
Nonlinear instabilities of solitons and breathersDmitry PelinovskyDepartment of Mathematics, McMaster University, Ontario, Canadain collaboration withS. Cuccagna, J. Cuevas, P.G. Kevrekidis, S. Paleari, T. PenatiWave Interaction; Linz, Austria; 25-28 April, 2016
Dmitry Pelinovsky (McMaster University)Nonlinear instabilities of solitons and breathersWave Interaction, Linz 1 / 35



Stability of stationary states in Hamiltonian systemsConsider an abstract Hamiltonian dynamical systemdudt = J gradH(u), u(t) ∈ Xwhere X ⊂ L2 is a phase space, J+ = −J is a bounded invertible operatorfor the symplectic structure, and H : X → R is the Hamilton function.Assume existence of the stationary state u0 ∈ X such thatgradH(u0) = 0.Perform linearization u(t) = u0 + veλt , where λ is the spectralparameter and v ∈ X satis�es the spectral problemJH ′′(u0)v = λv ,where H ′′(u0) : X → L2 is a self-adjoint Hessian operator.Dmitry Pelinovsky (McMaster University)Nonlinear instabilities of solitons and breathersWave Interaction, Linz 2 / 35



Spectral stabilityConsider the spectral problem:JH ′′(u0)v = λv , v ∈ X .Assumptions:The spectrum of H ′′(u0) is positive except for �nitely many negativeand zero eigenvalues of �nite multiplicity.The continuous wave spectrum of JH ′′(u0) is purely imaginary.Multiplicity of the zero eigenvalue of JH ′′(u0) is given by the numberof parameters in u0 (symmetries).Question: Is there a relation between unstable eigenvalues of JH ′′(u0) andnegative eigenvalues of H ′′(u0)?Dmitry Pelinovsky (McMaster University)Nonlinear instabilities of solitons and breathersWave Interaction, Linz 3 / 35



Example: NLS equationConsider the nonlinear Schrödinger equationiut = −uxx + V (x)u + |u|2u, x ∈ R,V is an external potential and u(t, x) = u0(x)e−iωt is a stationary state.u0 is a critical point of the conserved energy:H(u) = ∫

R

(

|ux |2 + V |u|2 − ω|u|2 + 12 |u|4) dx .The self-adjoint Hessian operator H ′′(u0) is given byH ′′(u0) = [

−∂2x + V − ω + 2|u0|2 u20ū20 −∂2x + V − ω + 2|u0|2 ]

.The bounded invertible operator J isJ =

[ i 00 −i ]

.Dmitry Pelinovsky (McMaster University)Nonlinear instabilities of solitons and breathersWave Interaction, Linz 4 / 35



Example: nonlinear Dirac equationConsider the nonlinear Dirac equation
{ i(ut + ux ) + v + (|u|2 + 2|v |2)u = 0,i(vt − vx ) + u + (2|u|2 + |v |2)v = 0,where (u, v)(t, x) = (u0, v0)(x)e−iωt is a stationary state.

(u0, v0) is a critical point of the conserved energy:H(u, v) = ∫

R

(ux ū − uūx − vx v̄ + v v̄x + v ū + uv̄ ) dx
+

∫

R

(

ω(|u|2 + |v |2)− 12 |u|4 − 2|u|2|v |2 − 12 |v |4) dx .The continuous wave spectrum of H ′′(u0, v0) is sign-inde�nite andhence violates assumptions of the theory.Dmitry Pelinovsky (McMaster University)Nonlinear instabilities of solitons and breathersWave Interaction, Linz 5 / 35



Main questionQuestion: Is there a relation between unstable eigenvalues of JH ′′(u0) andnegative eigenvalues of H ′′(u0)?For a gradient system:dudt = −gradF (u) ⇒ λv = −F ′′(u0)v ,TheoremThe number of unstable eigenvalues of −F ′′(u0) equals the number ofnegative eigenvalues of F ′′(u0).The relation is less straightforward in a Hamiltonian system
λv = JH ′′(u0)v , v ∈ X .Symmetry: If λ is an eigenvalue, so is −λ, λ̄, and −λ̄.Dmitry Pelinovsky (McMaster University)Nonlinear instabilities of solitons and breathersWave Interaction, Linz 6 / 35



