger equation (dNLS) corresponds to the
small-amplitude weakly coupled limit of the KG lattice with V/(u) = u =+ u>:

2ia, + 3|a,,|2a = ap+1 — 2ap + ap—1,

where {a,(7)}nez : R — CZ and 7 is new time variable.
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Nonlinear Schrédinger lattice

Discrete nonlinear Schrodinger equation (dNLS) corresponds to the
small-amplitude weakly coupled limit of the KG lattice with V/(u) = u =+ u>:

2ia, + 3\3,,\23 = apy1 — 2ap + ap—1,

where {a,(7)}nez : R — CZ and 7 is new time variable.

By using the leading-order approximation
Uj(t) = /2 [aj(et)e’ + 3j(et)e™ ],
in dKG, one can obtain dNLS and estimate the residual terms

Res;(t) := £¢/2 (a; 330t 4 a e 3i) + /2 (37€" + 37 "),

For every |t| < 1pe™ !, there is C > 0 such that
y

lu(t) = U(8)]l2 + a(2) = V()] o < C¥2.
Reference: D.P., T. Penati, S. Paleari (2016).
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Individual oscillators

In the anti-continuum limit (¢ = 0), each oscillator is governed by

. 1.
¢+ V'(p)=0, = §s02 + V(p) =E,

where ¢ € H2,,(0, T) and V'(u) = Tut

The period of the oscillator is

a(E) dx

T = ~a(e) VE = V(x)’

0.1 0.2 0.3
E

where a(E), the amplitude, is the
Figure: Period vs. energy in hard ~ smallest root of V/(a) = E.
(magenta) and soft (blue) V.
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Multi-breathers near the anti-continuum limit

Breathers are spatially localized time-periodic solutions to the Klein-Gordon
lattice. Multi-breathers are constructed by parameter continuation in €
from € = 0 and the limiting configuration:

u@(t) = owp(tler € HZ ((0,T); (2),
keS

where S C 7 is the set of excited sites and ey is the unit vector in /2(Z) at
the node k. The oscillators are in-phase if o = +1 and anti-phase if
o = —1.

Figure: An example of a multi-site discrete breather at ¢ = 0.

Reference: MacKay & Aubry 1994
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Spectral stability of discrete breathers

@ Archilla, Cuevas, Sanchez-Rey, Alvarez '2003
@ Koukouloyannis, Kevrekidis 2009

@ Pelinovsky, Sakovich 2012

@ Youshimura 2012

Short summary of stability results:

@ Single-site breather - spectrally stable

@ Two-site breathers at two adjacent sites:
» spectrally unstable if in-phase (soft) or anti-phase (hard)
» spectrally stable if anti-phase (soft) or in-phase (hard)

N A
L

Figure: Stable configuration in soft potential: T'(E) > 0.
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Spectral stability via Floquet multipliers

For € > 0, Floquet multipliers split as follows:

Two-site breathers have one split pair of Floquet multipliers:
@ the pair is on the unit circle if the breathers are spectrally stable

@ the pair is on the real line if the breathers are unstable

Question: Are spectrally stable two-site breathers also nonlinearly stable?
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Nonlinear instability in dNLS

Consider the NLS (continuous or discrete):
iOpu = —Au+ V(x)u + |u?u,

where V is an external smooth potential with a fast decay at infinity.
Assumptions:

@ The Schrodinger operator —A + V admits two simple eigenvalues
Ey < E; < 0 satisfying

|E1—E0‘<‘E1|, 2‘E1—E0|>‘E1‘.

@ Fermi golden rule of coupling between 2(E; — Ep) > |E;| and the
continuous spectrum of —A + V — Ej is nonzero.

The excited state bifurcating from Ej is spectrally stable but nonlinearly
unstable.

Cuccagna (2009); Cuccagna—Maeda (2013); Kevrekidis—P.—Saxena (2015).
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Spectral stability

Linearizing at the standing wave solution with
u(x,t) = e @t [cb(x) +4 (a(x)e)‘t + B(x)ej‘t)} ,
we obtain the spectral problem
H" (o) = iXas3ip,
where ¢ = (a,b)T, 03 = diag(1, —1), and H is given by

A+ V —w+2|¢)? ®?

H(9) = @ ~A+V —w+ 2P

@ the continuous spectrum A € i(—oo, —|w|] and X € i[|w], 00)
@ the double zero eigenvalue at A = 0 due to the gauge symmetry
o the pair of internal modes at A = +i€Q, with Q = E; — By + O(€?) > 0.