Example: two coupled oscillatorsQuestion: Is there a relation between unstable eigenvalues of JH ′′(u0) andnegative eigenvalues of H ′′(u0)?Consider energy H =
12(y21 + y22 ) + 12(ω21x21 + ω22x22 )The quadratic form for H has four positive eigenvalues.The two oscillators are stable:















ẋ1 = y1,ẋ2 = y2,ẏ1 = −ω21x1,ẏ2 = −ω22x2, ⇒
{ ẍ1 + ω21x1 = 0,ẍ2 + ω22x2 = 0.Dmitry Pelinovsky (McMaster University)Nonlinear instabilities of solitons and breathersWave Interaction, Linz 7 / 35



Example: two coupled oscillatorsQuestion: Is there a relation between unstable eigenvalues of JH ′′(u0) andnegative eigenvalues of H ′′(u0)?Consider energy H =
12(y21 + y22 ) + 12(ω21x21 − λ22x22 )The quadratic form for H has three positive and one negative eigenvalues.One of the two oscillators is unstable:















ẋ1 = y1,ẋ2 = y2,ẏ1 = −ω21x1,ẏ2 = λ22x2, ⇒
{ ẍ1 + ω21x1 = 0,ẍ2 − λ22x2 = 0.Negative index count: Nre(JH) = 1 = Nneg(H)Dmitry Pelinovsky (McMaster University)Nonlinear instabilities of solitons and breathersWave Interaction, Linz 8 / 35



Example: two coupled oscillatorsQuestion: Is there a relation between unstable eigenvalues of JH ′′(u0) andnegative eigenvalues of H ′′(u0)?Consider energy H =
12(y21 + y22 ) + 12(−λ21x21 − λ22x22 )The quadratic form for H has two positive and two negative eigenvalues.Both oscillators are unstable:















ẋ1 = y1,ẋ2 = y2,ẏ1 = λ21x1,ẏ2 = λ22x2, ⇒
{ ẍ1 − λ21x1 = 0,ẍ2 − λ22x2 = 0.Negative index count: Nre(JH) = 2 = Nneg(H)Dmitry Pelinovsky (McMaster University)Nonlinear instabilities of solitons and breathersWave Interaction, Linz 9 / 35



Example: two coupled oscillatorsQuestion: Is there a relation between unstable eigenvalues of JH ′′(u0) andnegative eigenvalues of H ′′(u0)?Consider energy H =
12(y21 − y22 ) + 12(ω21x21 − ω22x22 )The quadratic form for H has two positive and two negative eigenvalues.The two oscillators are nevertheless stable:















ẋ1 = y1,ẋ2 = −y2,ẏ1 = −ω21x1,ẏ2 = ω22x2, ⇒
{ ẍ1 + ω21x1 = 0,ẍ2 + ω22x2 = 0.Negative index count: 2N−im(JH) = 2 = Nneg(H)Dmitry Pelinovsky (McMaster University)Nonlinear instabilities of solitons and breathersWave Interaction, Linz 10 / 35



Example: two coupled oscillatorsQuestion: Is there a relation between unstable eigenvalues of JH ′′(u0) andnegative eigenvalues of H ′′(u0)?Consider energy H =
12(y21 − y22 ) + ω2x1x2The quadratic form for H has two positive and two negative eigenvalues.The two oscillators are unstable with a quartet of complex eigenvalues:















ẋ1 = y1,ẋ2 = −y2,ẏ1 = −ω2x2,ẏ2 = −ω2x1, ⇒
{ ẍ1 + ω2x2 = 0,ẍ2 − ω2x1 = 0, ⇒ x(4)1 + ω4x1 = 0.Negative index count: 2Nc(JH) = 2 = Nneg(H)Dmitry Pelinovsky (McMaster University)Nonlinear instabilities of solitons and breathersWave Interaction, Linz 11 / 35



Spectral stability theoremsConsider the spectral stability problem:JH ′′(u0)v = λv , v ∈ X .For simplicity, assume a zero-dimensional kernel of H ′′(u0).Grillakis, Shatah, Strauss, 1990 Orbital Stability Theory:
I If H ′′(u0) has no negative eigenvalues, then JH ′′(u0) has no unstableeigenvalues.
I If H ′′(u0) has an odd number of negative eigenvalues, then JH ′′(u0)has at least one real unstable eigenvalue.Kapitula, Kevrekidis, Sandstede, 2004; Pelinovsky, 2005Negative Index Theory:Nre(JH ′′(u0)) + 2Nc(JH ′′(u0)) + 2N−im(JH ′′(u0)) = Nneg(H ′′(u0)).Dmitry Pelinovsky (McMaster University)Nonlinear instabilities of solitons and breathersWave Interaction, Linz 12 / 35



What is Krein signature for eigenvalues?Suppose that λ ∈ iR is a simple isolated eigenvalue of JH ′′(u0) withthe eigenvector v . Then, the sign ofE ′′

ω(v) = 〈H ′′(u0)v , v〉L2is called the Krein signature of the eigenvalue λ.If λ is a multiple isolated eigenvalue of JH ′′(u0), then the numberN−im(JH ′′(u0)) is introduced as the number of negative eigenvalues ofthe quadratic form E ′′

ω(v) restricted at the invariant subspace ofJH ′′(u0) associated with the eigenvalue λ.Dmitry Pelinovsky (McMaster University)Nonlinear instabilities of solitons and breathersWave Interaction, Linz 13 / 35



Example of two coupled NLS equationsConsider the system of two coupled NLS equations:iut + uxx + (

|u|2 + χ|v |2) u = 0,ivt + vxx + (

χ|u|2 + |v |2) v = 0,where χ > 0 is the coupling constant.Stationary states are given byu = U(x)e it , v = V (x)e iωt ,where ω > 0 is a frequency parameter.Consider families of excited states, for which U(x) > 0 for all x ∈ R andV (x) has n zeros on R.Reference: D.P., J. Yang, Stud. Appl. Math. 115 (2005), 109�137.Dmitry Pelinovsky (McMaster University)Nonlinear instabilities of solitons and breathersWave Interaction, Linz 14 / 35



Example n = 1
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Count of eigenvaluesThe ODE system for stationary states:U ′′ − U +
(U2 + χV 2)U = 0,V ′′ − ωV +
(

χU2 + V 2) v = 0.If V is small [near point (c)], thenU(x) = √2 sechx+O(ε2), V (x) = εφn(x)+O(ε3), ω = ωn+O(ε2),where (ωn, φn) is an eigenvalue�eigenfunction pair of
(

− d2dx2 + ωn − 2χ sech2(x))φn = 0.where φn has n zeros on R.For small positive ε, the negative index countNre(JH ′′(u0)) + 2N−im(JD ′′H(u0)) + 2Nc(JH ′′(u0)) = 2n,Dmitry Pelinovsky (McMaster University)Nonlinear instabilities of solitons and breathersWave Interaction, Linz 16 / 35



Example n = 1
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For 1 < χ < χ2, we have2Nc(JH ′′(u0)) = 2 = Nneg(H ′′(u0)).Dmitry Pelinovsky (McMaster University)Nonlinear instabilities of solitons and breathersWave Interaction, Linz 17 / 35



Why spectral instability?The spectral stability problemJH ′′(u0)v = λv , v ∈ X .has continuous spectrum for |Im(λ)| > 1.The distance between two consequent eigenvalues,
|ωn − ωn−1| > 1, n ∈ N,therefore, the eigenvalues of negative Krein signature λ = ±i |ω1 − ω0| areembedded into continuous spectrum, inducing spectral instability.