If Q < |w]|, the standing wave is spectrally stable.
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Krein quantity

However, the negative index count is n(H"(¢)) = 2.

For eigenvalue A = iQ2 with Q € R, the Krein quantity expresses the energy
K = (Hin,va) = -2 [ (af - [bal)ox
R

where g = (aq, bq)” is the corresponding eigenvector.

@ For continuous spectrum with Q > |w

, ag = O(¢?) and K > 0.
@ For the internal mode with Q = E; — Ey + O(€?) > 0,
bo = O(e?) and K < 0.

If Q < |w| but 2Q > |w], then the internal mode eigenfrequency is isolated

from the continuous spectrum but the double frequency is embedded into
the continuous spectrum.
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Nonlinear instability

Using the asymptotic multi-scale expansion
u(x, t) = et [¢(x) +6 (C(T)aﬂ(x)e"m + a(T)EQ(x)e—fo) + 0(52)} ,

computing radiation projections at O(6?),

B (aq + 2bq)aq
(H+2Q03)¢ = —¢ [ (2aq + ba)ba ] ’

and removing secular terms at O(5%), we obtain

dc

iK
! dr

+ Qﬁ\c|2c =0,

where K < 0 is the Krein quantity at the internal mode,
and Im(/3) > 0 due to Fermi Golden Rule.

Thus,

c|? grows in 7, the standing wave is nonlinearly unstable.
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Numerical illustration in 1D

The dNLS equation
ity + Cups1 — 2up + tp_1) + |un|?v, =0, neZ.

For C =0.07 and w =1, we have © ~ 0.598, so that < w but 2Q > w.

2
u, |

FIA
gl,a’j
=2

o8 0 5000 t 10000

0 2000 4000 6000 8000 10000
t

Figure: Evolution of a two-site localized mode in 1D dNLS. A transition to a
quasi-periodic localized mode is observed.
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Numerical illustration in 2D

The dNLS equation

|Un,m|2un,m

L c(A
Flin,m + ( U)n,m * 1+ |Un,m|2

=0, (n,m)ecZ?

For C = 0.09 and w = 0.35, we have Q; ~ 0.19, 2, ~ 0.16, and
Q3 =~ 0.01, so that Q23 < Q, < Q; < w but 2Q; > w.

25 25
2 2
% !
g L5 g 15 v
E E
g 1 !
Exy B
0.5 0.5 ]
i . e il r‘-u/,m:»«m%w
) 500 1000 t 2000 o 500 1000 , 1500 2000

Figure: Evolution of a vortex residing on four sites of the 2D dNLS. A relaxation
to a single-site soliton is observed.
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Nonlinear instability in dKG

Consider the discrete KG equation

in+ V'(up) = e(ups1 — 2up + up_1), neZ,

where V is smooth and V = Ju? + O(u®).

Assumptions: Similar to the NLS case, but more restrictive for the
second-order equations...

If an internal mode has Krein signature opposite to that of the spectral
band, then the breather is nonlinearly unstable.

J. Cuevas, P.G. Kevrekidis, D.P. (2016).
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Krein quantity

For the hard potential with T'(E) < 0 and T(E) < 2,
@ 0 < T < m: the Krein signatures of the internal mode and the wave
spectrum in the upper semi-circle coincide;
o m < T < 2m: the Krein signatures of the internal mode and the wave
spectrum in the upper semi-circle are opposite to each other.
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Numerical illustration: hard ¢* potential T = 7
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Numerical illustration: hard ¢* potential T < 7
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Conclusions

@ Excited localized modes occur everywhere in Hamiltonian systems:
nodal solitons, multi-site breathers, vortices...

@ Negative eigenvalues of quadratic Hamiltonian show up in the spectral
stability problem either as unstable eigenvalues or as stable eigenvalues
of negative Krein signature.

@ In the latter case, nonlinear instabilities may destroy localized modes
in spite of their spectral stability.

@ Spectrally stable multi-site breathers in lattices are either nonlinearly
stable or unstable, depending on the breather period T.
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Conclusions

@ Excited localized modes occur everywhere in Hamiltonian systems:
nodal solitons, multi-site breathers, vortices...

@ Negative eigenvalues of quadratic Hamiltonian show up in the spectral
stability problem either as unstable eigenvalues or as stable eigenvalues
of negative Krein signature.

@ In the latter case, nonlinear instabilities may destroy localized modes
in spite of their spectral stability.

@ Spectrally stable multi-site breathers in lattices are either nonlinearly
stable or unstable, depending on the breather period T.

Thank you.
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