Dmitry Pelinovsky (McMaster University)Nonlinear instabilities of solitons and breathersWave Interaction, Linz 18 / 35



Why spectral instability?The spectral stability problemJH ′′(u0)v = λv , v ∈ X .has continuous spectrum for |Im(λ)| > 1.The distance between two consequent eigenvalues,
|ωn − ωn−1| > 1, n ∈ N,therefore, the eigenvalues of negative Krein signature λ = ±i |ω1 − ω0| areembedded into continuous spectrum, inducing spectral instability.If the eigenvalues of negative Krein signature are isolated, they arespectrally stable. Are these excited states also stable in nonlinear dynamics?Dmitry Pelinovsky (McMaster University)Nonlinear instabilities of solitons and breathersWave Interaction, Linz 18 / 35



Klein-Gordon latticeKlein-Gordon (KG) lattice models a chain of coupled anharmonic oscillatorswith a nearest-neighbour interactionsün + V ′(un) = ε(un+1 − 2un + un−1),where {un(t)}n∈Z : R → R
Z, dot represents time derivative, ε is thecoupling constant, and V : R → R is an on-site potential.

un un+1

V

u

V

Applications:dislocations in crystals (e.g. Frenkel & Kontorova '1938)oscillations in biological molecules (e.g. Peyrard & Bishop '1989)Dmitry Pelinovsky (McMaster University)Nonlinear instabilities of solitons and breathersWave Interaction, Linz 19 / 35



Nonlinear Schrödinger latticeDiscrete nonlinear Schrodinger equation (dNLS) corresponds to thesmall-amplitude weakly coupled limit of the KG lattice with V ′(u) = u±u3:2i ȧn ± 3|an|2a = an+1 − 2an + an−1,where {an(τ)}n∈Z : R → C
Z and τ is new time variable.

Dmitry Pelinovsky (McMaster University)Nonlinear instabilities of solitons and breathersWave Interaction, Linz 20 / 35



Nonlinear Schrödinger latticeDiscrete nonlinear Schrodinger equation (dNLS) corresponds to thesmall-amplitude weakly coupled limit of the KG lattice with V ′(u) = u±u3:2i ȧn ± 3|an|2a = an+1 − 2an + an−1,where {an(τ)}n∈Z : R → C
Z and τ is new time variable.By using the leading-order approximationUj(t) = ε1/2 [aj(εt)e it + āj(εt)e−it] ,in dKG, one can obtain dNLS and estimate the residual termsResj(t) := ±ε3/2 (a3j e3it + ā3j e−3it)+ ε5/2 (äje it + ¨̄aje−it) ,For every |t| ≤ τ0ε−1, there is C > 0 such that

‖u(t)−U(t)‖l2 + ‖u̇(t)− U̇(t)‖l2 ≤ Cε3/2.Reference: D.P., T. Penati, S. Paleari (2016).Dmitry Pelinovsky (McMaster University)Nonlinear instabilities of solitons and breathersWave Interaction, Linz 20 / 35



Individual oscillatorsIn the anti-continuum limit (ε = 0), each oscillator is governed by
ϕ̈+ V ′(ϕ) = 0, ⇒ 12 ϕ̇2 + V (ϕ) = E ,where ϕ ∈ H2per (0,T ) and V ′(u) = 12u ± 14u3.
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Figure: Period vs. energy in hard(magenta) and soft (blue) V .
The period of the oscillator isT (E ) = √2∫ a(E)

−a(E)

dx
√E − V (x) ,where a(E ), the amplitude, is thesmallest root of V (a) = E .Dmitry Pelinovsky (McMaster University)Nonlinear instabilities of solitons and breathersWave Interaction, Linz 21 / 35



Multi-breathers near the anti-continuum limitBreathers are spatially localized time-periodic solutions to the Klein-Gordonlattice. Multi-breathers are constructed by parameter continuation in εfrom ε = 0 and the limiting con�guration:u(0)(t) = ∑k∈S σkϕ(t)ek ∈ H2per ((0,T ); l2(Z),where S ⊂ Z is the set of excited sites and ek is the unit vector in l2(Z) atthe node k . The oscillators are in-phase if σk = +1 and anti-phase if
σk = −1.
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Figure: An example of a multi-site discrete breather at ε = 0.Reference: MacKay & Aubry '1994Dmitry Pelinovsky (McMaster University)Nonlinear instabilities of solitons and breathersWave Interaction, Linz 22 / 35



Spectral stability of discrete breathersArchilla, Cuevas, Sánchez-Rey, Alvarez '2003Koukouloyannis, Kevrekidis '2009Pelinovsky, Sakovich '2012Youshimura '2012Short summary of stability results:Single-site breather - spectrally stableTwo-site breathers at two adjacent sites:
I spectrally unstable if in-phase (soft) or anti-phase (hard)
I spectrally stable if anti-phase (soft) or in-phase (hard)

Figure: Stable con�guration in soft potential: T ′(E ) > 0.Dmitry Pelinovsky (McMaster University)Nonlinear instabilities of solitons and breathersWave Interaction, Linz 23 / 35



Spectral stability via Floquet multipliersFor ε > 0, Floquet multipliers split as follows:
Imµ

Reµ

e
iT

e
−iT

1

1 ε = 0 Imµ

Reµ

e
iT

e
−iT

1 ε > 0

Two-site breathers have one split pair of Floquet multipliers:the pair is on the unit circle if the breathers are spectrally stablethe pair is on the real line if the breathers are unstableQuestion: Are spectrally stable two-site breathers also nonlinearly stable?Dmitry Pelinovsky (McMaster University)Nonlinear instabilities of solitons and breathersWave Interaction, Linz 24 / 35



Nonlinear instability in dNLSConsider the NLS (continuous or discrete):i∂tu = −∆u + V (x)u + |u|2u,where V is an external smooth potential with a fast decay at in�nity.Assumptions:The Schrödinger operator −∆+ V admits two simple eigenvaluesE0 < E1 < 0 satisfying
|E1 − E0| < |E1|, 2|E1 − E0| > |E1|.Fermi golden rule of coupling between 2(E1 − E0) > |E1| and thecontinuous spectrum of −∆+ V − E1 is nonzero.The excited state bifurcating from E1 is spectrally stable but nonlinearlyunstable.Cuccagna (2009); Cuccagna�Maeda (2013); Kevrekidis�P.�Saxena (2015).Dmitry Pelinovsky (McMaster University)Nonlinear instabilities of solitons and breathersWave Interaction, Linz 25 / 35



Spectral stabilityLinearizing at the standing wave solution withu(x , t) = e−iωt [φ(x) + δ
(a(x)eλt + b̄(x)eλ̄t)] ,we obtain the spectral problemH ′′(φ)ψ = iλσ3ψ,where ψ = (a, b)T , σ3 = diag(1,−1), and H is given byH ′′(φ) =

[

−∆+ V − ω + 2|φ|2 φ2
φ̄2 −∆+ V − ω + 2|φ|2 ]

.the continuous spectrum λ ∈ i(−∞,−|ω|] and λ ∈ i [|ω|,∞)the double zero eigenvalue at λ = 0 due to the gauge symmetrythe pair of internal modes at λ = ±iΩ, with Ω = E1−E0+O(ε2) > 0.If Ω < |ω|, the standing wave is spectrally stable.Dmitry Pelinovsky (McMaster University)Nonlinear instabilities of solitons and breathersWave Interaction, Linz 26 / 35



Krein quantityHowever, the negative index count is n(H ′′(φ)) = 2.For eigenvalue λ = iΩ with Ω ∈ R, the Krein quantity expresses the energyK = 〈HψΩ, ψΩ〉 = −Ω

∫

R

(|aΩ|2 − |bΩ|2)dx ,where ψΩ = (aΩ, bΩ)T is the corresponding eigenvector.For continuous spectrum with Ω > |ω|, aΩ = O(ε2) and K > 0.For the internal mode with Ω = E1 − E0 +O(ε2) > 0,bΩ = O(ε2) and K < 0.If Ω < |ω| but 2Ω > |ω|, then the internal mode eigenfrequency is isolatedfrom the continuous spectrum but the double frequency is embedded intothe continuous spectrum.Dmitry Pelinovsky (McMaster University)Nonlinear instabilities of solitons and breathersWave Interaction, Linz 27 / 35



Nonlinear instabilityUsing the asymptotic multi-scale expansionu(x , t) = e−iωt [φ(x) + δ
(c(τ)aΩ(x)e iΩt + c̄(τ)b̄Ω(x)e−iΩt)+O(δ2)] ,computing radiation projections at O(δ2),

(H + 2Ωσ3)ψ2 = −φ
[

(aΩ + 2bΩ)aΩ
(2aΩ + bΩ)bΩ ]

,and removing secular terms at O(δ3), we obtainiK dcdτ +Ωβ|c |2c = 0,where K < 0 is the Krein quantity at the internal mode,and Im(β) > 0 due to Fermi Golden Rule.Thus, |c |2 grows in τ , the standing wave is nonlinearly unstable.Dmitry Pelinovsky (McMaster University)Nonlinear instabilities of solitons and breathersWave Interaction, Linz 28 / 35



Numerical illustration in 1DThe dNLS equationi u̇n + C (un+1 − 2un + un−1) + |un|2un = 0, n ∈ Z.For C = 0.07 and ω = 1, we have Ω ≈ 0.598, so that Ω < ω but 2Ω > ω.
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Numerical illustration in 2DThe dNLS equationi u̇n,m + C (∆u)n,m +
|un,m|2un,m1+ |un,m|2 = 0, (n,m) ∈ Z

2.For C = 0.09 and ω = 0.35, we have Ω1 ≈ 0.19, Ω2 ≈ 0.16, and
Ω3 ≈ 0.01, so that Ω3 < Ω2 < Ω1 < ω but 2Ω1 > ω.
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Nonlinear instability in dKGConsider the discrete KG equationün + V ′(un) = ε(un+1 − 2un + un−1), n ∈ Z,where V is smooth and V = 12u2 +O(u3).Assumptions: Similar to the NLS case, but more restrictive for thesecond-order equations...If an internal mode has Krein signature opposite to that of the spectralband, then the breather is nonlinearly unstable.J. Cuevas, P.G. Kevrekidis, D.P. (2016).Dmitry Pelinovsky (McMaster University)Nonlinear instabilities of solitons and breathersWave Interaction, Linz 31 / 35



Krein quantity
Imµ

Reµ

e
iT

e
−iT

1 ε > 0

For the hard potential with T ′(E ) < 0 and T (E ) < 2π,0 < T < π: the Krein signatures of the internal mode and the wavespectrum in the upper semi-circle coincide;
π < T < 2π: the Krein signatures of the internal mode and the wavespectrum in the upper semi-circle are opposite to each other.Dmitry Pelinovsky (McMaster University)Nonlinear instabilities of solitons and breathersWave Interaction, Linz 32 / 35



Numerical illustration: hard φ4 potential T = π
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Numerical illustration: hard φ4 potential T < π
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ConclusionsExcited localized modes occur everywhere in Hamiltonian systems:nodal solitons, multi-site breathers, vortices...Negative eigenvalues of quadratic Hamiltonian show up in the spectralstability problem either as unstable eigenvalues or as stable eigenvaluesof negative Krein signature.In the latter case, nonlinear instabilities may destroy localized modesin spite of their spectral stability.Spectrally stable multi-site breathers in lattices are either nonlinearlystable or unstable, depending on the breather period T .
Dmitry Pelinovsky (McMaster University)Nonlinear instabilities of solitons and breathersWave Interaction, Linz 35 / 35



ConclusionsExcited localized modes occur everywhere in Hamiltonian systems:nodal solitons, multi-site breathers, vortices...Negative eigenvalues of quadratic Hamiltonian show up in the spectralstability problem either as unstable eigenvalues or as stable eigenvaluesof negative Krein signature.In the latter case, nonlinear instabilities may destroy localized modesin spite of their spectral stability.Spectrally stable multi-site breathers in lattices are either nonlinearlystable or unstable, depending on the breather period T .Thank you.Dmitry Pelinovsky (McMaster University)Nonlinear instabilities of solitons and breathersWave Interaction, Linz 35 / 35
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